

TOWN OF RAYMOND

Planning Board Agenda May 11, 2023 7 p.m. - Raymond High School Media Center - 45 Harriman Hill

Public Announcement

If this meeting is canceled or postponed for any reason the information can be found on our website, posted at Town Hall, Facebook Notification, and RCTV. *

1. Pledge of Allegiance

2. Public Hearing-

Application # 2022-008- Onyx Warehouse/Industrial Drive: A SITE PLAN application is being submitted by Wayne Morrill of Jones & Beach Engineers, Inc. on behalf of ONYX Partners LTD. They are proposing to construct a 550,025 S.F. industrial distribution warehouse with associated loading docks, truck parking, and employee vehicle parking. Property is located on Industrial Drive and Raymond Tax Map 22 / Lots 44,45,46,& 47 and Raymond Tax Map 28-3/Lot 120-1.

This public hearing is to discuss the findings of an environmental study provided by Steven Lamb of GZA with the applicants and the Planning Board.

3. Approval of Minutes

• 04/20/2023

4. Other Business

- Staff Updates-
- Board Member Updates
- > Any other business brought before the board-

5. Adjournment (NO LATER THAN 10:00 P.M.)

* Note: If you require personal assistance for audio, visual or other special aid, please contact the Selectmen's Office at least 72 hours prior to the meeting. If this meeting is postponed for any reason, it will be held at a time TBD.

TOWN OF RAYMOND

Planning Board Agenda May 11, 2023 7 p.m. - Raymond High School Media Center - 45 Harriman Hill

Planning Board 2023 Submittal and Meeting Dates

Submittal Deadline for Completed Application & Materials	Planning Board Meeting Dates (1st & 3rd Thursdays of the Month)
ADDED MEETING	May 11, 2023 2022-008 Onyx Warehouse w/ GZA
April 20, 2023	May 18, 2023 2022-010 ONYX EXCAVATION (cont.) & 2023-001 Inkberry Logistics (design review)
	May 25, 2023 Work Session/no applications
May 04, 2023	June 01, 2023 2022-009 Jewett Warehouse
	June 8, 2023 2022-013 Severino Excavation
May 18, 2023	June 15, 2023 2022-015 White Rock LLA & 2022-008 Onyx Warehouse
June 01, 2023	July 06, 2023
June 15, 2023	July 20, 2023
July 06, 2023	August 03, 2023
July 20, 2023	August 17, 2023
August 03, 2023	September 07, 2023
August 17, 2023	September 21, 2023
September 07, 2023	October 05, 2023
September 21, 2023	October 19, 2023
October 05, 2023	November 02, 2023
October 19, 2023	November 16, 2023
November 02, 2023	December 07, 2023
November 16, 2023	December 21, 2023

^{*} Note: If you require personal assistance for audio, visual or other special aid, please contact the Selectmen's Office at least 72 hours prior to the meeting. If this meeting is postponed for any reason, it will be held at a time TBD.

Known for excellence. Built on trust.

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

5 Commerce Park North Suite 201 Bedford, NH 03110 T: 603.623.3600 F: 603.624.9463 www.gza.com

VIA EMAIL

April 6, 2023 File No. 04.0191548.00

Ms. Christina McCarthy Tax Collector Town of Raymond 4 Epping Street Raymond NH 03077 603-895-7016 cmccarthy@raymondnh.gov

Re: Technical Review Summary Letter Proposed Onyx Raymond LLC Development Raymond, New Hampshire

Dear Ms. McCarthy;

GZA GeoEnvironmental, Inc. (GZA) has prepared this technical review summary letter (Summary Letter) to provide the Town of Raymond, New Hampshire (the Town) with a summary of our review and recommendations associated with historical environmental concerns regarding the proposed Onyx Raymond LLC Warehouse Building on and proximate to the Former Regis Tannery property in Raymond, New Hampshire (Site). Within this letter the Former Regis Tannery property is referred to as the Site and the property that is proposed for the construction of the Onyx Raymond LLC Warehouse Building is referred to as the Onyx Property. The northern portion of the Onyx Property is located within the Site boundary. GZA's technical support and review services were completed as described in our Proposal dated February 14, 2023. This Summary Letter provides our technical comments and opinions regarding the proposed redevelopment in the context of known or potential historical contamination issues associated with the Site.

We have developed this Summary Letter based on preliminary discussions with the Town, our review of documents provided to GZA by the Town, documents readily available on the New Hampshire Department of Environmental Services (NHDES) OneStop online database, and our experience working on the Site, as referenced in reports previously prepared by GZA. There have been numerous environmental studies and remedial activities over the years at the Site to assess and manage legacy environmental issues associated with the former tannery operation. Our review services included review or consideration of historical documents and evaluation of potential environmental concerns relative to encountering, mobilizing, or disturbing historical contamination conditions. A list of documents that were reviewed are provided in **Attachment A**.

This letter is subject to the Limitations in Attachment B.

SITE HISTORY AND BACKGROUND

The historical Site (*i.e.*, the Former Regis Tannery property) consists of two parcels identified as Lot 43 (formerly Lot 17) and Lot 120 (formerly Lot 50); located approximately 300 feet (ft.) south of the Lamprey River. **Figure 1** and **Figure 2** contained in **Attachment C** illustrates the location of the proposed warehouse project in context of the Site (Base map from the Jones and Beach development drawings). **Figure 2** depicts Lot 43 (4.24 acres), to the north of the B&M railroad bed which was the location of the former leather tannery buildings and a railroad loading dock. Lot 120, to the south of the B&M railroad bed, is 71.75 acres in size and was the location of two of the former tannery's wastewater settling lagoons identified as Lagoon 1 and Lagoon 2, and a wetland pond formerly dammed and identified as Lagoon 3. Based on previous site investigations, groundwater in the northern area of the Site where monitoring wells are present, is inferred to flow to the north/northwest, towards the Lamprey River. **Figures 1** and **2** are site plans at different scales illustrating certain geographic features, site boundaries, certain historical environmentally relevant features, and the proposed Onyx Raymond LLC proposed development (Onyx property; further defined in subsequent sections).

Prior to 1953, the Faulkner Shoe Company occupied the eastern portion of Lot 43. By 1953 the former Regis Tannery was in operation at the Site, and consisted of a main tannery building, three lagoons, a subsurface piping system associated with a former wastewater drainage, a septic tank, two petroleum underground storage tanks (USTs), a brine UST, and settling and buffing dust pits. Liquid wastes from the facility on Lot 43, consisting primarily of tanning vat solutions and coloring vat solutions from the buffing room, were washed down to a network of concrete and red brick-lined trench drains. Discharge from the drains entered a shallow concrete buffing dust pit, and subsequently overflowed into a concrete settling tank located about 50 ft. north of the main tannery building.

Between 1953 and 1961, wastewater (from the settling tank) was originally discharged into the Lamprey River via pipes under Old Manchester Road. After 1961, the wastewater was discharged into the three unlined lagoons on Lot 120. Reportedly, when storage capacity of Lagoons 1 and 2 were exceeded, wastewater from Lagoons 1 and 2 were pumped and transmitted via an aboveground pipe to Lagoon 3, or via Wetland A and following Lagoon 3 Trench that discharged to Lagoon 3. Lagoons 1 and 2 are located proximate to the northern boundary of the Onyx property and Lagoon 3 is located within the Onyx property. Discharge of liquids from the lagoons was primarily through infiltration into the ground, evaporation, and periodic overflow of the berms.

Leather scraps were generally shipped off Site for disposal; however, in the early 1970s, a deep depression to the north of the tannery building and adjacent to Old Manchester Road was filled with leather scraps to create a level area for use as a parking lot. Additionally, based upon previous investigations, leather scraps were incorporated into fill material to varying degrees throughout the former tannery building area and berms constructed on Lot 120 to create Lagoons 1, 2, and 3. Tannery operations ceased in 1972 when the building was destroyed by fire. Following the fire, the Site building was demolished and leveled.

The Site area had numerous phases of site investigation activities to evaluate the hydrogeology, and the environmental impacts associated with the former tannery operations. This work included characterization of subsurface soils and groundwater conditions, and the collection of sediment and surface water samples. These investigation activities informed the development of a remedial action plan (RAP) for the Site in 2007. Remedial actions were performed in 2008 and 2009 in accordance with the RAP and included excavation of impacted soils from Wetland A and Lagoon 3 trench, and also materials from Lagoon 2 including buffing dust and leather scraps. The materials from Lagoon 2 were excavated and relocated to the Consolidation Area within former Lagoon 1. An activity and use restriction (AUR) was established as an institutional control in 2012 to restrict soil disruption and maintain the integrity of the surface cap on the Consolidation Area.

A Groundwater Management Permit (GMP) with a Groundwater Management Zone (GMZ) was first issued for the Site in 2013 and monitoring has been ongoing. Groundwater monitoring for total chromium has been ongoing since the issuance of the GMP by NHDES. Concentrations of total chromium have been detected below the Ambient Groundwater Quality Standard (AGQS) for total chromium of 100 micrograms per liter (µg/L). Groundwater monitoring for per- and polyfluoroalkyl substances (PFAS) has been ongoing since 2018 with the detection of certain PFAS compounds above AGQS in certain monitoring wells. On October 19, 2017, NHDES issued a letter indicating that PFAS are to be sampled at the existing on-Site monitoring wells. PFAS concentrations exceeding the NHDES AGQS were detected in multiple wells during July 2019 (refer to **Figure 2**). The GMP requires the sampling of three wells on Lot 120 (MW-1, MW-2, and GZ-3) once every year in June for the analyses of PFAS substances; one well (MW-3) in June of each odd year for the analysis of PFAS substances; and two wells (MW-2 and GZ-3) in June 2023 and June 2026 for the analysis of dissolved chromium.

SUMMARY OF PROPOSED FUTURE SITE USE

GZA reviewed plans and other documentation regarding the proposed development that has been prepared by Jones and Beach Engineers Inc (Jones and Beach). The GZA review focused on gaining an understanding regarding the proposed development plans and the potential for encountering, disturbing, or influencing known or potential contamination conditions related to the Site. Based on information provided by the Raymond Planning Board, Onyx Raymond LLC is proposing the development of a 550,000 square foot warehouse structure on the Town of Raymond Tax Map referenced as Map 22 Lots 44, 45, 46, 47 and Map 28, Block 3 Lot 120-1 (Onyx property). The total paved area that is planned for the development is 775,185 square feet. The total land surface that is anticipated to be disturbed during the construction is 1,774,358 square feet.

SUMMARY OF DATA RELATED TO PROPOSED SITE AREA TO BE REDEVELOPED

Environmental data for the portion of the historical Site proposed for the construction of the warehouse is limited to previous site investigations by GZA and recent sampling documented in an Enviro North American Consulting LLC (ENAC) letter dated December 8, 2022. Relevant data from the March 3, 2005 GZA site investigation indicated chromium concentrations in sediment samples collected from Lagoon 3 and Wetland A exceeding the S-1 standard in the NHDES Risk Characterization and Management Policy (RCMP).

The ENAC December 8, 2022 letter presents results of surface water quality sampling on and proximate to the Onyx property. Low concentrations of chromium were detected in two of three samples collected. These chromium sampling data are the only environmental data that GZA is aware of for the proposed warehouse portion of the Onyx property. The analyses presented were for total chromium and did not include speciation to evaluate the type of chromium. The results for the three surface water samples were reviewed by GZA including: SFW-1 (former Lagoon 3 area detected 5.6 μ g/L), SFW-2 (unnamed drainage west of the proposed warehouse <1.0 μ g/L), and SFW-3 (Wetland A area detected 24 μ g/L).

ENAC provided a comparison to the NHDES AGQS for total chromium of 100 μ g/L. These data could also be compared to Env-Wq 1700 surface water standards which includes standards freshwater standards for acute and chronic criteria for hexavalent (16 μ g/L acute; and 11 μ g/L chronic) and trivalent (152 μ g/L acute; and 19.8 μ g/L chronic). Dependent upon the speciation of the total chromium detected by ENAC, the chromium could exceed surface water standards. The detection of chromium in these samples is inconclusive relative to the source of the chromium. The chromium detection may or may not be associated with the former tannery operational practices. GZA did not identify additional environmental data that would indicate the potential for encountering contamination conditions associated with the historical tannery activities during construction of the proposed

warehouse. The portion of the Onyx property where the proposed development is planned is situated to the south of the historical tannery operation and lagoon wastewater management areas. GZA did not identify groundwater or soil quality data for the specific area of the proposed earthwork activities for development of the warehouse.

The Remedial Action Implementation Report for the Site prepared by StoneHill Environmental Inc. dated September 30, 2011 and revised October 23, 2012 provides a summary of remedial actions performed at the Site. Important actions relative to the proposed warehouse redevelopment was remediation via excavation of contaminated soil in a former trench that contained elevated lead and chromium, and removal and off-site disposal of the former berm that created the ponding condition associated with Lagoon 3. The trench soil excavation was conducted (165 cubic yards removed) and moved to the Consolidation Area associated with Lagoon 1. Post excavation samples were compared with NHDES Soil Remediation Standards (SRS), and the results were well below SRS for total chromium. The results also were compared to Consensus-Based Threshold Effect Concentration (TEC) and Probable Effect Concentration (PEC). The applicability of these values was questionable since they are likely based on hexavalent chromium toxicity and that is a small fraction of the total chromium detected at the Site. The connecting trench was lined with a thick layer of stone rip rap which covers the drainage ditch soil containing residual chromium with concentration below SRS.

GZA notes that while groundwater impacts related to the operation of Lagoon 3 are not known, impacts to groundwater beneath Lagoon 1 and Lagoon 2 including the presence of PFAS in groundwater are known to have occurred. PFAS may or may not be present in surface waters and sediment associated with Wetland A and Lagoon 3 based upon general wastewater management that is known to have occurred.

There is very limited environmental sampling data for the Onyx property on which to base an opinion regarding the potential to encounter, disturb, or influence existing contamination conditions. Based on topography, the direction of groundwater flow beneath the Onyx property would likely be in a northerly to northwesterly direction towards the Lamprey River. It is unclear whether groundwater from beneath the Onyx property would flow in the direction of the GMZ associated with the historical tannery. Due to the creation of impervious surfaces associated with the proposed warehouse and paved surfaces, stormwater flow will be altered resulting in an increase in overland flow and the need for stormwater management systems.

The Jones and Beach design drawings provide details of the proposed stormwater management systems. The approach to manage the stormwater on the Onyx property includes discharge to stormwater ponds and infiltration galleries. Limited historical environmental data indicates sediment and surface water impacted with chromium is likely associated with the former Lagoon 3 (located to the north of and adjacent to the proposed development area). It is unclear whether stormwater generated from the proposed development would all infiltrate on the property proposed to be developed or if surface water could routinely or periodically leave the Onyx property during storm events.

It appears stormwater that would leave the Onyx property would follow existing drainage and travel in a generally northwesterly direction discharging to the Lamprey River. This existing drainage appears to be the same drainage channel that received flow from former Lagoon 3 and may also include sections of Lagoon 3 area. An increase in the magnitude of stormwater flow could result in mobilization of historical surface water or sediment contamination that may exist within drainage features. It is also unclear how the direction and rate of groundwater flow beneath the Onyx property would be altered from the focused recharge of the stormwater systems. Changes to groundwater flow dynamics beneath the Onyx property could also alter groundwater flow beneath adjacent properties. The Town has public water supply wells to the west of the Onyx property that could be sensitive to mobilization of potential contamination.

Due to the limited environmental data for the portion of the proposed property to be developed, and the presence and potential presence of contamination in off-site locations associated with the former tannery operation, as well as uncertainty with regard to the alteration of surface water and groundwater dynamics associated with the proposed development, GZA recommends additional hydrogeologic investigations and analysis be conducted to evaluate anticipated changes to groundwater and surface water flow and potential impacts to contaminated media with the implementation of new stormwater infiltration systems at the Onyx property. Based on GZA's review of historical information, and the current stormwater management design plans, we recommend the following:

- 1) Advance at least one soil boring within the footprint of each proposed stormwater infiltration gallery and infiltration pond.
 - a. Field screen soil samples from the boring(s) using a photoionization detector.
 - b. Collect soil sample(s) for analysis of volatile organic chemicals (VOCs) and Resource and Recovery Act (RCRA) metals.
 - c. Collect soil sample(s) for grain size distribution and hydraulic conductivity estimation.
- 2) Complete the soil boring(s) as a groundwater monitoring well extending 10 ft. below the water table.
 - a. Collect groundwater sample(s) from each monitoring well for analysis of VOCs, RCRA metals, and PFAS.
 - b. Perform hydraulic conductivity testing at each newly installed monitoring well.
- 3) Perform hydrogeologic analysis.
 - a. Develop a groundwater contour plan.
 - b. Estimate hydraulic conductivity of subsurface soils.
 - c. Develop soil boring logs.
 - d. Develop a site conceptual model of subsurface conditions.
- 4) Perform numerical groundwater modeling, which should include simulations of:
 - a. Predevelopment baseline conditions.
 - b. Modelled stormwater infiltration conditions with proposed infiltration galleries.
 - c. Numerical groundwater mounding assessment.
 - i. Water table mounding.
 - ii. Pre- and post-construction simulated groundwater contours.
- 5) Provide technical and engineering details to support the design of the stormwater infiltration galleries. The analyses will provide engineering estimates of the water balance for stormwater for each system detailing the amount of infiltration versus surface water leaving the Onyx property. The analyses should estimate the groundwater mounding beneath each stormwater system.
- 6) Provide key elements of a Soil and Groundwater Management Plan that will guide earthwork activities across the Onyx property in anticipation of encountering contaminated media if the investigation information indicates contamination conditions.
- 7) Provide a plan that describes how the existing monitoring well network will be protected during site development.

GZA greatly appreciates the opportunity to work on this technical review associated with this redevelopment project. If you have any questions regarding the Technical Review Summary Letter, please do not hesitate to contact Mr. Steven Lamb at (603) 494-6551.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

ANIAL

Megán E. Múrphy Project Manager

Steven R. Lamb P.G., CGWP Principal

James M. Wieck, P.G. Consultant / Reviewer

MEM/JMW/SRL:pca \\gzabedford\jobs\0191500s\0191500s\04.0191548.00\report\final registannery-onyx - letter summary report 040623.docx

Attachments: Attachment A: Summary of Documents Provided for Review Attachment B: Limitations Attachment C: Figure 1 and Figure 2

Attachment A: Summary of Documents Provided for Review

SUMMARY OF DOCUMENTS PROVIDED FOR REVIEW

CLIENT-PROVIDED DOCUMENTS

StoneHill Environmental letter titled Groundwater Management Permit Renewal Application, dated October 29, 2019.

ENVIRO North American Consulting LLC (ENAC) letter dated December 8, 2022, titled Environmental Evaluation with Professional Opinion for Proposed Development.

ENVIRO North American Consulting LLC letter dated January 12, 2023, titled Contaminant Remedial Summary Lot 120-1: Wetland A, Lagoon 3, and Connecting Trench.

ENVIRO North American Consulting LLC Transmittal Record and Memorandum dated January 31, 2023.

GZA report dated March 18, 2005, titled Supplemental Site Investigation Former Rex Leather Site.

GZA report dated July 23, 2004, titled Site Investigation Former Rex Leather Site.

"Proposed Raymond Distribution site plan package and application revised January 2023."

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES AVAILABLE DOCUMENTS

Underground Storage Tank Closure Report, dated June 25, 1997, by Total Waste Management Corp. (TWM).

Site Investigation Former Rex Leather Site, dated July 23, 2004, by GZA.

Draft Remedial Action Plan, dated July 20, 2007, by StoneHill Environmental Inc., and *Quality Assurance Project Plan*, dated October 2008, by StoneHill Environmental Inc.

Groundwater Management Permit Application, Former Regis Tannery- Lot 43, dated September 30, 2011, by StoneHill Environmental Inc.; *Groundwater Management Permit Application (Revised), Former Regis Tannery- Lot 120*, dated August 26, 2011, by StoneHill Environmental Inc.; *Application for Activity Use Restriction (AUR)* dated October 13, 2022, by Donahue, Tucker & Ciandella, PLLC (DTC); and Remedial Action Implementation Report, dated September 30, 2011, by StoneHill Environmental Inc.

Letter responses from NHDES regarding the GMP Applications for Lot 43 and Lot 120, AUR Application for Lot 120, and RAP, dated January 18, 2012; January 19, 2012; April 19, 2012; and January 23, 2012 respectively.

Letter responses from NHDES regarding the GMP Applications for Lot 43 and Lot 120, dated January 8, 2013.

Certificate of Completion from NHDES, dated March 20, 2013.

2016 Groundwater Monitoring Summary Report, Former Regis Tannery Property – Lot 120, dated August 4, 2016, by Exeter Environmental Associates, Inc (Exeter).

Letter response from NHDES regarding the 2016 Groundwater Monitoring Summary Report for Lot 120, dated April 11, 2017; and Groundwater Monitoring Data Transmittal (June 2017), Former Regis Lot 120 dated October 20, 2017, by StoneHill Environmental, Inc.

Email response from Samuele Quattrini regarding the June 2017 Data Transmittal for Lots 43 and 120, dated November 14, 2017.

Groundwater Management Permit Renewal Application, Former Regis Tannery – Lot 43, dated May 8, 2018, by StoneHill Environmental, Inc.

Groundwater Monitoring Data Transmittal (August 2018), Former Regis Tannery Property Lot 120, dated October 31, 2018, by StoneHill Environmental, Inc.

Letter response from NHDES regarding the GMP Renewal Application for Lot 43, dated January 25, 2019.

Water Well Receptor Survey, Former Regis Tannery Lot 43 and 120, dated February 1, 2019, by StoneHill Environmental.

Well Installation and Sampling Report, dated October 11, 2019, by StoneHill Environmental.

Groundwater Management Permit Renewal Application, Former Regis Tannery – Lot 120, dated October 29, 2019, by StoneHill Environmental, Inc.

Periodic Summary Report, dated January 8, 2020, by StoneHill Environmental.

Letter response from NHDES regarding the GMP Renewal Application for Lot 120, dated July 15, 2022.

Groundwater Monitoring Data Transmittal with Revised Figures (November 2022), dated December 28, 2022, by Tomforde Environmental Services, LLC.

AUR Self Certification (2022), dated January 19, 2023, by Tomforde Environmental Services, LLC.

Letter response from NHDES regarding the Town of Raymond Planning Board Questions regarding the Site, dated February 10, 2023.

Attachment B: Limitations

USE OF REPORT

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

STANDARD OF CARE

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

SUBSURFACE CONDITIONS

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

COMPLIANCE WITH CODES AND REGULATIONS

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

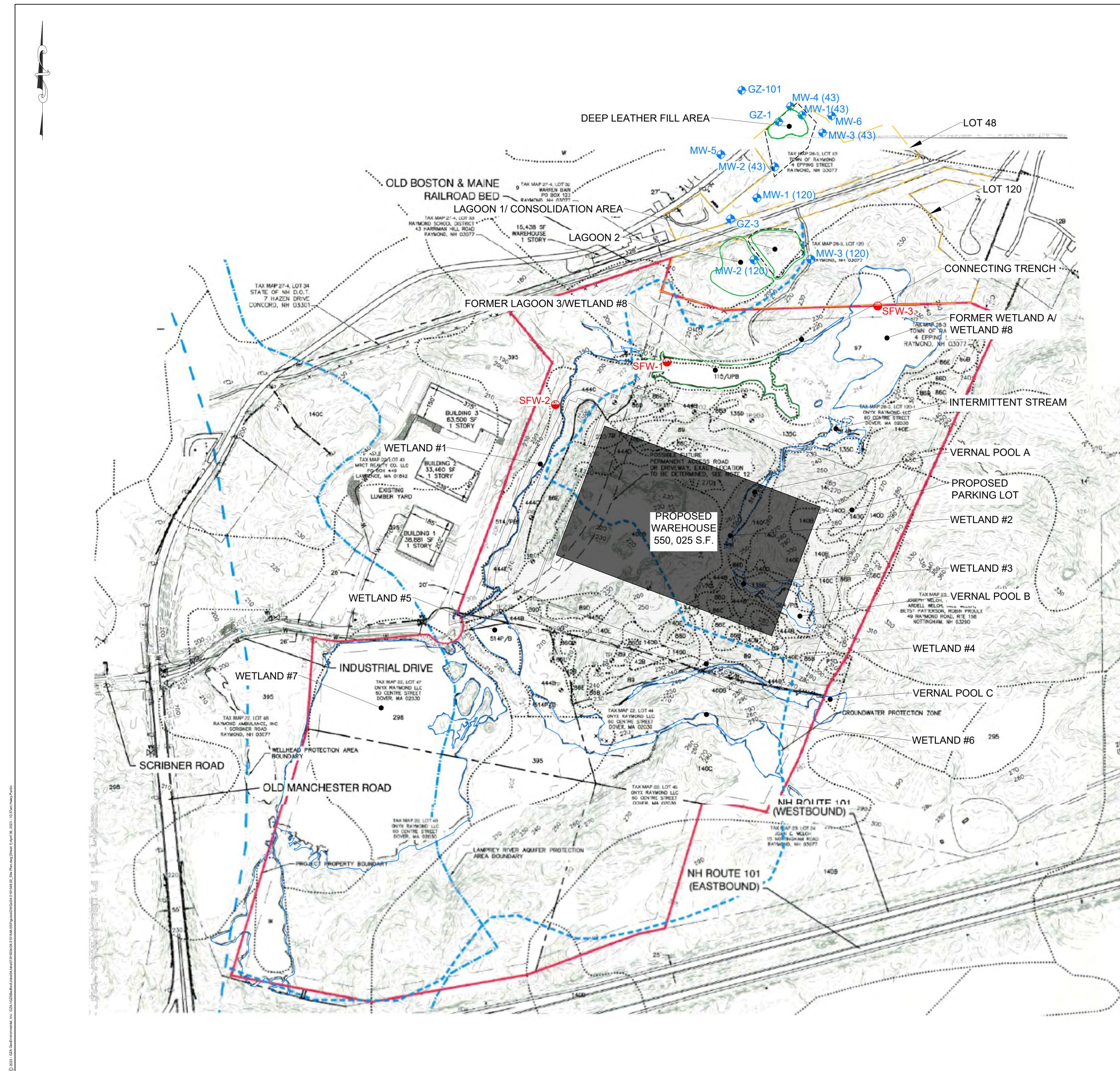
SCREENING AND ANALYTICAL TESTING

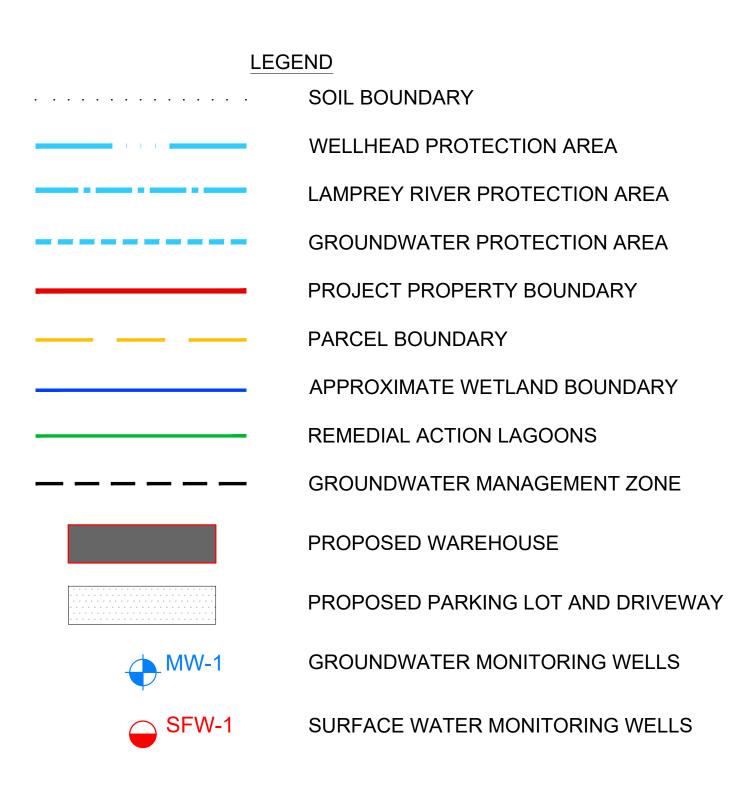
- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

INTERPRETATION OF DATA

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

ADDITIONAL INFORMATION


12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

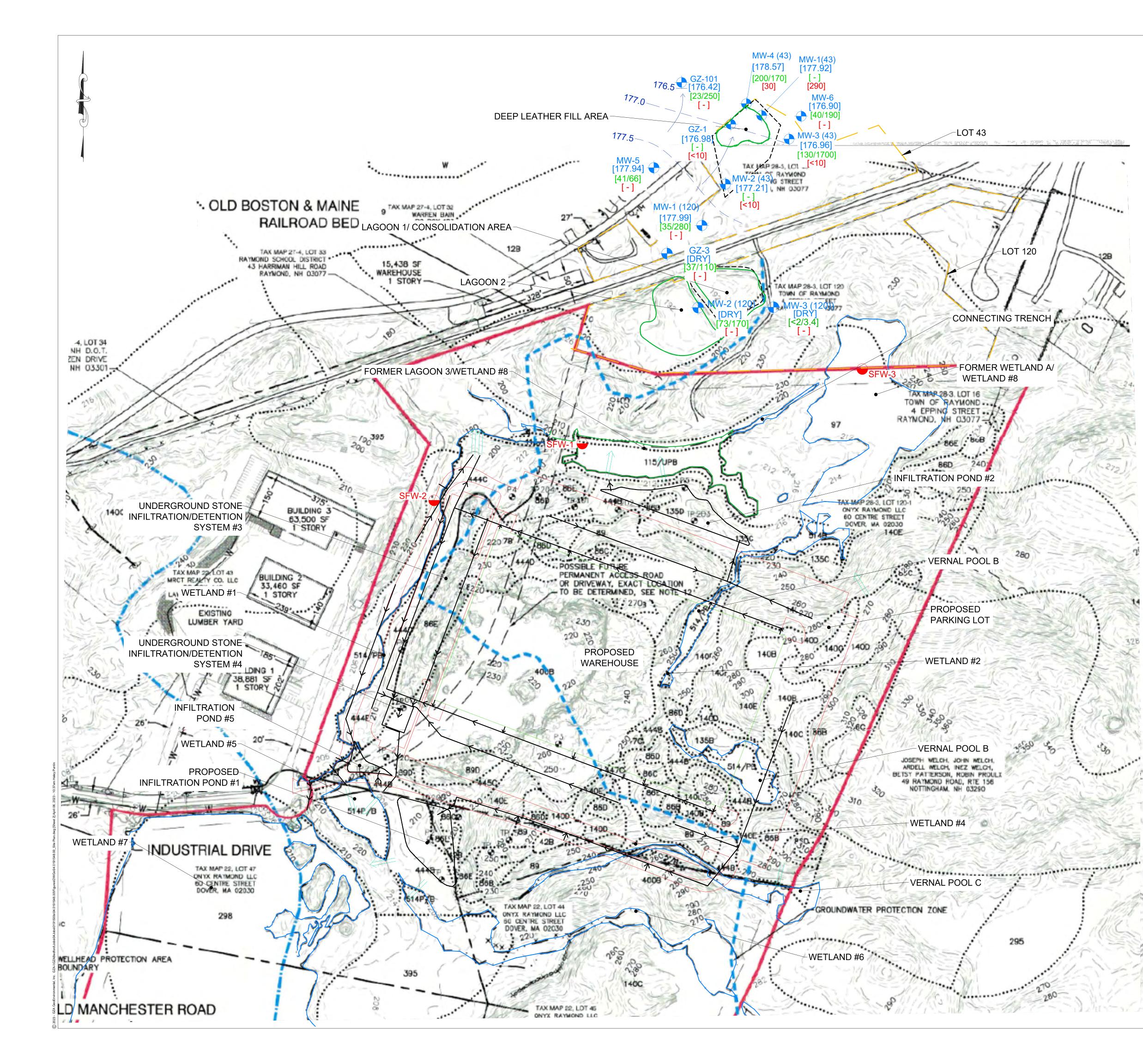

ADDITIONAL SERVICES

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

Attachment C: Figure 1 and Figure 2

MARCH 2023

- BASE PLAN SET WAS OBTAINED FROM JONES & BEACH ENGINEERS, INC. OF STRATHAM, NH TITLED "WAREHOUSE BUILDING "RAYMOND DISTRIBUTION"" REVISED ON FEB. 11, 2023 AND "PROPOSED GRADING IMPACT PLAN" REVISED ON JUNE 30, 2022.
- 2. MONITORING WELLS, GROUNDWATER CONTOURS, PFAS CONCENTRATIONS AND CHROMIUM CONCENTRATIONS WERE OBTAINED FROM FIGURE SET TITLED "FORMER REGIS TANNERY SITE", PREPARED BY STONEHILL ENVIRONMENTAL, INC.


			0 100	200	400	600					
	SCALE IN FEET										
NO.		BY	DATE								
GEOEN CLIENT THE D USE A TRANS	UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN EXPRESS CONSENT OF GZA. WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA.										
	SITE DEVELOPMENT INDUSTRIAL DRIVE, RAYMOND, NEW HAMPSHIRE										
			OV	'ERALL	SITE PL	AN					
PREPA	RED BY:				PREPARED FOR	R:					
	GZN	Engine	oEnvironme ers and Scie www.gza.com	10	ONYX PARTNERS LTD						
PROJ N	MGR:	SL	REVIEWED B	Y: MD	CHECKED BY:	SL	DRAWIN	G			
	NED BY:	HLP	DRAWN BY:	HLP	SCALE:	1" = 200'		1			
DATE	:		PROJECT	NO.	REVISION NO	Э.					

-

SHEET NO. 2 OF 2

04.0191548.00

SOIL BOUNDARY

WELLHEAD PROTECTION AREA

LAMPREY RIVER PROTECTION AREA

GROUNDWATER PROTECTION AREA

PROJECT PROPERTY BOUNDARY

PARCEL BOUNDARY

APPROXIMATE WETLAND BOUNDARY

REMEDIAL ACTION LAGOON

GROUNDWATER MANAGEMENT ZONE

STORMWATER DRAINAGE SYSTEM WITH FLOW DIRECTION

OVERFLOW/EMERGENCY STORMWATER FLOW

GROUNDWATER ELEVATION CONTOURS (FEET)(SEPT. 11, 2020)

INFERRED GROUNDWATER FLOW DIRECTION

PROPOSED WAREHOUSE

PROPOSED PARKING LOT AND DRIVEWAY

• MW-3 [176.96] [130/1700] [<10] • SFW-1

177.0

GROUNDWATER MONITORING WELL

GROUNDWATER ELEVATION (FEET) (SEPT. 11, 2020)

PFOA/PFAS CONCENTRATIONS (ng/L) (JULY 5, 2019)

TOTAL CHROMIUM CONCENTRATION (ug/l) (SEPT. 11, 2020)

SURFACE WATER MONITORING WELL

NOTES:

 BASE PLAN SET WAS OBTAINED FROM JONES & BEACH ENGINEERS, INC. OF STRATHAM, NH TITLED "WAREHOUSE BUILDING "RAYMOND DISTRIBUTION"" REVISED ON FEB. 11, 2023 AND "PROPOSED GRADING IMPACT PLAN" REVISED ON JUNE 30, 2022.

2. MONITORING WELLS, GROUNDWATER CONTOURS, PFAS CONCENTRATIONS AND CHROMIUM CONCENTRATIONS WERE OBTAINED FROM FIGURE SET TITLED "FORMER REGIS TANNERY SITE", PREPARED BY STONEHILL ENVIRONMENTAL, INC.

 0
 0
 0
 20
 300

 SCALE IN FEET

 Image: Colspan="2">SCALE COLSPANE

 Image: Colspan="2">SCALE COLSPANE

 Image: Colspan="2">SCALE Colspan="2">SCALE Colspane"2"

 Image: Colspan="2"

 Image: Colspan="2"

GIN	Engine	oEnvironmental ers and Scientis www.gza.com	ONYX PARTNERS LTD				
PROJ MGR:	SL	REVIEWED BY:	MD	CHECKED BY:	SL	DRAWING	
DESIGNED BY:	HLP	DRAWN BY:	HLP	SCALE:	1" = 100'	^	
DATE:		PROJECT NO.		REVISION NO	0.		
MARCH 2023 04.0191548.00				-		SHEET NO. 2 OF 2	

ENVIRO NORTH AMERICAN

Riverbend Professional Building P.O. Box 1075 Alton, NH 03809

Ph. (603) 875-8100 Fax (603) 875-8101 www.environorthamerican.com

DES Waste Management Division 29 Hazen Drive, PO Box 95 Concord, NH 03302-0095

LAGOON #3 AND WETLAND A SURFACE WATER AND SEDIMENT SAMPLING SUMMARY

> ONYX RAYMOND LLC INDUSTRIAL DRIVE RAYMOND, NEW HAMPSHIRE

NHDES Site #:202302096 Hazardous Waste Site Evaluation Project Number: 41468

Prepared for: DOUGLAS RICHARDSON, EXECUTIVE V.P. ONYX PARTNERS LTD. 200 RESERVOIR STREET, SUITE 306 NEEDHAM, MA 02494

Prepared by:

ENVIRO NORTH AMERICAN CONSULTING, LLC. P.O. Box 1075 ALTON, NH 03809 (603) 875-8100 Contact Name: Todd Greenwood Contact Email: tag@metrocast.net

April 14, 2023

Todd A. Greenwoo d

Digitally signed by Todd A. Greenwood DN: cn=Todd A. Greenwood, o=Enviro North American Consulting LLC, ou, email=tag@metrocast.net, c=US Date: 2023.04.14 09:42:52 -04'00'

Riverbend Professional Building P.O. Box 1075 Alton, NH 03809

ENVIRO NORTH AMERICAN

Ph. (603) 875-8100 Fax (603) 875-8101 www.environorthamerican.com

> April 14, 2023 Project 1190-681

Douglas Richardson, Executive V.P. Onyx Partners Ltd. 200 Reservoir Street, Suite 306 Needham, MA 02494

Re: Lagoon #3 and Wetland A Surface Water and Sediment Sampling Summary – March 2023

Subject: Onyx Raymond LLC. Application #2022-010 – Town of Raymond Planning Board Industrial Drive, Raymond, NH NHDES Site #202302096 HW Project #41468

Dear Mr. Richardson:

Enviro North American Consulting, LLC (ENAC) has completed environmental surface water and sediment sampling at designated locations from Lagoon #3 and Wetland A pertaining to the proposed development of parcel(s) of land shown on an Existing Conditions Plan dated November 10, 2022 and referenced as the Onyx Raymond LLC – Raymond Distribution (subject Property).

ENAC representatives visited the subject Property on March 16, 2023 to collect surface water and sediment samples from designated locations as shown on the attached Water Sampling Plan prepared by Jones & Beach Engineers, Inc. (JBE). The environmental sample locations were selected in an effort to identify potential environmental conditions from areas previously investigated during past investigative and remedial activities conducted by others. The sample location coordinates were collected in the field by ENAC with a handheld global positioning systems (GPS) device during the March 2023 sampling. The collected latitude and longitude data are summarized in the attached Table 1.

During the 2023 sampling event, the subject Property target sampling locations were observed with significant snow-covered ground and ice across standing water in ponds and wetlands. The central portions of Lagoon #3 and Wetland A contained thin ice cover (less than 2-inches) across majority of the ponded surface water areas. Based on the observed capacities of standing water, the sampling event was conducted during wet conditions, reflective of recent snow and rain events in the general vicinity of southeastern New Hampshire. Weather conditions during March 16, 2023 included partial sun, light wind and an average temperature of 43°F over the 12-hour sampling period.

SURFACE WATER SAMPLING PROCEDURES

Surface water sampling from Lagoon #3 and Wetland A was conducted by ENAC on March 16, 2023 from the most downstream location first, moving sequentially toward upstream sample locations in an effort to minimize sample disturbance. Surface water samples were collected as grab samples by ENAC with use of an extension rod with attached sample bottle extending between 2- and 6-feet vertical distance away from the shoreline into the pond water. The sample bottle was dipped approximately 12-inches below the water surface. Collected water was decanted from the sample bottle directly into laboratory preserved containers. Surface water samples collected for RCRA-8 metals and chromium VI were filtered in the field using dedicated 0.45-micron filters prior to sample transfer into laboratory prepared containers.

Remaining surface water samples were collected as unfiltered, raw water samples for analysis of total hardness and PFAS compounds. The PFAS samples were collected in accordance with NHDES's PFAS Field Sample Collection Guidance document dated September 2022. Dedicated nitrile gloves were used by ENAC employees at each sample location, nitrile gloves were provided by PACE laboratories for in-field use during the Onyx sampling. Non-waterproof clothing (shirts, jackets, pants and boots) was worn by ENAC employees to eliminate concerns for cross-contamination from the presence of PFAS in clothing.

Sample collection bottle was decontaminated in-between each sample location with alconox rinse and deionized water. Surface water samples were placed inside a cooler with ice immediately upon collection and delivered same day to New Hampshire certified laboratories for the following analyses:

- Resource Conservation Recovery Act 8-dissolved metals (RCRA-8) & Chromium VI by EPA Method 200.8,
- Total Hardness by appropriate EPA method,
- PFAS compounds list by NHDES and EPA approved Method 537.1.

SEDIMENT SAMPLING PROCEDURES

Sediment samples were collected by ENAC on March 16, 2023 from Lagoon #3 and Wetland A. Where both water and sediment samples were collected from the same location, the water sample was collected sequentially first, followed by the sediment sample collected second. Lagoon and wetland sediment samples were collected utilizing an extended stainless-steel hand auger and stainless-steel spade. The sediment samples were collected approximately 2-feet vertically away from the shoreline at each location. The ice layer was broken and cleared prior to sample collection.

Sediment was encountered approximately 12-inches below the water surface and the hand auger was advanced approximately 6- to 8-inches into the sediment for sample collection. The steel

spade was used to transfer sediment from the auger into laboratory-prepared containers. The hand auger and steel spade were decontaminated in-between each sample location with alconox rinse and deionized water. Sediment samples were placed inside a cooler with ice immediately upon collection and delivered to New Hampshire certified laboratories for the following analyses:

- Resource Conservation Recovery Act 8-metals (RCRA-8) & Chromium VI by EPA Method 200.8,
- PFAS compounds list by approved Isotope Dilution method (SOP-466 PFAS).

SURFACE WATER AND SEDIMENT QUALITY ANALYTICAL RESULTS

Laboratory analytical results from the March 16, 2023 sampling event are summarized in the attached Tables 2 and 3. Surface water concentrations for dissolved metals are compared to applicable surface water criteria established by NHDES following New Hampshire Code of Administrative Rules Env-Wq 1700. Total hardness was analyzed for water samples and results were used to calculate the revised Acute and Chronic Criteria values for detected total hardness less than 20 mg/L for hardness dependent metals. The resulting adjusted Acute and Chronic Criteria values for hardness dependent metals are presented in Table 2.

Sediment concentrations are compared to the NHDES Soil Remediation Standards (SRS). Currently the NHDES has not adopted regulatory standards for PFAS concentrations in surface water or sediment.

A total of four surface water samples identified as L3-SW3-2023, L3-SW4-2023, L3-SW5-2023 and L3-SW2-2023 and five sediment samples identified as L3-SD8-2023, L3-SD9-2023, L3-SD10-2023, L3-SD11-2023 and L3-WSD2-2023 were collected from Lagoon #3. A total of three surface water samples identified as WA-WSW1-2023, WA-SW2-2023, WA-SFW3A-2023 and four sediment samples identified as WA-WSD1-2023, WA-SD3-2023, WA-SD4-2023, WA-SD5-2023 were collected from Wetland A.

Metals and total hardness samples were delivered under standard chain-of-custody to Eastern Analytical, Inc. (EAI) in Concord, NH.

Surface water and sediment samples collected for PFAS were delivered under standard chain-ofcustody to Con-Test, a Pace Analytical Laboratory (PACE) in East Longmeadow, MA. Both environmental laboratories are New Hampshire certified and accredited through the National Environmental Laboratory Accreditation Program (NELAP). The complete laboratory reports are attached to this report.

TABLE 2 – Surface Water & Sediment Analytical – RCRA 8-Metals, Chromium, Hardness

Analytical results for RCRA 8-metals and chromium VI from surface water and sediment samples collected from Lagoon #3 and Wetland A are summarized in Table 2, pages 1 and 2,

Application #2022-010 Lagoon 3 and Wetland A Surface Water and Sediment Sampling Summary Onyx Raymond LLC – Raymond Distribution Industrial Drive, Raymond, NH

respectively. Analytical results for total hardness as calcium carbonate (CaCO₃) for sediment samples are also summarized in Table 2. Table 2 includes water (dissolved metals) and sediment samples (total metals) and hexavalent chromium VI and chromium III (dissolved). The presence of chromium values was evaluated, where analytical results show below detection of chromium VI (non-detectable concentrations), indicative of the presence of chromium III for comparison to the NHDES standards for chromium III and total chromium. The surface water results are presented as dissolved metal concentrations in parts per billion (ppb) equivalent to micrograms per liter (ug/L). Sediment concentrations are presented in parts per million (ppm) equivalent to milligrams per kilogram (mg/kg). Total hardness results are presented as milligrams per liter (mg/L).

Three equipment blank samples were collected initially in the field during the March 16, 2023 sampling event identified as EB-Auger, EB-Spade and EB-SW. Laboratory supplied deionized water was poured over the sampling equipment including the stainless-steel hand auger, spade and the plastic surface water collection bottle. The equipment rinse waster was collected into laboratory-prepared containers for laboratory analyses. Analytical blank samples for RCRA 8-metals, chromium VI, and PFAS were non-detect from all three equipment blank samples.

Lagoon #3

As shown on Page 1 of Table 2, concentrations of RCRA 8-metals and chromium VI were detected below NHDES Surface Water Standards for Protection of Aquatic Life and the more stringent Standards for Protection of Human Heath from the surface water samples collected from Lagoon #3, with the exception of arsenic. Arsenic concentrations were detected above the Surface Water Standards for Protection of Human Health (specifically for human consumption of the surface water or fish from the surface water) from all four surface water samples collected from Lagoon #3. Total hardness was reported from each water sample at 15-mg/L.

The concentrations of arsenic in sediment samples L3-SD8-2023 and L3-WSD2-2023 collected from Lagoon #3 were detected above the NHDES SRS and concentrations of chromium III from sediment samples L3-SD11-2023 and L3-WSD2-2023 were detected above NHDES SRS. The concentrations of the other RCRA 8-metals and chromium VI from the five sediment samples collected from Lagoon #3 were below NHDES SRS.

Wetland A

As shown on Page 2 of Table 2, concentrations of RCRA-8 metals and chromium VI were detected below NHDES Surface Water Standards for Protection of Acute and Chronic Aquatic Life and the more stringent Standards for Protection of Human Health from all three surface water samples collected from Wetland A, with the exception of arsenic. Arsenic concentrations were above the Surface Water Standards for Protection of Human Health from two surface water samples; WA-SW2-2023 and WA-SFW3A-2023. Total hardness was reported at 9.3-mg/L from surface water sample WA-WSW1-2023 and 15-mg/L for the remaining two surface water samples collected from Wetland A. Concentrations of RCRA 8-metals and chromium VI from all four sediment samples collected from Wetland A were detected below NHDES SRS.

TABLE 3 – Surface Water & Sediment Analytical – PFAS

Analytical results for PFAS compounds from surface water and sediment samples collected from Lagoon #3 and Wetland A are summarized in Table 3, pages 1 and 2, respectively. The PFAS water samples were laboratory analyzed using NHDES accepted EPA Method 537.1. A total of 18-PFAS compounds were reported for surface water. The PFAS surface water sample results are presented as parts per trillion (ppt), equivalent to nanograms per liter (ng/L).

Three equipment blank samples identified as EB-Auger, EB-Spade and EB-SW were collected for laboratory analysis of PFAS. As shown on Page 3 of Table 3, PFAS concentrations were non-detect from all three equipment rinse blank samples.

Sediment samples were analyzed for PFAS using approved isotope dilution methods. The 32-PFAS compounds were reported for sediment. PFAS sediment results are presented as parts per billion (ppb), equivalent to micrograms/kilogram (ug/kg).

Lagoon #3

As shown on Page 1 of Table 3, five of 18-PFAS compounds were detected at low concentrations from surface water samples collected from Lagoon #3. Concentrations of perfluorooctanesulfonic acid (PFOS) were detected from all four surface water samples. Concentrations of perfluorooctanoic acid (PFOA) was detected from L3-SW3-2023, L3-SW4-2023 and L3-SW5-2023. Concentrations of perfluorohexanesulfonic acid (PFHxS) and perfluoroheptanoic acid (PFHpA) were also detected from L3-SW5-2023. Concentrations of n-ethyl perfluorooctanesulfonamido acetic acid (NEtFOSAA) were detected from L3-SW3-2023 and L3-SW4-2023.

Two out of 32-PFAS compounds were detected at low concentrations from sediment samples collected from Lagoon #3. Concentrations of NEtFOSAA were detected from L3-SD8-2023 (MS/MSD), L3-SD10-2023, L3-SD11-2023 and L3-WSD2-2023. Concentrations of PFOS were also detected from L3-SD10-2023 and L3-SD11-2023.

Wetland A

As shown on Page 2 of Table 3, PFAS compounds were non-detect, below laboratory reporting limits from all three surface water samples and four sediment samples collected from Wetland A.

CONCLUSIONS

Sampling of metals in surface water indicates that concentrations for all metals, except arsenic, meet NHDES standards for protection of human health and the environment. Arsenic concentrations in surface water of Lagoon #3 and Wetland A are consistent with previously collected sampling results collected as part of GZA's 2005 Supplemental Site Investigations (SSIs).

The 2023 sampling results of metals in sediment indicates that concentrations of all RCRA-8 metals, except arsenic and chromium III meet the NHDES standards for protection of human health and the environment. Additional discussion is provided below for concentrations of arsenic and chromium III detected in sediment samples during 2023.

Arsenic and Chromium

Arsenic concentrations detected in surface water and sediment are likely background and naturally occurring. Past investigations by others had discovered arsenic at the Property during remedial investigations in connection with the nearby Regis Tannery remedial site. Past investigations had associated the detected arsenic in sediment and water as naturally occurring. GZA's 2005 SSI notes an arsenic background concentration of 21 mg/kg in sediment and states that "elevated background arsenic concentrations of this magnitude occur in New Hampshire due to the occurrence of arsenic in bedrock."

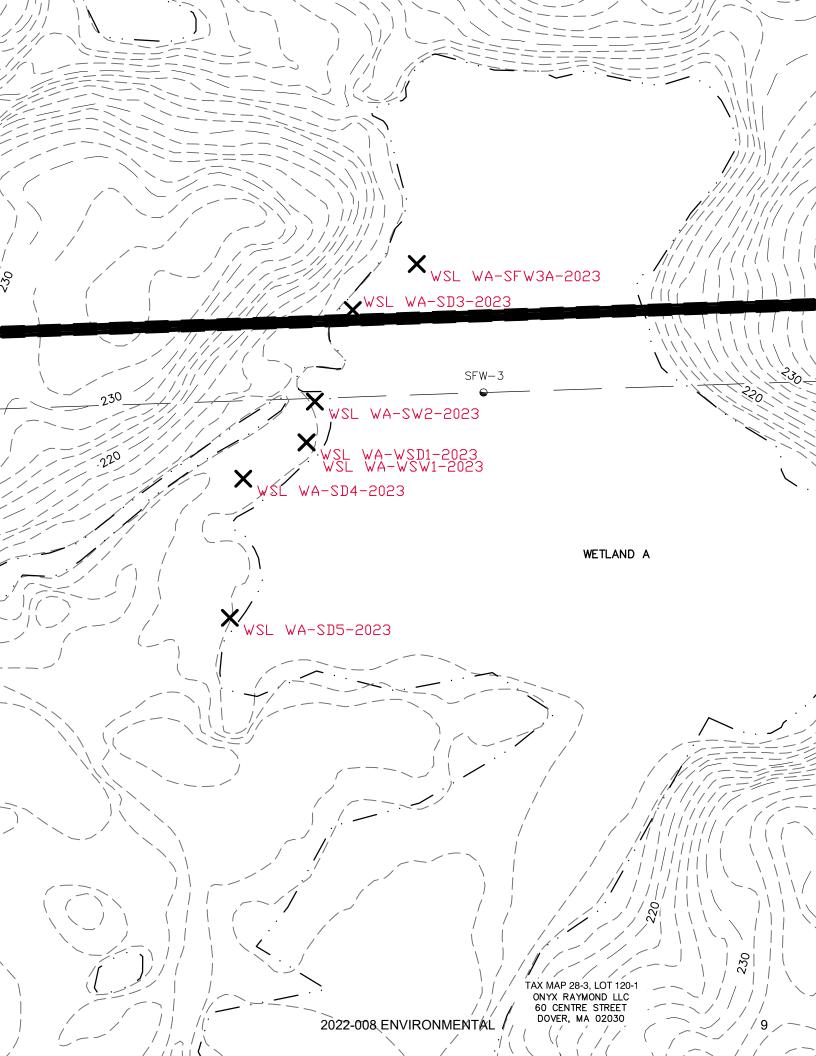
Chromium III (trivalent chromium) detected in Lagoon #3 surface water during March 2023 meets the NHDES Surface Water Standards for Protection of Acute and Chronic Criteria as well as the Criteria for Protection of Human Health. Chromium III is a hardness dependent metal where hardness was detected below 20 mg/L and the criteria was adjusted following guidance found in NHDES Env-Wq 1703.

Chromium III detected in sediment of Lagoon #3 was elevated above the NHDES Soil Remedial Standard (SRS) from two sediment sample locations: L3-SD11-2023 and L3-WSD2-2023. The elevated chromium III concentrations were found along the northern shoreline of Lagoon #3. Due to the sediment chromium III detections greater than SRS, the sediment analytical results are required to be reported to NHDES – Hazardous Waste Remediation Bureau as notification of the exceedance. ENAC will assist Onyx with the Notification requirements following the applicable Contaminated Sites Management rule governed by State of New Hampshire Administrative Rule Env-Or 600.

Based on the March 2023 environmental sampling results, chromium VI (hexavalent chromium) does not persist in sediment or surface water in the Lagoon #3 or Wetland A areas of the Property. Chromium VI concentrations were not detected above laboratory detection limits and remain below applicable SRS and surface water protection criteria regulated by the NHDES.

Application #2022-010 Lagoon 3 and Wetland A Surface Water and Sediment Sampling Summary Onyx Raymond LLC – Raymond Distribution Industrial Drive, Raymond, NH

PFAS


PFAS concentrations were not detected in surface water or sediment from samples collected from Wetland A, and the occasional low concentrations of PFAS compounds detected in some of the samples in Lagoon #3 indicate that there does not appear to be a significant source of PFAS in the area tested during March of 2023. To date, the NHDES has not adopted regulatory standards for the presence of PFAS in surface water or sediment / soil quality. In ENAC's opinion, the NHDES would not likely require further evaluation or investigation based on the March 2023 detected sediment and surface water concentrations of PFAS.

It has been a pleasure to assist you with your needs for environmental consulting.

ENVIRO NORTH AMERICAN CONSULTING, LLC

Todd A. Greenwood, P.G. President

Attachments: Water Sampling Plan – JBE Figure Table 1 – Sample Location Coordinates Table 2 – Surface Water and Sediment Analytical – RCRA 8-Metals, Chromium VI and Total Hardness Table 3 –Surface Water and Sediment Analytical - PFAS EAI and PACE Analytical Laboratory Reports

TABLE 1 - SAMPLE LOCATION COORDINATES LAGOON 3 WETLAND A - MARCH 2023 ONYX RAYMOND INDUSTRIAL DRIVE, RAYMOND, NH

SAMPLE LOCATION	LATITUDE	LONGITUDE
L3-SW4-2023	N 43° 01.9702'	W 071° 11.2939'
L3-SW3-2023	N 43° 01.9700'	W 071° 11.2822'
L3-SD11-2023	N 43° 01.9695'	W 071° 11.2559'
L3-SD10-2023	N 43° 01.9670'	W 071° 11.2386'
L3-WSW2-2023	N 43° 01.9622'	W 071° 11.1909'
L3-WSD2-2023	N 43° 01.9622'	W 071° 11.1909'
L3-SD8-2023	N 43° 01.9662'	W 071° 11.1774'
L3-SD9-2023	N 43° 01.9601'	W 071° 11.1823'
LS-SW5-2023	N 43° 01.9855'	W 071° 11.2371'

LAGOON 3 SAMPLE LOCATIONS

WETLAND A SAMPLE LOCATIONS

SAMPLE LOCATION	LATITUDE	LONGITUDE
WA-SFW3A-2023	N 43° 02.0107'	W 071° 11.0862'
WA-SD3-2023	N 43° 02.0060'	W 071° 11.0952'
WA-SW2-2023	N 43° 01.9966'	W 071° 11.1006'
WA-WSW1-2023	N 43° 01.9924'	W 071° 11.1018'
WA-WSD1-2023	N 43° 01.9924'	W 071° 11.1018'
WA-SD4-2023	N 43° 01.9887'	W 071° 11.1107'
WA-SD5-2023	N 43° 01.9744'	W 071° 11.1127'

MONITORING WELL LOCATION

SAMPLE LOCATION	LATITUDE	LONGITUDE
GZ-4C	N 43° 01.9750'	W 071° 11.1760'

NOTE: Location coordinates collected in the field by ENAC using handheld GPS on March 16, 2023.

TABLE 2 - LAGOON 3

SURFACE WATER AND SEDIMENT ANALYTICAL -RCRA 8-METALS, CHROMIUM VI, TOTAL HARDNESS ONYX RAYMOND INDUSTRIAL DRIVE, RAYMOND, NH

IND DATE	DATE	SURFACE WATER SAMPLE LOCATIONS					S Surface Standards of Aquatic ife Fresh	NHDES Surface Water Standards Protection of Human Health Water & Fish	SEDIMENT SAMPLE LOCATIONS				
		L3-SW3-2023	L3-SW4-2023	L3-SW5-2023	L3-WSW2-2023	Fresh Acute	Chronic	Ingestion or MCL	L3-SD8-2023	L3-SD9-2023	L3-SD10-2023	L3-SD11-2023	L3-WSD2-202
			Surface Water	presented as µg/	Ĺ					Sedin	nent presented as	mg/kg	-
						340	150	0.018					
	03/16/23	0.74	0.84	0.54	0.77				34	2.7	10	11	52
						NSA	NSA	1,000					
	03/16/23	13	13	37	12				84	28	81	230	170
						0.391	0.21	5 (MCL)					
	03/16/23	<1	<1	<1	<1				<0.5	<0.5	<0.5	<0.5	1.3
	03/16/23	6.7	6.3	16	4.8	482.6	23.1	100 (Total Chromium as MCL)	41	15	1,000	6,100	3,000
						10.5	0.41	NSA					
	03/16/23	<1	<1	<1	<1				33	3	9.9	24	49
						1.4	0. 77	0.05					
	03/16/23	<0.1	<0.1	<0.1	<0.1				0.13	<0.1	<0.1	0.17	0.27
						NSA	5	170					
	03/16/23	<1	<1	<1	<1	1			2.8	<0.5	<0.5	0.91	7.8
						0.2	NSA	105					
	03/16/23	<1	<1	<1	<1				<0.5	<0.5	<0.5	<0.5	0.55
	03/16/23	<10	<10	<10	<10	16	11	100 (Total Chromium as MCL)	<0.67	<0.49	<0.49	<0.56	<3.7
											1		
aCO3)	00.11.610.0			1.7		NSA	NSA	NSA					
	03/16/23	15	15	15	15	10.4	NG (NA	NA	NA	NA	NA
	03/16/23	NA	NA	NA	NA	NSA	NSA	NSA	6.38	6.55	4.17	4.24	6.06
	05/10/25	INA	INA	INA	INA	NSA	NSA	NSA	0.30	0.55	4.1/	4.24	0.00
	03/16/23	NA	NA	NA	NA	110/1	110/1	110/1	-43.8	-1.9	271	322	-129
Notes:						n (ppb) equiva	alent to microg	rams per liter (µg/L); Water s					

tes: 1. Surface water concentrations expressed as Dissolved Metals Concentrations in parts per billion (ppb) equivalent to micrograms per liter (µg/L); Water samples field filtered with 0.45-micron dedicated filters

2. Sediment concentrations expressed in parts per million (ppm) equivalent to milligrams per kilogram (mg/kg).

3. <0.01 = Below laboratory reporting limits.

4. Surface water concentrations compared to NHDES Water Quality Criteria for Toxic Substances, Table 1703-1, 1703-2A.

5. Sediment concentrations compared to NHDES Soil Remediation Standards (SRS) Table 600-2.

6. NSA = No Standard Available for specific compound.

7. NA = Compound not analyzed for this sample.

8. 3 Equipment Rinsate Blank samples were submitted for laboratory analysis of RCRA-8 Metals and Chromium (VI); concentrations were below laboratory report limits from all 3 samples: EB-Auger, EB-Spade, EB-SW.

9. Redox Potential expressed in millivolts (mV).

10. Fresh Acute and Chronic Criteria adjusted for hardness dependant metals with hardness reported less that 20 as CaCO3

TABLE 2 - WETLAND A

SURFACE WATER AND SEDIMENT ANALYTICAL - RCRA 8-METALS, CHROMIUM VI, TOTAL HARDNESS ONYX RAYMOND INDUSTRIAL DRIVE, RAYMOND, NH

COMPOUND	DATE	SURFACE WATER SAMPLE LOCATIONS			Water S Protection	5 Surface Standards 1 of Aquatic Jife	Health	SEDIMENT SAMPLE LOCATIONS				
		WA-WSW1-2023	WA-SW2-2023	WA-SFW3A-2023	Fresh Acute	Fresh Chronic	Water & Fish Ingestion or MCL	WA-WSD1-2023	WA-SD3-2023	WA-SD4-2023	WA-SD5-2023	Stand 3
Metals		Surface Water presented as µg/L							Sediment prese	nted as mg/kg		
					340	150	0.018					11
	03/16/23	<0.5	0.52	0.61				5.3	4.9	1.4	3.2	
					NSA	NSA	1,000					1,0
	03/16/23	9.5	11	15				33	34	35	28	
n ¹⁰					0.391	0.21	5 (MCL)					3.
	03/16/23	<1	<1	<1				<0.5	<0.5	<0.5	<0.5	
m (III) ¹⁰	03/16/23	<1	<1	2.2	482.6	23.1	100 (Total Chromium as MCL)	24	9.6	93	8.1	1,0
	00/10/20	*	*		10.5	0.41	NSA		510		0.12	40
	03/16/23	<1	<1	<1				11	86	12	7.4	
					1.4	0.77	0.05					7
	03/16/23	<0.1	<0.1	<0.1	1			<0.1	<0.1	<0.1	<0.1	
1					NSA	5	50					18
	03/16/23	<1	<1	<1				<0.5	<0.5	<0.5	<0.5	
					0.2	NSA	105					89
	03/16/23	<1	<1	<1				<0.5	<0.5	<0.5	<0.5	
m (VI)	03/16/23	<1	<1	<1	16	11	100 (Total Chromium as MCL)	<0.57	<0.51	<0.57	<0.48	13
ırameters												
rdness (as CaCO3)					NSA	NSA	NSA					NS
(mg/L)	03/16/23	9.3	15	15				NA	NA	NA	NA	
°C (unitless)	02/16/22	NA	NIA	NA	NSA	NSA	NSA	5.02	5.40	5.05	6.06	NS
) otential (mV)	03/16/23	NA	NA	NA	NSA	NSA	NSA	5.83	5.49	5.85	6.06	NS
. ,	03/16/23	NA	NA	NA			NSA	75.2	151	113	211	NS

Notes: 1. Surface water concentrations expressed as Dissolved Metals Concentrations in parts per billion (ppb) equivalent to micrograms per liter (µg/L); Water samples field filtered with 0.45-micron dedicated filters.

2. Sediment concentrations expressed in parts per million (ppm) equivalent to milligrams per kilogram (mg/kg).

3. <0.01 = Below laboratory reporting limits.

4. Surface water concentrations compared to NHDES Water Quality Criteria for Toxic Substances, Table 1703-1, 1703-2A.

5. Sediment concentrations compared to NHDES Soil Remediation Standards (SRS) Table 600-2.

6. NSA = No Standard Available for specific compound.

7. NA = Compound not analyzed for this sample.

8. 3 Equipment Rinsate Blank samples were submitted for laboratory analysis of RCRA-8 Metals and Chromium (VI); concentrations were below laboratory report limits from all 3 samples: EB-Auger, EB-SW.

9. Redox Potential expressed in millivolts (mV).

10. Fresh Acute and Chronic Criteria adjusted for hardness dependant metals with hardness reported less that 20 as CaCO3

TABLE 3 - LAGOON 3

SUMMARY OF SURFACE WATER AND SEDIMENT ANALYTICAL - PFAS ONYX RAYMOND INDUSTRIAL DRIVE, RAYMOND, NH

PFAS COMPOUNDS	SAMPLE	SURFACE WATER SAMPLES				SEDIMENT SAMPLES					QUALITY CONT	
	DATE	L3-SW3-2023	L3-SW4-2023	L3-SW5-2023	L3-WSW2-2023 (MSMSD)	L3-SD8-2023 (MS/MSD)	L3-SD9-2023	L3-SD10-2023	L3-SD-11-2023	L3-WSD2- 2023	L3-SD8-2023 FB	L3-
icid (PFBA)	03/16/23	NA	NA	NA	NA	<0.99	< 0.53	<0.58	<1.2	<4.1	<1.9	
lfonic Acid (PFBS)	03/16/23	<1.8	<1.7	<2.0	<1.9	<0.99	< 0.53	<0.58	<1.2	<4.1	<1.9	
Acid (PFPeA)	03/16/23	NA	NA	NA	NA	<0.99	< 0.53	<0.58	<1.2	<4.1	<1.9	
Acid (PFHxA)	03/16/23	<1.8	<1.7	<2.0	<1.9	<0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
53B Major)	03/16/23	<1.8	<1.7	<2.0	<1.9	<0.99	<0.53	<0.58	<1.2	<4.1	<1.9	
B Minor)	03/16/23	<1.8	<1.7	<2.0	<1.9	< 0.99	< 0.53	<0.58	<1.2	<4.1	<1.9	
uorononanoic acid (ADONA)	03/16/23	<1.8	<1.7	<2.0	<1.9	<0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
ne oxide dimer acid (HFPO-DA)	03/16/23	<1.8	<1.7	<2.0	<1.9	< 0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
ulfonic acid (8:2FTS A)	03/16/23	NA	NA	NA	NA	< 0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
Acid (PFDA)	03/16/23	<1.8	<1.7	<2.0	<1.9	< 0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
ic Acid (PFDoA)	03/16/23	<1.8	<1.7	<2.0	<1.9	< 0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
lfonic acid (PFHpS)	03/16/23	NA	NA	NA	NA	< 0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
ctanesulfonamido Acetic Acid (NEtFOSAA)	03/16/23	0.79	0.81	<2.0	<1.9	1.2	< 0.53	0.64	2.0	9.9	<1.9	
octanesulfonamido Acetic Acid (NMeFOSAA)	03/16/23	<1.8	<1.7	<2.0	<1.9	< 0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
ioic Acid (PFTA)	03/16/23	<1.8	<1.7	<2.0	<1.9	< 0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
c Acid (PFTrDA)	03/16/23	<1.8	<1.7	<2.0	<1.9	< 0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
ulfonic acid (4:2FTS A)	03/16/23	NA	NA	NA	NA	< 0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
fonic acid (PFDS)	03/16/23	NA	NA	NA	NA	< 0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
fonamide (FOSA)	03/16/23	NA	NA	NA	NA	< 0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
fonic acid (PFNS)	03/16/23	NA	NA	NA	NA	< 0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
sulfonamide (FHxSA)	03/16/23	NA	NA	NA	NA	<0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
sulfonamide (FBSA)	03/16/23	NA	NA	NA	NA	<0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
fonic acid (PFHxS)	03/16/23	<1.8	<1.7	2.4	<1.9	< 0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
tanoic acid (PFMPA)	03/16/23	NA	NA	NA	NA	<0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
anoic acid (PFMBA)	03/16/23	NA	NA	NA	NA	< 0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
ulfonic acid (6:2FTS A)	03/16/23	NA	NA	NA	NA	<0.99	< 0.53	<0.58	<1.2	<4.1	<1.9	
ic acid (PFUnA)	03/16/23	<1.8	<1.7	<2.0	<1.9	<0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
xaheptanoic acid (NFDHA)	03/16/23	NA	NA	NA	NA	<0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
acid (PFHpA)	03/16/23	<1.8	<1.7	1.0	<1.9	<0.99	< 0.53	<0.58	<1.2	<4.1	<1.9	
icid (PFOA)	03/16/23	1.6	1.7	6.3	<1.9	<0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	
fonic acid (PFOS)	03/16/23	7.0	6.7	18	4.4	<0.99	< 0.53	3.5	5.7	<4.1	<1.9	
acid (PFNA)	03/16/23	<1.8	<1.7	<2.0	<1.9	< 0.99	< 0.53	< 0.58	<1.2	<4.1	<1.9	

ntrations are presented as parts per trillion (ppt) equivalent to nanograms per liter (ng/L).

ions are presented as parts per billion (ppb) equivalent to micrograms per kilogram (ug/kg).

tory reporting limits.

no surface water quality standards or soil remediation standards adopted by NHDES for PFAS.

alyzed by NHDES approved EPA Method 537.1 and isotope dilution.

TABLE 3 - WETLAND A

SUMMARY OF SURFACE WATER AND SEDIMENT ANALYTICAL - PFAS ONYX RAYMOND INDUSTRIAL DRIVE, RAYMOND, NH

PFAS COMPOUND LIST	SAMPLE	SURFA	CE WATER SA	MPLES	SEDIMENT SAMPLES				
	DATE	WA-WSW1-2023	WA-SW2-2023	WA-SFW3A-2023	WA-WSD1-2023	WA-SD3-2023	WA-SD4-2023	WA-SD5-2023	
itanoic acid (PFBA)	03/16/23	NA	NA	NA	<0.68	< 0.89	<0.59	< 0.59	
itane Sulfonic Acid (PFBS)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	< 0.59	
entanoic Acid (PFPeA)	03/16/23	NA	NA	NA	<0.68	< 0.89	<0.59	<0.59	
exanoic Acid (PFHxA)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	<0.59	
)UdS (F53B Major)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	<0.59	
NS (F53B Minor)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	< 0.59	
BH-perfluorononanoic acid (ADONA)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	<0.59	
propylene oxide dimer acid (HFPO-DA)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	< 0.59	
elomersulfonic acid (8:2FTS A)	03/16/23	NA	NA	NA	<0.68	< 0.89	<0.59	< 0.59	
canoic Acid (PFDA)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	< 0.59	
pdecanoic Acid (PFDoA)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	< 0.59	
ptanesulfonic acid (PFHpS)	03/16/23	NA	NA	NA	<0.68	< 0.89	<0.59	< 0.59	
fluorooctanesulfonamido Acetic Acid (NEtFOSAA)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	< 0.59	
erfluorooctanesulfonamido Acetic Acid (NMeFOSAA)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	< 0.59	
tradecanoic Acid (PFTA)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	< 0.59	
ldecanoic Acid (PFTrDA)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	< 0.59	
elomersulfonic acid (4:2FTS A)	03/16/23	NA	NA	NA	<0.68	< 0.89	<0.59	<0.59	
canesulfonic acid (PFDS)	03/16/23	NA	NA	NA	<0.68	< 0.89	<0.59	< 0.59	
tanesulfonamide (FOSA)	03/16/23	NA	NA	NA	< 0.68	< 0.89	<0.59	< 0.59	
onanesulfonic acid (PFNS)	03/16/23	NA	NA	NA	<0.68	< 0.89	<0.59	< 0.59	
-hexanesulfonamide (FHxSA)	03/16/23	NA	NA	NA	<0.68	< 0.89	<0.59	<0.59	
-butanesulfonamide (FBSA)	03/16/23	NA	NA	NA	<0.68	< 0.89	<0.59	< 0.59	
exanesulfonic acid (PFHxS)	03/16/23	<1.9	<1.8	<1.9	< 0.68	< 0.89	<0.59	<0.59	
-oxapentanoic acid (PFMPA)	03/16/23	NA	NA	NA	<0.68	< 0.89	<0.59	< 0.59	
-oxahexanoic acid (PFMBA)	03/16/23	NA	NA	NA	<0.68	< 0.89	<0.59	< 0.59	
elomersulfonic acid (6:2FTS A)	03/16/23	NA	NA	NA	<0.68	< 0.89	<0.59	< 0.59	
idecanoic acid (PFUnA)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	<0.59	
-3,6-dioxaheptanoic acid (NFDHA)	03/16/23	NA	NA	NA	<0.68	< 0.89	<0.59	< 0.59	
eptanoic acid (PFHpA)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	< 0.59	
tanoic acid (PFOA)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	<0.59	
tanesulfonic acid (PFOS)	03/16/23	<1.9	<1.8	<1.9	<0.68	< 0.89	<0.59	<0.59	
manoic acid (PFNA)	03/16/23	<1.9	<1.8	<1.9	<0.68	<0.89	<0.59	<0.59	

ater concentrations are presented as parts per trillion (ppt) equivalent to nanograms per liter (ng/L).

oncentrations are presented as parts per billion (ppb) equivalent to micrograms per kilogram (ug/kg). low laboratory reporting limits.

currently no surface water quality standards or soil remediation standards adopted by NHDES for PFAS.

pounds analyzed by NHDES approved EPA Method 537.1 and isotope dilution.

TABLE 3

SUMMARY OF EQUIPMENT BLANK ANALYTICAL - PFAS ONYX RAYMOND INDUSTRIAL DRIVE, RAYMOND, NH

	SAMPLE	EQUIPME	ONT BLANK	SAMPLES
PFAS COMPOUND LIST	DATE	EB-AUGER	EB-SPADE	EB-SW
Perfluorobutanoic acid (PFBA)	03/16/23	<2.0	<1.9	NA
Perfluorobutane Sulfonic Acid (PFBS)	03/16/23	<2.0	<1.9	<1.8
Perfluoropentanoic Acid (PFPeA)	03/16/23	<2.0	<1.9	NA
Perfluorohexanoic Acid (PFHxA)	03/16/23	<2.0	<1.9	<1.8
11C1-PF3OUdS (F53B Major)	03/16/23	<2.0	<1.9	<1.8
9C1-PF3ONS (F53B Minor)	03/16/23	<2.0	<1.9	<1.8
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	03/16/23	<2.0	<1.9	<1.8
Hexafluoropropylene oxide dimer acid (HFPO-DA)	03/16/23	<2.0	<1.9	<1.8
8:2 Fluorotelomersulfonic acid (8:2FTS A)	03/16/23	<2.0	<1.9	NA
Perfluorodecanoic Acid (PFDA)	03/16/23	<2.0	<1.9	<1.8
Perfluorododecanoic Acid (PFDoA)	03/16/23	<2.0	<1.9	<1.8
Perfluoroheptanesulfonic acid (PFHpS)	03/16/23	<2.0	<1.9	NA
N-ethyl Perfluorooctanesulfonamido Acetic Acid (NEtFOSAA)	03/16/23	<2.0	<1.9	<1.8
N-methyl Perfluorooctanesulfonamido Acetic Acid (NMeFOSAA)	03/16/23	<2.0	<1.9	<1.8
Perfluorotetradecanoic Acid (PFTA)	03/16/23	<2.0	<1.9	<1.8
Perfluorotridecanoic Acid (PFTrDA)	03/16/23	<2.0	<1.9	<1.8
4:2 Fluorotelomersulfonic acid (4:2FTS A)	03/16/23	<2.0	<1.9	NA
Perfluorodecanesulfonic acid (PFDS)	03/16/23	<2.0	<1.9	NA
Perfluorooctanesulfonamide (FOSA)	03/16/23	<2.0	<1.9	NA
Perfluorononanesulfonic acid (PFNS)	03/16/23	<2.0	<1.9	NA
Perfluoro-1-hexanesulfonamide (FHxSA)	03/16/23	<2.0	<1.9	NA
Perfluoro-1-butanesulfonamide (FBSA)	03/16/23	<2.0	<1.9	NA
Perfluorohexanesulfonic acid (PFHxS)	03/16/23	<2.0	<1.9	<1.8
Perfluoro-4-oxapentanoic acid (PFMPA)	03/16/23	<2.0	<1.9	NA
Perfluoro-5-oxahexanoic acid (PFMBA)	03/16/23	<2.0	<1.9	NA
6:2 Fluorotelomersulfonic acid (6:2FTS A)	03/16/23	<2.0	<1.9	NA
Perfluoroundecanoic acid (PFUnA)	03/16/23	<2.0	<1.9	<1.8
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	03/16/23	<2.0	<1.9	NA
Perfluoroheptanoic acid (PFHpA)	03/16/23	<2.0	<1.9	<1.8
Perfluorooctanoic acid (PFOA)	03/16/23	<2.0	<1.9	<1.8
Perfluorooctanesulfonic acid (PFOS)	03/16/23	<2.0	<1.9	<1.8
Perfluorononanoic acid (PFNA)	03/16/23	<2.0	<1.9	<1.8

NOTES:

1. Surface water concentrations are presented as parts per trillion (ppt) equivalent to nanograms per liter (ng/L).

2. Sediment concentrations are presented as parts per billion (ppb) equivalent to micrograms per kilogram (ug/kg).

3. <1.8 = Below laboratory reporting limits.

4. There are currently no surface water quality standards or soil remediation standards adopted by NHDES for PFAS.

5. PFAS compounds analyzed by NHDES approved EPA Method 537.1 and isotope dilution.

Todd Greenwood Enviro North American Consulting PO Box 1075 Alton, NH 03809

Laboratory Report for:

Eastern Analytical, Inc. ID: 257325 Client Identification: Onyx Raymond | 1190-681 Date Received: 3/17/2023

Enclosed are the analytical results per the Chain of Custody for sample(s) in the referenced project. All analyses were performed in accordance with our QA/QC Program, NELAP and other applicable state requirements. All quality control criteria was within acceptance criteria unless noted on the report pages. Results are for the exclusive use of the client named on this report and will not be released to a third party without consent.

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the written approval of the laboratory.

The following standard abbreviations and conventions apply to all EAI reports:

- < : "less than" followed by the reporting limit
- > : "greater than" followed by the reporting limit
- %R: % Recoverv

Certifications:

Eastern Analytical, Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269), Vermont (VT1012), New York (12072) and West Virginia (9910C). Please refer to our website at www.easternanalytical.com for a copy of our certificates and accredited parameters.

References:

- EPA 600/4-79-020, 1983
- Standard Methods for Examination of Water and Wastewater, 20th, 21st, 22nd & 23rd edition or noted revision vear.
- Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB
- Hach Water Analysis Handbook, 4th edition, 1992
- ASTM International

If you have any questions regarding the results contained within, please feel free to contact customer service. Unless otherwise requested, we will dispose of the sample(s) 6 weeks from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

enni

Lorraine Olashaw, Lab Director

EAI ID#: 257325

Client: Enviro North American Consulting Client Designation: Onyx Raymond | 1190-681

Temperature upon receipt (°C): Acceptable temperature range (°C): 0-6		3.1			Received o	n ice or	cold packs (Yes/No): Υ
Lab ID	Sample ID	Date Received		Date/Time Sampled		% Dry Weight	Exceptions/Comments (other than thermal preservation)
257325.01	EB-Auger	3/17/23	3/16/23	11:00	aqueous		Adheres to Sample Acceptance Policy
257325.02	EB-Spade	3/17/23	3/16/23	11:10	aqueous		Adheres to Sample Acceptance Policy
257325.03	EB-SW	3/17/23	3/16/23	11:15	aqueous		Adheres to Sample Acceptance Policy
257325.04	L3-SW4-2023	3/17/23	3/16/23	11:45	aqueous		Adheres to Sample Acceptance Policy
257325.05	L3-SW3-2023	3/17/23	3/16/23	12:00	aqueous		Adheres to Sample Acceptance Policy
257325.06	L3-SD11-2023	3/17/23	3/16/23	12:30	soil	62.1	Adheres to Sample Acceptance Policy
257325.07	L3-SD10-2023	3/17/23	3/16/23	12:47	soil	73.6	Adheres to Sample Acceptance Policy
257325.08	L3-WSW2-2023	3/17/23	3/16/23	13:15	aqueous		Adheres to Sample Acceptance Policy
257325.09	L3-WSD2-2023	3/17/23	3/16/23	13:30	soil	8.9	Adheres to Sample Acceptance Policy
257325.1	L3-SD8-2023	3/17/23	3/16/23	14:20	soil	45.0	Adheres to Sample Acceptance Policy
257325.11	L3-SD9-2023	3/17/23	3/16/23	14:50	soil	73.0	Adheres to Sample Acceptance Policy
257325.12	L3-SW5-2023	3/17/23	3/16/23	15:25	aqueous		Adheres to Sample Acceptance Policy
257325.13	WA-SFW3A-2023	3/17/23	3/16/23	16:45	aqueous		Adheres to Sample Acceptance Policy
257325.14	WA-SD3-2023	3/17/23	3/16/23	17:20	soil	78.5	Adheres to Sample Acceptance Policy
257325.15	WA-SW2-2023	3/17/23	3/16/23	17:40	aqueous		Adheres to Sample Acceptance Policy
257325.16	WA-WSW1-2023	3/17/23	3/16/23	18:10	aqueous		Adheres to Sample Acceptance Policy
257325.17	WA-WSD1-2023	3/17/23	3/16/23	18:45	soil	64.0	Adheres to Sample Acceptance Policy
257325.18	WA-SD4-2023	3/17/23	3/16/23	19:05	soil	52.7	Adheres to Sample Acceptance Policy
257325.19	WA-SD5-2023	3/17/23	3/16/23	19:20	soil	69.9	Adheres to Sample Acceptance Policy

All results contained in this report relate only to the above listed samples.

Unless otherwise noted:

- Hold times, preservation, container types, and sample conditions adhered to EPA Protocol.
- Solid samples are reported on a dry weight basis, unless otherwise noted. pH/Corrosivity, Flashpoint, Ignitability, Paint Filter, Conductivity and Specific Gravity are always reported on an "as received" basis.
- Analysis of pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite were performed at the laboratory outside of the recommended 15 minute hold time.
- Samples collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures.

Eastern Analytical, Inc.

LABORATORY REPORT

EAI ID#: 257325

Client: Enviro North American Consulting Client Designation: Onyx Raymond | 1190-681

Sample ID:	EB-Auger	EB-Spade	EB-SW					
Lab Sample ID:	257325.01	257325.02	257325.03					
Matrix:	aqueous	aqueous	aqueous					
Date Sampled:	3/16/23	3/16/23	3/16/23	Analytical		Date of		
Date Received:	3/17/23	3/17/23	3/17/23	Matrix	Units	Analysis	Method	Analyst
Chromium (VI)	< 0.01	< 0.01	< 0.01	AqDis	mg/L	3/17/23	7196A	RJ
Arsenic	< 0.0005	< 0.0005	< 0.0005	AqDis	mg/L	3/17/23	200.8	DS
Barium	< 0.001	< 0.001	< 0.001	AqDis	mg/L	3/17/23	200.8	DS
Cadmium	< 0.001	< 0.001	< 0.001	AqDis	mg/L	3/17/23	200.8	DS
Chromium	< 0.001	< 0.001	< 0.001	AqDis	mg/L	3/17/23	200.8	DS
Lead	< 0.001	< 0.001	< 0.001	AqDis	mg/L	3/17/23	200.8	DS
Mercury	< 0.0001	< 0.0001	< 0.0001	AqDis	mg/L	3/17/23	200.8	DS
Selenium	< 0.001	< 0.001	< 0.001	AqDis	mg/L	3/17/23	200.8	DS
Silver	< 0.001	< 0.001	< 0.001	AqDis	mg/L	3/17/23	200.8	DS

Sample ID:	L3-SD11-2023	L3-SD10 -2023	L3-WSD2 -2023	L3-SD8-2023					
Lab Sample ID:	257325.06	257325.07	257325.09	257325.1					
Matrix:	soil	soil	soil	soil					
Date Sampled:	3/16/23	3/16/23	3/16/23	3/16/23	Analytical		Date of		
Date Received:	3/17/23	3/17/23	3/17/23	3/17/23	Matrix	Units	Analysis	Method	Analyst
Arsenic	11	10	52	34	SolTotDry	mg/kg	3/20/23	6020A	DS
Barium	230	81	170	84	SolTotDry	mg/kg	3/20/23	6020A	DS
Cadmium	< 0.5	< 0.5	1.3	< 0.5	SolTotDry	mg/kg	3/20/23	6020A	DS
Chromium	6100	1000	3000	41	SolTotDry	mg/kg	3/20/23	6020A	DS
Lead	24	9.9	49	33	SolTotDry	mg/kg	3/20/23	6020A	DS
Mercury	0.17	< 0.1	0.27	0.13	SolTotDry	mg/kg	3/20/23	6020A	DS
Selenium	0.91	< 0.5	7.8	2.8	SolTotDry	mg/kg	3/20/23	6020A	DS
Silver	< 0.5	< 0.5	0.55	< 0.5	SolTotDry	mg/kg	3/20/23	6020A	DS

EAI ID#: 257325

Client: Enviro North American Consulting

Client Designation: Onyx Raymond | 1190-681

Sample ID:	L3-SD9-2023	WA-SD3 -2023	WA-WSD1 -2023	WA-SD4 -2023					
Lab Sample ID:	257325.11	257325.14	257325.17	257325.18					
Matrix:	soil	soil	soil	soil					
Date Sampled:	3/16/23	3/16/23	3/16/23	3/16/23	Analytical		Date of		
Date Received:	3/17/23	3/17/23	3/17/23	3/17/23	Matrix	Units	Analysis	Method	Analyst
Arsenic	2.7	4.9	5.3	1.4	SolTotDry	mg/kg	3/20/23	6020A	DS
Barium	28	34	33	35	SolTotDry	mg/kg	3/20/23	6020A	DS
Cadmium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	3/20/23	6020A	DS
Chromium	15	9.6	24	93	SolTotDry	mg/kg	3/20/23	6020A	DS
Lead	3.0	86	11	12	SolTotDry	mg/kg	3/20/23	6020A	DS
Lead Mercury				12 < 0.1		0.0		6020A 6020A	DS DS
	3.0	86	11		SolTotDry	mg/kg	3/20/23		

Sample ID:	WA-SD5-2023
------------	-------------

Lab Sample ID:	257325.19					
Matrix:	soil					
Date Sampled:	3/16/23	Analytical		Date of		
Date Received:	3/17/23	Matrix	Units	Analysis	Method	Analyst
Arsenic	3.2	SolTotDry	mg/kg	3/20/23	6020A	DS
Barium	28	SolTotDry	mg/kg	3/20/23	6020A	DS
Cadmium	< 0.5	SolTotDry	mg/kg	3/20/23	6020A	DS
Chromium	8.1	SolTotDry	mg/kg	3/20/23	6020A	DS
Lead	7.4	SolTotDry	mg/kg	3/20/23	6020A	DS
Mercury	< 0.1	SolTotDry	mg/kg	3/20/23	6020A	DS
Selenium	< 0.5	SolTotDry	mg/kg	3/20/23	6020A	DS
Silver	< 0.5	SolTotDry	mg/kg	3/20/23	6020A	DS

LABORATORY REPORT

EAI ID#: 257325

Date of Analysis

3/17/23

3/17/23

3/17/23

3/17/23

3/17/23

3/17/23

3/17/23

3/17/23

3/17/23 3/21/23 Method Analyst

RJ

DS

DS

DS

DS

DS

DS

DS

DS

DS

7196A

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

Client: Enviro North American Consulting Client Designation: Onyx Raymond | 1190-681

Sample ID:	L3-SW-4-2023 L	_3-SW3-2023	L3-WSW2 -2023	L3-SW5-2023					
Lab Sample ID:	257325.04	257325.05	257325.08	257325.12					
Matrix:	aqueous	aqueous	aqueous	aqueous					
Date Sampled:	3/16/23	3/16/23	3/16/23	3/16/23	Analytical		Date of		
Date Received:	3/17/23	3/17/23	3/17/23	3/17/23	Matrix	Units	Analysis	Method	Analyst
Chromium (VI)	< 0.01	< 0.01	< 0.01	< 0.01	AqDis	mg/L	3/17/23	7196A	RJ
Arsenic	0.00084	0.00074	0.00077	0.00054	AqDis	mg/L	3/17/23	200.8	DS
Barium	0.013	0.013	0.012	0.037	AqDis	mg/L	3/17/23	200.8	DS
Cadmium	< 0.001	< 0.001	< 0.001	< 0.001	AqDis	mg/L	3/17/23	200.8	DS
Chromium	0.0063	0.0067	0.0048	0.016	AqDis	mg/L	3/17/23	200.8	DS
Lead	< 0.001	< 0.001	< 0.001	< 0.001	AqDis	mg/L	3/17/23	200.8	DS
Mercury	< 0.0001	< 0.0001	< 0.0001	< 0.0001	AqDis	mg/L	3/17/23	200.8	DS
Selenium	< 0.001	< 0.001	< 0.001	< 0.001	AqDis	mg/L	3/17/23	200.8	DS
Silver	< 0.001	< 0.001	< 0.001	< 0.001	AqDis	mg/L	3/17/23	200.8	DS
Total Hardness (as CaC	O3) 15	15	15	15	AqTot	mg/L	3/21/23	200.8	DS

Sample ID:	WA-SFW3A-2023	WA-SW2 -2023	WA-WSW1 -2023		
Lab Sample ID:	257325.13	257325.15	257325.16		
Matrix:	aqueous	aqueous	aqueous		
Date Sampled:	3/16/23	3/16/23	3/16/23	Analytical	
Date Received:	3/17/23	3/17/23	3/17/23	Matrix	Units
Chromium (VI)	< 0.01	< 0.01	< 0.01	AqDis	mg/L
Arsenic	0.00061	0.00052	< 0.0005	AqDis	mg/L
Barium	0.015	0.011	0.0095	AqDis	mg/L
Cadmium	< 0.001	< 0.001	< 0.001	AqDis	mg/L
Chromium	0.0022	< 0.001	< 0.001	AqDis	mg/L
Lead	< 0.001	< 0.001	< 0.001	AqDis	mg/L
Mercury	< 0.0001	< 0.0001	< 0.0001	AqDis	mg/L
Selenium	< 0.001	< 0.001	< 0.001	AqDis	mg/L
Silver	< 0.001	< 0.001	< 0.001	AqDis	mg/L
Total Hardness (as	CaCO3) 15	15	9.3	AqTot	mg/L

Eastern Analytical, Inc.

Friday, March 24, 2023

Attn: Front Office Eastern Analytical 51 Antrim Ave Concord, NH 03301

Project ID: 257325 SDG ID: GCN63401 Sample ID#s: CN63401 - CN63409

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Shille

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Telephone (860) 645-1102

Page 1 of 19

Page 620f 25

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

March 24, 2023

SDG I.D.: GCN63401

Project ID: 257325

Client Id	Lab Id	Matrix
L3-SD11-2023	CN63401	SOIL
L3-SD10-2023	CN63402	SOIL
L3-WSD2-2023	CN63403	SOIL
L3-SD8-2023	CN63404	SOIL
L3-SD9-2023	CN63405	SOIL
WA-SD3-2023	CN63406	SOIL
WA-WSD1-2023	CN63407	SOIL
WA-SD4-2023	CN63408	SOIL
WA-SD5-2023	CN63409	SOIL

12:30

13:22

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report	FOR:
March 24, 2023	

Attn: Front Office Eastern Analytical 51 Antrim Ave Concord, NH 03301

Sample Information

Matrix:	SOIL
Location Code:	EASTANAL-NH
Rush Request:	Standard
P.O.#:	59420

Analyzed by: see "By" below

CP

Custody Information

Collected by:

Received by:

aboratory Data

SDG ID: GCN63401 Phoenix ID: CN63401

Date

03/16/23

03/20/23

Project ID:	257325
Client ID:	L3-SD11-2023

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Percent Solid	60		%		03/20/23	AL	SW846-%Solid	
Chromium, Hex. (SW3060A digestion	< 0,56	0.56	mg/Kg	1	03/22/23	DK	SW7196A	
pH at 25C - Soil	4,24	1.00	pH Units	1	03/20/23 20:33	PK/MW	SW846 9045D	1
Redox Potential	322		mV	1	03/20/23	PK/MW	SM2580B-09	1

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of holdtime.

Hexavalent Chromium: This sample is in a reducing state.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director March 24, 2023 Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Custody Information

Analysis Report

March 24, 2023

257325

FOR: Attn: Front Office Eastern Analytical 51 Antrim Ave Concord, NH 03301

"By" below

Sample Information

P.O.#:	59420	Laboratory	Data
Rush Request:	Standard	Analyzed by:	see "By
Location Code:	EASTANAL-NH	Received by:	CP
Matrix:	SOIL	Collected by:	

03/16/23 12:47 03/20/23 13:22

Date

SDG ID: GCN63401 Phoenix ID: CN63402

		-		
Parameter		Result	RL/ PQL	Units
Client ID:	L3-SD10-2023			

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Percent Solid	73	ľ	%		03/20/23	AL	SW846-%Solid	
Chromium, Hex. (SW3060A digestion	< 0.49	0.49	mg/Kg	1	03/22/23	DK	SW7196A	
pH at 25C - Soil	4.17	1.00	pH Units	1	03/20/23 20:33	PK/MW	SW846 9045D	1
Redox Potential	271		mV	1	03/20/23	PK/MW	SM2580B-09	1

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

Project ID:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

Hexavalent Chromium: This sample is in a reducing state.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director March 24, 2023 Reviewed and Released by: Ethan Lee, Project Manager

13:30

13:22

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 24, 2023

FOR: Attn: Front Office Eastern Analytical 51 Antrim Ave Concord, NH 03301

see "By" below

CP

Sample Information

Matrix:	SOIL	Collected by:
Location Code:	EASTANAL-NH	Received by:
Rush Request:	Standard	Analyzed by:
P.O.#:	59420	Laborato

Laboratory Data

Custody Information

SDG ID: GCN63401 Phoenix ID: CN63403

Date

03/16/23

03/20/23

Project ID:	257325
Client ID:	L3-WSD2-2023

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Percent Solid	9.7		%		03/20/23	AL	SW846-%Solid	
Chromium, Hex. (SW3060A digestion	< 3.7	3.7	mg/Kg	1	03/22/23	DK	SW7196A	
pH at 25C - Soil	6.06	1.00	pH Units	1	03/20/23 20:33	PK	SW846 9045D	1
Redox Potential	-129		mV	1	03/20/23	PK	SM2580B-09	1

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

Hexavalent Chromium: This sample is in a reducing state.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director March 24, 2023 Reviewed and Released by: Ethan Lee, Project Manager

14:20

13:22

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 24, 2023

FOR: Attn: Front Office Eastern Analytical 51 Antrim Ave Concord, NH 03301

Sample Information

Matrix:	SOIL
Location Code:	EASTANAL-NH
Rush Request:	Standard
P.O.#:	59420

Project ID: 257325 Client ID:

L3-SD8-2023

Custody Information Collected by: Received by: CP Analyzed by: see "By" below

aboratory Data

SDG ID: GCN63401 Phoenix ID: CN63404

Date

03/16/23

03/20/23

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Percent Solid	53		%		03/20/23	AL	SW846-%Solid	
Chromium, Hex. (SW3060A digestion	< 0.67	0.67	mg/Kg	1	03/22/23	DK	SW7196A	
pH at 25C - Soil	6.38	1.00	pH Units	1	03/20/23 20:33	ΡK	SW846 9045D	1
Redox Potential	-43.8		mV	1	03/20/23	ΡK	SM2580B-09	1

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of holdtime.

Hexavalent Chromlum: This sample is in a reducing state.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director March 24, 2023 Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

March 24, 2023

257325

L3-SD9-2023

FOR: Attn: Front Office Eastern Analytical 51 Antrim Ave Concord, NH 03301

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		03/16/23	14:50
Location Code:	EASTANAL-NH	Received by:	CP	03/20/23	13:22
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	59420		-		

Laboratory Data

SDG ID: GCN63401 Phoenix ID: CN63405

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Percent Solid	80		%		03/20/23	AL	SW846-%Solid	
Chromium, Hex. (SW3060A digestion	< 0.49	0.49	mg/Kg	1	03/22/23	DK	SW7196A	
pH at 25C - Soil	6.55	1.00	pH Units	1	03/20/23 20:33	ΡK	SW846 9045D	1
Redox Potential	-1.9		mV	1	03/20/23	PK	SM2580B-09	1

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

Project ID:

Client ID:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

Hexavalent Chromlum: This sample is in a reducing state.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director March 24, 2023 Reviewed and Released by: Ethan Lee, Project Manager

17:20

13:22

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 24, 2023

FOR: Attn: Front Office Eastern Analytical 51 Antrim Ave Concord, NH 03301

Sample Information

Matrix:	SOIL
Location Code:	EASTANAL-NH
Rush Request:	Standard
P.O.#:	59420

Collected by: Received by: CP Analyzed by: see "By" below

Laboratory Data

Custody Information

SDG ID: GCN63401 Phoenix ID: CN63406

Date

03/16/23

03/20/23

Project ID:	257325
Client ID:	WA-SD3-2023

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Percent Solid	69		%		03/20/23	AL	SW846-%Solid	
Chromium, Hex. (SW3060A digestion	< 0.51	0.51	mg/Kg	1	03/22/23	DK	SW7196A	
pH at 25C - Soil	5.49	1.00	pH Units	1	03/20/23 20:33	ΡK	SW846 9045D	1
Redox Potential	151		mV	1	03/20/23	ΡK	SM2580B-09	1

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

Hexavalent Chromium: This sample is in a reducing state.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director March 24, 2023 Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report March 24, 2023	FOR: Attn: Front Of Eastern Analy 51 Antrim Ave Concord, NH	rtical e
Sample Information	Custody Information	Date

Sample Informa	ation		Custody Infor	<u>mation</u>	<u>Date</u>	<u>Time</u>
Matrix:	SOIL		Collected by:		03/16/23	18:45
Location Code:	EASTANAL-NH		Received by:	СР	03/20/23	13:22
Rush Request:	Standard		Analyzed by:	see "By" below		
P.O.#:	59420	C.				001004

Project ID:	257325
Client ID:	WA-WSD1-2023

SD1-2023

La	<u>bo</u>	rate	ory	Data

SDG ID: GCN63401 Phoenix ID: CN63407

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Percent Solid	63		%		03/20/23	AL	SW846-%Solid	
Chromium, Hex. (SW3060A digestion	< 0.57	0.57	mg/Kg	1	03/22/23	DK	SW7196A	
pH at 25C - Soil	5.83	1.00	pH Units	1	03/20/23 20:33	ΡK	SW846 9045D	1
Redox Potential	75.2		mV	1	03/20/23	PK	SM2580B-09	1

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of holdtime.

Hexavalent Chromium: This sample is in a reducing state.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director March 24, 2023 Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report March 24, 2023	FOR: Attn: Front Office Eastern Analytic 51 Antrim Ave Concord, NH 03	al
Sample Information	Custody Information	Date

Sample Information		Custody Inform	Custody Information						
Matrix:	SOIL	Collected by:		03/16/23	19:05				
Location Code:	EASTANAL-NH	Received by:	CP	03/20/23	13:22				
Rush Request:	Standard	Analyzed by:	see "By" below						
P.O.#:	59420				0010040				

Laboratory Data

SDG ID: GCN63401 Phoenix ID: CN63408

Project ID:	257325
Client ID:	WA-SD4-2023

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Percent Solid	66		%		03/20/23	AL	SW846-%Solid	
Chromium, Hex. (SW3060A digestion	< 0.57	0.57	mg/Kg	1	03/22/23	DK	SW7196A	
pH at 25C - Soil	5,85	1.00	pH Units	1	03/20/23 20:33	ΡK	SW846 9045D	1
Redox Potential	113		mV	1	03/20/23	ΡK	SM2580B-09	1

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of holdtime.

Hexavalent Chromium: This sample is in a reducing state.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director March 24, 2023 Reviewed and Released by: Ethan Lee, Project Manager

19:20

13:22

Environmental Laboratories, Inc. 587 East Middle Turnplke, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 24, 2023

FOR: Attn: Front Office Eastern Analytical 51 Antrim Ave Concord, NH 03301

Sample Information

Matrix:	SOIL
Location Code:	EASTANAL-NH
Rush Request:	Standard
P.O.#:	59420

Collected by: Received by: CP Analyzed by: see "By" below

Laboratory Data

Custody Information

SDG ID: GCN63401 Phoenix ID: CN63409

Date

03/16/23

03/20/23

Project ID:	257325
Client ID:	WA-SD5-2023

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Percent Solid	81		%		03/20/23	AL	SW846-%Solid	
Chromium, Hex. (SW3060A digestion	< 0.48	0.48	mg/Kg	1	03/22/23	DK	SW7196A	
pH at 25C - Soil	6.06	1.00	pH Units	1	03/20/23 20:33	ΡK	SW846 9045D	1
Redox Potential	211		mV	1	03/20/23	PK	SM2580B-09	1

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

Hexavalent Chromium: This sample is in a reducing state.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director March 24, 2023 Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report March 24, 2023

QA/QC Data

SDG I.D.: GCN63401

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 669162 (mg/kg CN63407, CN63408, CN6340		nple No	: CN6464	6 40X (CN63401	I, CN6	3402, C	N63403	, CN6	3404, C	N6340	5, CN63	406,	
Chromium, Hexavalent	- Soil													
Chromium, Hexavalent	BRL	0.40	<0.42	<0.41	NC	96.2						85 - 115	30	
Chromium, Hexavalent (Ins)						97.4			85.4			85 - 115	30	
Chromium, Hexavalent (Sol)						90.9			79.9			85 - 115	30	m
Comment:														
The OC sample is in a reducing	etato acco	ontonco	critoria aro	not anni	iophle for	ampla	a in a rad	lucina ata	to The		oniko w	oo onaha	and	

The QC sample is in a reducing state, acceptance criteria are not applicable for samples in a reducing state. The soluble spike was analyzed twice with similar recoveries.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report March 24, 2023

QA/QC Data

SDG I.D.: GCN63401

		Blk	Sample	Dup	Dup	LCS	LCSD	LCS	MS	MSD	MS	% Rec	% RPD	
Parameter	Blank	RL	Result	Result	RPD	%	%	RPD	%	%	RPD	Limits	Limits	

QA/QC Batch 668930 (PH), QC Sample No: CN63297 (CN63401, CN63402, CN63403, CN63404, CN63405, CN63406, CN63407, CN63408, CN63409) pН

7.75 7.74 0.10 101 85 - 115 20

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director March²24, 2023

h 24, 2023		Sample Criteria Ex	cceedances Report				
None			EASTANAL-NH				
NH		GCN03401 - E	EASTANAL-NH			RL	
Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	

to Display ***

•

oratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts ure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the solution is a solution of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the solution is a solution of the data (obtained from appropriate agencies).

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

March 24, 2023

SDG I.D.: GCN63401

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

IAIN	-OF-CL	ISTODY RECORD	Eastern Analytical professional laboratory and drilling	-
	Date Sample	d MatrixaParameters	EAI ID# 257325 Page Unit 1.2 Sample Notes	je
-2023	3/16/2023 12:30	aqueous Subcontract - Hexavalent Chromium Soil 3060/719	63401	
-2023	3/16/2023 12:47	aqueous Subcontract - Hexavalent Chromium Soil 3060/719	63402	
2-2023	3/16/2023 13:30	aqueous Subcontract - Hexavalent Chromium Soil 3060/719	63403	
2023	3/16/2023 14:20	aqueous Subcontract - Hexavalent Chromium Soil 3060/719	63404	

. 26	57325	Broiget States NU	Results Needed: Preferred Date: Stand	ard IPO #:5	59420	EAI ID# 257	7325
F 24	JIJZJ	Project State: NH	RUSH Due Date:	Data De	eliverable ((circle)	
		Project ID:	🛛 А 🗆 А+ 🗆 В 🗆 В+ 🔲 С 🗆 МА	MCP Excel	NH EMD	EQuIS ME EGAD)
пу	Phoenix	Environmental Labs	Notes about project:	Call pr	ior to analy	zing, if RUSH charge	s will be applie
SS	587 East	Middle Turnpike	Email login confirmation, pdf of results and invoice to customerservice@easternanalytical.c		1		•
5 5	Manches	ter , CT 06040		Sam	ples Collecte	3/20/23 72	50 Hours
t #				Belin	quished by	Date/Time	Received by
e#	(860) 645	5-1102	1	Juin	Blook	3/20/27 ![[0	AM
				Relin	quished by	Date/Time	Received by
ern A	nalytical, Ir	nc. 51 Antrim Ave Concord,	NH 03301 Phone: (603)228-0525	1-800-287-0525	custom	erservice@easternan	

tract lab to EAI, you will defend, indemnify and hold Eastern Analytical, Inc., its officers, employees, and agents harmless from and against any and all liability, loss, expense or claims for injury of the performance against this chain of custody but only in proportion to and to the extent such liability, loss, expense, or claims for injury or damages are caused by or result from the negligent or sions of you as a subcontract lab, your officers, agents or employees

IAIN	-OF-Cl	JSTOD	Y RECORD	Eastern Analytical, I professional laboratory and drilling se
	Date Sample	ed Matrix	aParameters	Waip 1.2 EAI ID# 257325 Page
023	3/16/2023 14:50	aqueous Sub	contract - Hexavalent Chromium Soil 3060/71	96 63405
2023	3/16/2023 17:20	aqueous Sub	contract - Hexavalent Chromium Soil 3060/71	96 63404
01-2023	3/16/2023 18:45	aqueous Sut	ocontract - Hexavalent Chromium Soil 3060/71	96 63407
2023	3/16/2023 19:05	aqueous Sut	contract - Hexavalent Chromium Soil 3060/71	96 63408

257325	Project State: NH	Results Needed: Preferred Date: Standar RUSH Due Date: QC Deliverables	FO#.00420	EAI ID# 2573	325
	Project ID:			EQUIS MEEGAD	
y Phoenix	Environmental Labs	Notes about project:	Coll prior to analyzi	ing, if RUSH charges	will be applied
s 587 East	Middle Turnpike	Email login confirmation, pdf of results and invoice to customerservice@easternanalytical.com			<i></i>
s Manches	ster, CT 06040		m. Samples Collected	3/20/23 7:5	U Long B
t#			Relinquished by	Date/Time	Received by
e# (860)64	5-1102	l	Jay Block 31	20/20 (1:10	<u></u> //////////////////////////////
			Relinguished by	Date/Time	Received by
ern Analytical, li	nc. 51 Antrim Ave Concord,	, NH 03301 Phone: (603)228-0525 1-	-800-287-0525 custome	rservice@easternanal	lytical.com

tract lab to EAI, you will defend, indemnify and hold Eastern Analytical, Inc., its officers, employees, and agents harmless from and against any and all liability, loss, expense or claims for injury of the performance against this chain of custody but only in proportion to and to the extent such liability, loss, expense, or claims for injury or damages are caused by or result from the negligent or sions of you as a subcontract lab, your officers, agents or employees

IAIN	-OF-CUSTO	DY RECOR	D	9	Eastern Analy professional laboratory and				
			X	10	EAI ID# 257325	Page			
•	Date Sampled Matrix	aParameters	ucip	1.2.	Sample Notes				
2023	3/16/2023 aqueous St 19:20	bcontract - Hexavalent Chromi	ium Soil 3060/7196	634	09				
				639					

0570		Results Needed: Preferred Date: Standa	lard IPO #:59420 EAI ID# 257325	
2573	25 Project State: NH	RUSH Due Date:	Data Deliverable (circle)	
	Project ID:			
ny Pho	oenix Environmental Labs	Notes about project:	Call prior to analyzing, if RUSH charges will be ap	nlier
s 587	7 East Middle Turnpike	Email login confirmation, pdf of results and invoice to customerservice@easternanalytical.c		
ss Ma	nchester, CT 06040	myore to customerservice generation and some	com. Samples Collected by:	e
t #			Belinquished by Date/Time Received	
e# (86	0) 645-1102	I	Juny Blood 3/20/77 11:10 1/1/	<u>_</u>
,			Relinquished by Date/Time Received	dby
ern Analv	rtical. Inc. 51 Antrim Ave Concord,	NH 03301 Phone: (603)228-0525	1-800-287-0525 customerservice@easternanalytical.com	'nТ

tract lab to EAI, you will defend, indemnify and hold Eastern Analytical, Inc., its officers, employees, and agents harmless from and against any and all liability, loss, expense or claims for injury of the performance against this chain of custody but only in proportion to and to the extent such liability, loss, expense, or claims for injury or damages are caused by or result from the negligent or sions of you as a subcontract lab, your officers, agents or employees

Ľ		_									JST																	
	Na ber state en an	Bo	DLD	Fie		Re I		RED		lea												an Tanaka		in jegana.	S. S. S.		257:	32:
l.D.	Sampling Date / Time *If Composite, Indicate Both Start & Finish Date / Time	MATRIX (SEE BELOW)	GRAB/*COMPOSITE		VTICS		GRO MAVPH	8270 625 Abn Pah Edb DBCP	100 LI L2	DRO MAEPH	PEST 608 PCB 608 PEST 8081 PCB 8082	OH & GREASE 1664 TPH 1664	TCLP 1311 ABN METALS				PH T. RES. CHLORINE SPEC. CON. T. ALK.	DOC	HDE	SULFIDE	5	ENTEROCOCCI HETEROTROPHIC PLATE COUNT	(M	"OTAL METALS (LIST BELOW)	HEX CHADMINN	TOTAL HARAN	1. 1. S. Me	H at Continues:
R DE N	3/16/23 11:00 3/16/23 11:10 3/16/23 11:15	DI	6 6																				 		シンン	•		22
3-2023	3/16/23 11:45 3/16/23 12:00 3/16/23 12:30	SW SW	Ъ Ъ							-													<>> > </td <td></td> <td>✓ ✓ ✓</td> <td></td> <td></td> <td>3322</td>		✓ ✓ ✓			3322
- 2023 - 2023	3/16/23 12:47	5 54	ન્ અ																						 <td>~</td><td></td><td>3</td>	~		3
- 2023 V-Ground Water; r	3/16/23 13:30 3/16/23 14:20 SW-SURFACE WATER; DW-DRINK A-NAOH; M-MEOH	S	G																				V		V			22
TODD (1C (1075	STATE: NH						م ۱	С R е . в 1А.М <i>В</i>	с 1CP			Р	PORTI RELIMS: CTROP PDF	YES	or N P tio Excel	10		241	hr* 3-4 Day	Days*	3hr*		Other Sami	n Meta P les	Field	EX ₂ Filte	I3 PP CHA RED? DN LIMITS,	SM D
× RAY - 081 ME \	/T OTHER: POTW <u>St</u> eamwater or			Kast	₽. 	EAMP Reli	NOU		NU BY: ex	nScl	3		HER	5 CA Z TI S (EA Rect		Fe	AD			F רסד Site H	DR At TAL	- R - H	PAR FIL FIL	AS EX NES TEL R	2 2 5 5
-	c ical, Inc. 51 drilling services	Antrir	m Ave	enue), NH		ד וו	"EL: 60)3.228		\$	300.2						erServ	/ICE@	-	Field	Readin	IGS:	Ni	K WW.EA	

2											JST																	
The second second second second	and the second state of the se	B	OLD			RE		RED																100			257	
					NAS)C			5	<u>ve</u>	C	1	TCLP		IN	Oi	RG/A	NI	CS	1.10.2.10		CRO I	Me	TALS			IER	
I.D.	Sampling Date / Time *If Composit Indicate Bot Start & Finis Date / Time	H. H. H. M. M. H.	GRAB/*COMPOSITE	524.2 524.2 MTBE OKLY	8260 624 VTICS 1, 4 DIOXANE	8021	BOIS GRO MAVPH	8270 625 Abn Pah edb dbcp	TPH8100 LI L2		PEST 608 PCB 608 PEST 8081 PCB 8082	OIL & GREASE 1664 TPH 1664	ICLP 1311 ABN METALS /OC PEST HERB	BOD CBOD TS TSS TDS	3R CI F 504 402 NO3 NO3NO1	TKN NH3 TN T. PHOS. 0. PHOS.	pH T. RES. CHLORINE SPEC. CON. T. ALK.	COD PHENOLS TOC DOC	TOTAL CYANIDE TOTAL SULFIDE	KEACTIVE CVANIDE REACTIVE SULFIDE LASHPOINT IGNITABILITY	Total Coliforn E. Coli Fecal Coliforn	ENTEROCOCCI HETEROTROPHIC PLATE COUNT	DISSOLVED METALS (LIST BELOW)	OTAL METALS (LIST BELOW)	Hex chromium	TOTAL HARDUG		
2023	3/16/23 14	:sv s	1	1														0				<u> </u>	\checkmark		\checkmark			
	3/16/23 15																			-			V		\checkmark	~		
	3/10/23 16																						\checkmark		\checkmark	~		
	3/14/23 17																						\checkmark		\checkmark			
	3/16/23 17																						\checkmark		ノ	~		
	3/10/23 18:		1																				\checkmark		\checkmark	~		
	3/16/23 18																						\checkmark		V			
	3/16/23 19:																						~	4	~			
	3/16/23 19																						V	-	V	•.		2
W-GROUND WATER; ER HNO3; S-H2SO4; Na	SW-SURFACE WATER; DW 1-NaOH; M-MEOH	V-DRINKING V	ATER;						-																			-
TODD	GREENW	ODD				Q	A/Q(C Re	POR	TING		Ref	ORTI	NG ()ptic	NS		Turn	Arc	UND	Тіме	.	Met	AI 5-	(81	CRA	13 PP	,
							А	в	С			P	RELIMS:	YES	or N	0		24ł	ır*	4	8hr*			r Meta				
me -	/	<u> </u>						1A M				E.c.	CTRON	41C O	DTIA	MC				Days*						_		r
(10.00	STATE:	ZIP: Ext.: _										2 L L .	PDF		EXCEL	143		5 C			Day						e red? on Limits	BIL
							EMP.	SV YES		°C				Equis				*Pre-;		Day val Re	equired	4		`		~	うして	
								<u> </u>) No	,		01	HER			-					1		P	OR	. Y	24	2A	8
						RELI			<u>Юи</u>) Вү:	unsa :	_		23	5 Z	<u>(1:0</u> ME: 80	N		-A-		RHE IU) (4		р То	nu	D H4	HE	X C JESS FILT	HT N
	PO #:				—	Reli	NQUI	SHED) Βγ:])ATE:		Ti	ME:		Reci	IVED E	SY:				$-T^{r}$	50h	E	P NATION:	RC	Ry
Relinquished By: Date: Time: Received By: Field Readings: N/A												t																
~	ical, Inc. drilling services	51 Antr	im Av	enue	Cor	NCORE			1				1			4	E-MAII opy)		том	ERSER	/ICE@	Easte	rnAn	IALYTI	CAL.CO	м м	/ww.Ea	STER

April 6, 2023

Todd Greenwood Environmental N. American Consulting Po Box 1075 Alton, NH 03809

Project Location: Raymond, NH Client Job Number: Project Number: 1190-681 Laboratory Work Order Number: 23C2156

Enclosed are results of analyses for samples as received by the laboratory on March 20, 2023. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ks.

Albania Hernandez Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	6
23C2156-01	6
23C2156-02	7
23C2156-03	8
23C2156-04	9
23C2156-05	10
23C2156-06	11
23C2156-07	13
23C2156-08	15
23C2156-09	16
23C2156-10	17
23C2156-11	19
23C2156-12	21
23C2156-13	22
23C2156-14	24
23C2156-15	25
23C2156-16	26
23C2156-17	28
23C2156-18	29
23C2156-19	30
23C2156-20	32
23C2156-21	34
Sample Preparation Information	36

Table of Contents (continued)

QC Data	37
Semivolatile Organic Compounds by - LC/MS-MS	37
B334725	37
B334730	39
B334750	40
B335034	42
Flag/Qualifier Summary	44
Internal standard Area & RT Summary	45
Certifications	61
Chain of Custody/Sample Receipt	64

Environmental N. American Consulting Po Box 1075 Alton, NH 03809 ATTN: Todd Greenwood

PURCHASE ORDER NUMBER:

REPORT DATE: 4/6/2023

PROJECT NUMBER: 1190-681

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 23C2156

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Raymond, NH

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
EB-AUGER	23C2156-01	Equipment Blank Water		SOP-454 PFAS	
EB-SPADE	23C2156-02	Equipment Blank Water		SOP-454 PFAS	
EB-SW	23C2156-03	Equipment Blank Water		EPA 537.1	
L3-SW4-2023	23C2156-04	Surface Water		EPA 537.1	
L3-SW3-2023	23C2156-05	Surface Water		EPA 537.1	
L3-SD11-2023	23C2156-06	Sediment		SM 2540G	
				SOP-466 PFAS	
L3-SD10-2023	23C2156-07	Sediment		SM 2540G	
				SOP-466 PFAS	
L3-WSW2-2023 (MSMSD)	23C2156-08	Surface Water		EPA 537.1	
L3-WSW2-2023 FRB	23C2156-09	Field Blank		EPA 537.1	
L3-WSD2-2023	23C2156-10	Sediment		SM 2540G	
				SOP-466 PFAS	
L3-SD8-2023 (MS/MSD)	23C2156-11	Sediment		SM 2540G	
				SOP-466 PFAS	
L3-SD8-2023 FB	23C2156-12	Field Blank		SOP-454 PFAS	
L3-SD9-2023	23C2156-13	Sediment		SM 2540G	
				SOP-466 PFAS	
L3-SW5-2023	23C2156-14	Surface Water		EPA 537.1	
WA-SFW3A-2023	23C2156-15	Surface Water		EPA 537.1	
WA-SD3-2023	23C2156-16	Sediment		SM 2540G	
				SOP-466 PFAS	
WA-SW2-2023	23C2156-17	Surface Water		EPA 537.1	
WA-WSW1-2023	23C2156-18	Surface Water		EPA 537.1	
WA-WSD1-2023	23C2156-19	Sediment		SM 2540G	
				SOP-466 PFAS	
WA-SD4-2023	23C2156-20	Sediment		SM 2540G	
				SOP-466 PFAS	
WA-SD5-2023	23C2156-21	Sediment		SM 2540G	
				SOP-466 PFAS	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISON: 4/6/23 results for 537.1 added to report.

EPA 537.1

Qualifications:

MS-22

Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is within method specified criteria. Analyte & Samples(s) Qualified:

Hexafluoropropylene oxide dimer acid (HFPO-DA) B334725-MSD1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Meghan S. Kelley

Meghan E. Kelley Reporting Specialist

2022-008 ENVIRONMENTAL

Sample Description:

Work Order: 23C2156

Project Location: Raymond, NH Date Received: 3/20/2023 Field Sample #: EB-AUGER

Sample Matrix: Equipment Blank Water

Sample ID: 23C2156-01

Sampled: 3/16/2023 11:20

Sample Matrix: Equipment Blank Water Semivolatile Organic Compounds by - LC/MS-MS													
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst			
Perfluorobutanoic acid (PFBA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluorobutanesulfonic acid (PFBS)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluoropentanoic acid (PFPeA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluorohexanoic acid (PFHxA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
11Cl-PF3OUdS (F53B Major)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
9Cl-PF3ONS (F53B Minor)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluorodecanoic acid (PFDA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluorododecanoic acid (PFDoA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
N-EtFOSAA (NEtFOSAA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
N-MeFOSAA (NMeFOSAA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluorotetradecanoic acid (PFTA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluorotridecanoic acid (PFTrDA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluorodecanesulfonic acid (PFDS)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluorooctanesulfonamide (FOSA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluorononanesulfonic acid (PFNS)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluoro-1-butanesulfonamide (FBSA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluoropetanesulfonic acid (PFPeS)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluoroundecanoic acid (PFUnA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluoroheptanoic acid (PFHpA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluorooctanoic acid (PFOA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluorooctanesulfonic acid (PFOS)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			
Perfluorononanoic acid (PFNA)	ND	2.0		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:36	RRB			

Sample Description:

Sampled: 3/16/2023 11:25

Work Order: 23C2156

Date/Time

Date

Field Sample #: EB-SPADE Sample ID: 23C2156-02

Date Received: 3/20/2023

Project Location: Raymond, NH

Sample Matrix: Equipment Bla

-						
ent Blank Water						
		5	Semivolatile	Organic Co	mpounds by - 1	LC/MS-MS
yte	Results	RL	DL	Units	Dilution	Flag/Qua

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluorobutanesulfonic acid (PFBS)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluoropentanoic acid (PFPeA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluorohexanoic acid (PFHxA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
11Cl-PF3OUdS (F53B Major)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
9Cl-PF3ONS (F53B Minor)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluorodecanoic acid (PFDA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluorododecanoic acid (PFDoA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
N-EtFOSAA (NEtFOSAA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
N-MeFOSAA (NMeFOSAA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluorotetradecanoic acid (PFTA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluorotridecanoic acid (PFTrDA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluorodecanesulfonic acid (PFDS)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluorooctanesulfonamide (FOSA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluorononanesulfonic acid (PFNS)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluoropetanesulfonic acid (PFPeS)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluoroundecanoic acid (PFUnA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluoroheptanoic acid (PFHpA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluorooctanoic acid (PFOA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluorooctanesulfonic acid (PFOS)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB
Perfluorononanoic acid (PFNA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:43	RRB

Sample Description:

Work Order: 23C2156

Project Location: Raymond, NH Date Received: 3/20/2023 Field Sample #: EB-SW

w

Sample ID: 23C2156-03

Sample Matrix: Equipment Blank Water

Sampled:	3/16/2023	11:30
----------	-----------	-------

		5	Semivola	tile Organic Com	oounds by - l	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	0.70	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
Perfluorohexanoic acid (PFHxA)	ND	1.8	0.83	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	0.80	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
Perfluoroheptanoic acid (PFHpA)	ND	1.8	0.88	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
Perfluorooctanoic acid (PFOA)	ND	1.8	0.92	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
Perfluorooctanesulfonic acid (PFOS)	ND	1.8	0.67	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
Perfluorononanoic acid (PFNA)	ND	1.8	0.82	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
Perfluorodecanoic acid (PFDA)	ND	1.8	0.85	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
N-EtFOSAA (NEtFOSAA)	ND	1.8	0.59	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
Perfluoroundecanoic acid (PFUnA)	ND	1.8	0.67	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
N-MeFOSAA (NMeFOSAA)	ND	1.8	0.66	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.64	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	0.65	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
Perfluorotetradecanoic acid (PFTA)	ND	1.8	0.74	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	1.1	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
11Cl-PF3OUdS (F53B Major)	ND	1.8	0.59	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
9Cl-PF3ONS (F53B Minor)	ND	1.8	0.72	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.78	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:09	JR2
Surrogates		% Reco	overy	Recovery Limits	6	Flag/Qual				
13C-PFHxA		100		70-130					3/22/23 10:09	
M3HFPO-DA		96.8		70-130					3/22/23 10:09	
13C-PFDA		100		70-130					3/22/23 10:09	
D5-NEtFOSAA		94.1		70-130					3/22/23 10:09	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Sample Description:

Work Order: 23C2156

Project Location: Raymond, NH Date Received: 3/20/2023 Field Sample #: L3-SW4-2023 Sample ID: 23C2156-04

Sample Matrix: Surface Water

Sampled: 3/16/2023 11:45

		5	Semivola	tile Organic Comp	ounds by - I	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Perfluorobutanesulfonic acid (PFBS)	ND	1.7	0.68	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
Perfluorohexanoic acid (PFHxA)	ND	1.7	0.81	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
Perfluorohexanesulfonic acid (PFHxS)	ND	1.7	0.77	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
Perfluoroheptanoic acid (PFHpA)	ND	1.7	0.86	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
Perfluorooctanoic acid (PFOA)	1.7	1.7	0.90	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
Perfluorooctanesulfonic acid (PFOS)	6.7	1.7	0.66	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
Perfluorononanoic acid (PFNA)	ND	1.7	0.80	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
Perfluorodecanoic acid (PFDA)	ND	1.7	0.83	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
N-EtFOSAA (NEtFOSAA)	0.81	1.7	0.57	ng/L	1	J	EPA 537.1	3/21/23	3/22/23 10:16	JR2
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.66	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
N-MeFOSAA (NMeFOSAA)	ND	1.7	0.64	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.62	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
Perfluorotridecanoic acid (PFTrDA)	ND	1.7	0.63	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
Perfluorotetradecanoic acid (PFTA)	ND	1.7	0.72	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	1.1	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
11Cl-PF3OUdS (F53B Major)	ND	1.7	0.57	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
9Cl-PF3ONS (F53B Minor)	ND	1.7	0.71	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.7	0.76	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:16	JR2
Surrogates		% Reco	overy	Recovery Limits		Flag/Qual				
13C-PFHxA		78.1		70-130					3/22/23 10:16	
M3HFPO-DA		72.5		70-130					3/22/23 10:16	
13C-PFDA		84.9		70-130					3/22/23 10:16	
D5-NEtFOSAA		76.6		70-130					3/22/23 10:16	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Sample Description:

Work Order: 23C2156

Project Location: Raymond, NH Date Received: 3/20/2023 Field Sample #: L3-SW3-2023 Sample ID: 23C2156-05 Sample Matrix: Surface Water

Sampled: 3/16/2023 12:00

Sample Matrix. Surface water		5	Semivola	tile Organic Comp	ounds by -]	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	0.71	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
Perfluorohexanoic acid (PFHxA)	ND	1.8	0.84	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	0.81	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
Perfluoroheptanoic acid (PFHpA)	ND	1.8	0.89	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
Perfluorooctanoic acid (PFOA)	1.6	1.8	0.93	ng/L	1	J	EPA 537.1	3/21/23	3/22/23 10:24	JR2
Perfluorooctanesulfonic acid (PFOS)	7.0	1.8	0.68	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
Perfluorononanoic acid (PFNA)	ND	1.8	0.83	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
Perfluorodecanoic acid (PFDA)	ND	1.8	0.86	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
N-EtFOSAA (NEtFOSAA)	0.79	1.8	0.60	ng/L	1	J	EPA 537.1	3/21/23	3/22/23 10:24	JR2
Perfluoroundecanoic acid (PFUnA)	ND	1.8	0.68	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
N-MeFOSAA (NMeFOSAA)	ND	1.8	0.67	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.65	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	0.66	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
Perfluorotetradecanoic acid (PFTA)	ND	1.8	0.75	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	1.1	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
11Cl-PF3OUdS (F53B Major)	ND	1.8	0.60	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
9Cl-PF3ONS (F53B Minor)	ND	1.8	0.73	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.79	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:24	JR2
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
13C-PFHxA		82.5		70-130					3/22/23 10:24	
M3HFPO-DA		80.9		70-130					3/22/23 10:24	
13C-PFDA		92.4		70-130					3/22/23 10:24	
D5-NEtFOSAA		81.9		70-130					3/22/23 10:24	

Sample Description:

Work Order: 23C2156

Date Received: 3/20/2023 Field Sample #: L3-SD11-2023

Project Location: Raymond, NH

Sample ID: 23C2156-06 Sample Matrix: Sediment Sampled: 3/16/2023 12:30

		s	emivolatil	e Organic Con	1pounds by - l	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluorobutanesulfonic acid (PFBS)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluoropentanoic acid (PFPeA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluorohexanoic acid (PFHxA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
11Cl-PF3OUdS (F53B Major)	ND	1.2		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
9Cl-PF3ONS (F53B Minor)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.2		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluorodecanoic acid (PFDA)	ND	1.2		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluorododecanoic acid (PFDoA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
N-EtFOSAA (NEtFOSAA)	2.0	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
N-MeFOSAA (NMeFOSAA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluorotetradecanoic acid (PFTA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluorotridecanoic acid (PFTrDA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluorodecanesulfonic acid (PFDS)	ND	1.2		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluorooctanesulfonamide (FOSA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluorononanesulfonic acid (PFNS)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluorohexanesulfonic acid (PFHxS)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.2		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluoropetanesulfonic acid (PFPeS)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluoroundecanoic acid (PFUnA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluoroheptanoic acid (PFHpA)	ND	1.2		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluorooctanoic acid (PFOA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluorooctanesulfonic acid (PFOS)	5.7	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW
Perfluorononanoic acid (PFNA)	ND	1.2		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:34	QNW

35.3

% Solids

	39 Spruce Street * East Lo	ngmeadow, MA ()1028 * FAX 4	13/525-6405 * TEL	. 413/525-2332			
Project Location: Raymond, NH	Sample Description	Work Orde	r: 23C2156					
Date Received: 3/20/2023								
Field Sample #: L3-SD11-2023	Sampled: 3/16/20	23 12:30						
Sample ID: 23C2156-06								
Sample Matrix: Sediment								
	Conventional Chem	istry Parameters b	y EPA/APHA/	SW-846 Methods (T	'otal)			
						Date	Date/Time	
Analyte	Results RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst

1

SM 2540G

3/21/23 3/21/23 9:57

RWS

% Wt

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Sample Description:

Work Order: 23C2156

Project Location: Raymond, NH Date Received: 3/20/2023 Field Sample #: L3-SD10-2023 Sample ID: 23C2156-07

Sample Matrix: Sediment

Sampled: 3/16/2023 12:47

Sample Matrix: Sediment		s	emivolatil	e Organic Con	pounds by - l	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluorobutanesulfonic acid (PFBS)	ND	0.58		µg∕kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluoropentanoic acid (PFPeA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluorohexanoic acid (PFHxA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
11Cl-PF3OUdS (F53B Major)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
9Cl-PF3ONS (F53B Minor)	ND	0.58		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	0.58		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluorodecanoic acid (PFDA)	ND	0.58		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluorododecanoic acid (PFDoA)	ND	0.58		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
N-EtFOSAA (NEtFOSAA)	0.64	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
N-MeFOSAA (NMeFOSAA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluorotetradecanoic acid (PFTA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluorotridecanoic acid (PFTrDA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluorodecanesulfonic acid (PFDS)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluorooctanesulfonamide (FOSA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluorononanesulfonic acid (PFNS)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluoro-1-butanesulfonamide (FBSA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluorohexanesulfonic acid (PFHxS)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	0.58		µg∕kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluoropetanesulfonic acid (PFPeS)	ND	0.58		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluoroundecanoic acid (PFUnA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluoroheptanoic acid (PFHpA)	ND	0.58		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluorooctanoic acid (PFOA)	ND	0.58		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluorooctanesulfonic acid (PFOS)	3.5	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW
Perfluorononanoic acid (PFNA)	ND	0.58		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:41	QNW

71.4

% Solids

	39 Spruce St	treet * East L	ongmeadow, MA ()1028 * FAX 4	13/525-6405 * TEI	L. 413/525-2332			
Project Location: Raymond, NH	Sar	mple Descripti	Work Order:	23C2156					
Date Received: 3/20/2023									
Field Sample #: L3-SD10-2023	Sar	mpled: 3/16/2	023 12:47						
Sample ID: 23C2156-07									
Sample Matrix: Sediment									
	Conve	entional Chen	nistry Parameters b	y EPA/APHA/	SW-846 Methods (1	Fotal)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst

1

SM 2540G

3/21/23

3/21/23 9:57

RWS

% Wt

Sample Description:

Work Order: 23C2156

Date Received: 3/20/2023 Field Sample #: L3-WSW2-2023 (MSMSD)

Sample ID: 23C2156-08

Project Location: Raymond, NH

Sampled: 3/16/2023 13:15

Sample Matrix: Surface Water										
		5	Semivola	tile Organic Com	pounds by - l	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	0.74	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
Perfluorohexanoic acid (PFHxA)	ND	1.9	0.88	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	0.84	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
Perfluoroheptanoic acid (PFHpA)	ND	1.9	0.93	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
Perfluorooctanoic acid (PFOA)	ND	1.9	0.97	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
Perfluorooctanesulfonic acid (PFOS)	4.4	1.9	0.71	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
Perfluorononanoic acid (PFNA)	ND	1.9	0.86	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
Perfluorodecanoic acid (PFDA)	ND	1.9	0.90	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
N-EtFOSAA (NEtFOSAA)	ND	1.9	0.62	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
Perfluoroundecanoic acid (PFUnA)	ND	1.9	0.71	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
N-MeFOSAA (NMeFOSAA)	ND	1.9	0.70	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
Perfluorododecanoic acid (PFDoA)	ND	1.9	0.67	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
Perfluorotridecanoic acid (PFTrDA)	ND	1.9	0.68	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
Perfluorotetradecanoic acid (PFTA)	ND	1.9	0.78	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9	1.2	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
11Cl-PF3OUdS (F53B Major)	ND	1.9	0.62	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
9Cl-PF3ONS (F53B Minor)	ND	1.9	0.76	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	0.83	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:31	JR2
Surrogates		% Reco	very	Recovery Limits	8	Flag/Qual				
13C-PFHxA		92.1		70-130					3/22/23 10:31	
M3HFPO-DA		87.3		70-130					3/22/23 10:31	
13C-PFDA		97.7		70-130					3/22/23 10:31	
D5-NEtFOSAA		89.9		70-130					3/22/23 10:31	

Sample Description:

Date Received: 3/20/2023 Field Sample #: L3-WSW2-2023 FRB

Project Location: Raymond, NH

Sampled: 3/16/2023 13:15

Work Order: 23C2156

Sample ID: 23C2156-09

Sample Matrix: Field Blank

		8	Semivola	tile Organic Comp	oounds by - l	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	0.77	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
Perfluorohexanoic acid (PFHxA)	ND	1.9	0.91	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	0.87	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
Perfluoroheptanoic acid (PFHpA)	ND	1.9	0.97	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
Perfluorooctanoic acid (PFOA)	ND	1.9	1.0	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
Perfluorooctanesulfonic acid (PFOS)	ND	1.9	0.74	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
Perfluorononanoic acid (PFNA)	ND	1.9	0.90	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
Perfluorodecanoic acid (PFDA)	ND	1.9	0.93	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
N-EtFOSAA (NEtFOSAA)	ND	1.9	0.65	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
Perfluoroundecanoic acid (PFUnA)	ND	1.9	0.74	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
N-MeFOSAA (NMeFOSAA)	ND	1.9	0.72	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
Perfluorododecanoic acid (PFDoA)	ND	1.9	0.70	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
Perfluorotridecanoic acid (PFTrDA)	ND	1.9	0.71	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
Perfluorotetradecanoic acid (PFTA)	ND	1.9	0.81	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9	1.2	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
11Cl-PF3OUdS (F53B Major)	ND	1.9	0.65	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
9Cl-PF3ONS (F53B Minor)	ND	1.9	0.79	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	0.86	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:38	JR2
Surrogates		% Reco	very	Recovery Limits	1	Flag/Qual				
13C-PFHxA		91.4		70-130					3/22/23 10:38	
M3HFPO-DA		89.0		70-130					3/22/23 10:38	
13C-PFDA		97.8		70-130					3/22/23 10:38	
D5-NEtFOSAA		91.6		70-130					3/22/23 10:38	

Sample Description:

Work Order: 23C2156

Date Received: 3/20/2023 Field Sample #: L3-WSD2-2023

Sample ID: 23C2156-10 Sample Matrix: Sediment

Project Location: Raymond, NH

Sampled: 3/16/2023 13:30

		s	emivolatil	e Organic Com	pounds by - l	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluorobutanesulfonic acid (PFBS)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluoropentanoic acid (PFPeA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluorohexanoic acid (PFHxA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
11Cl-PF3OUdS (F53B Major)	ND	4.1		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
9Cl-PF3ONS (F53B Minor)	ND	4.1		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluorodecanoic acid (PFDA)	ND	4.1		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluorododecanoic acid (PFDoA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluoroheptanesulfonic acid (PFHpS)	ND	4.1		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
N-EtFOSAA (NEtFOSAA)	9.9	4.1		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
N-MeFOSAA (NMeFOSAA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluorotetradecanoic acid (PFTA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluorotridecanoic acid (PFTrDA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluorodecanesulfonic acid (PFDS)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluorooctanesulfonamide (FOSA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluorononanesulfonic acid (PFNS)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluoro-1-butanesulfonamide (FBSA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluorohexanesulfonic acid (PFHxS)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluoropetanesulfonic acid (PFPeS)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluoroundecanoic acid (PFUnA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluoroheptanoic acid (PFHpA)	ND	4.1		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluorooctanoic acid (PFOA)	ND	4.1		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluorooctanesulfonic acid (PFOS)	ND	4.1		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW
Perfluorononanoic acid (PFNA)	ND	4.1		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 22:48	QNW

10.2

% Solids

	39 Spruce Street * East Lor	ngmeadow, MA 0	1028 * FAX 4	13/525-6405 * TEL	. 413/525-2332			
Project Location: Raymond, NH	Sample Description	::				Work Order	: 23C2156	
Date Received: 3/20/2023								
Field Sample #: L3-WSD2-2023	Sampled: 3/16/202	3 13:30						
Sample ID: 23C2156-10								
Sample Matrix: Sediment								
	Conventional Chemis	stry Parameters b	y EPA/APHA/	SW-846 Methods (T	`otal)			
						Date	Date/Time	
Analyte	Results RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst

1

SM 2540G

3/21/23 3/21/23 9:57

RWS

% Wt

Sample Description:

Work Order: 23C2156

Date Received: 3/20/2023 Field Sample #: L3-SD8-2023 (MS/MSD)

Project Location: Raymond, NH

Sample ID: 23C2156-11 Sample Matrix: Sediment Sampled: 3/16/2023 14:20

Sample Matrix: Sediment		s	emivolatil	le Organic Con	pounds by - l	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	0.99		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluorobutanesulfonic acid (PFBS)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluoropentanoic acid (PFPeA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluorohexanoic acid (PFHxA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
11Cl-PF3OUdS (F53B Major)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
9Cl-PF3ONS (F53B Minor)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluorodecanoic acid (PFDA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluorododecanoic acid (PFDoA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
N-EtFOSAA (NEtFOSAA)	1.2	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
N-MeFOSAA (NMeFOSAA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluorotetradecanoic acid (PFTA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluorotridecanoic acid (PFTrDA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluorodecanesulfonic acid (PFDS)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluorooctanesulfonamide (FOSA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluorononanesulfonic acid (PFNS)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluoro-1-butanesulfonamide (FBSA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluorohexanesulfonic acid (PFHxS)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluoropetanesulfonic acid (PFPeS)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluoroundecanoic acid (PFUnA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluoroheptanoic acid (PFHpA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluorooctanoic acid (PFOA)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluorooctanesulfonic acid (PFOS)	ND	0.99		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW
Perfluorononanoic acid (PFNA)	ND	0.99		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:03	QNW

43.4

% Solids

	39 Spruce Stre	eet * East Longme	adow, MA 0	1028 * FAX 4	13/525-6405 * TEI	L. 413/525-2332			
Project Location: Raymond, NH	Sam	ple Description:					Work Order:	23C2156	
Date Received: 3/20/2023									
Field Sample #: L3-SD8-2023 (MS/MSD)	Sam	pled: 3/16/2023 14:	20						
Sample ID: 23C2156-11									
Sample Matrix: Sediment									
	Conver	ntional Chemistry P	arameters b	y EPA/APHA/S	SW-846 Methods (Fotal)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst

1

SM 2540G

3/21/23

3/21/23 9:57

RWS

% Wt

Work Order: 23C2156

Project Location: Raymond, NH Date Received: 3/20/2023 Field Sample #: L3-SD8-2023 FB Sample ID: 23C2156-12 Sample Matrix: Field Blank

Sampled: 3/16/2023 14:20

Sample Description:

Sample Matrix: Field Blank Semivolatile Organic Compounds by - LC/MS-MS										
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluorobutanesulfonic acid (PFBS)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluoropentanoic acid (PFPeA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluorohexanoic acid (PFHxA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
11Cl-PF3OUdS (F53B Major)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
9Cl-PF3ONS (F53B Minor)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluorodecanoic acid (PFDA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluorododecanoic acid (PFDoA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA) Parfluorabartanegulfonic acid (PEURS)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
N-EtFOSAA (NEtFOSAA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
N-MeFOSAA (NMeFOSAA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluorotetradecanoic acid (PFTA) Perfluorotridecanoic acid (PFTrDA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluorodecanesulfonic acid (PFDS)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluorooctanesulfonamide (FOSA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluorononanesulfonic acid (PFNS)	ND ND	1.9 1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.9		ng/L	1		SOP-454 PFAS SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23 3/21/23	3/22/23 11:50 3/22/23 11:50	RRB RRB
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9		ng/L ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluoropetanesulfonic acid (PFPeS)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluoroundecanoic acid (PFUnA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluoroheptanoic acid (PFHpA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluorooctanoic acid (PFOA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluorooctanesulfonic acid (PFOS)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB
Perfluorononanoic acid (PFNA)	ND	1.9		ng/L	1		SOP-454 PFAS	3/21/23	3/22/23 11:50	RRB

Sample Description:

Date Received: 3/20/2023 Field Sample #: L3-SD9-2023

Project Location: Raymond, NH

Sample ID: 23C2156-13 Sample Matrix: Sediment Sampled: 3/16/2023 14:50

		S	emivolatil	e Organic Com	pounds by - l	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	0.53		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluorobutanesulfonic acid (PFBS)	ND	0.53		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluoropentanoic acid (PFPeA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluorohexanoic acid (PFHxA)	ND	0.53		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
11Cl-PF3OUdS (F53B Major)	ND	0.53		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
9Cl-PF3ONS (F53B Minor)	ND	0.53		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluorodecanoic acid (PFDA)	ND	0.53		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluorododecanoic acid (PFDoA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
N-EtFOSAA (NEtFOSAA)	ND	0.53		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
N-McFOSAA (NMcFOSAA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluorotetradecanoic acid (PFTA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluorotridecanoic acid (PFTrDA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluorodecanesulfonic acid (PFDS)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluorooctanesulfonamide (FOSA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluorononanesulfonic acid (PFNS)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	0.53		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluoro-1-butanesulfonamide (FBSA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluorohexanesulfonic acid (PFHxS)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluoropetanesulfonic acid (PFPeS)	ND	0.53		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluoroundecanoic acid (PFUnA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluoroheptanoic acid (PFHpA)	ND	0.53		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluorooctanoic acid (PFOA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluorooctanesulfonic acid (PFOS)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW
Perfluorononanoic acid (PFNA)	ND	0.53		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:10	QNW

Work Order: 23C2156

77.6

% Solids

	39 Spruce Street * E	ast Longmeadow, MA 0	01028 * FAX 4	13/525-6405 * TEL	. 413/525-2332			
Project Location: Raymond, NH	Sample Des	cription:				Work Orde	r: 23C2156	
Date Received: 3/20/2023								
Field Sample #: L3-SD9-2023	Sampled: 3	/16/2023 14:50						
Sample ID: 23C2156-13								
Sample Matrix: Sediment								
	Conventional	Chemistry Parameters b	y EPA/APHA/	/SW-846 Methods (T	`otal)			
						Date	Date/Time	
Analyte	Results RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst

1

SM 2540G

3/21/23

3/21/23 9:57

RWS

% Wt

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Sample Description:

Work Order: 23C2156

Project Location: Raymond, NH Date Received: 3/20/2023 Field Sample #: L3-SW5-2023 Sample ID: 23C2156-14

Sample Matrix: Surface Water

Sampled: 3/16/2023 15:25

Semivolatile Organic Compounds by - LC/MS-MS										
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	0.79	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
Perfluorohexanoic acid (PFHxA)	ND	2.0	0.94	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
Perfluorohexanesulfonic acid (PFHxS)	2.4	2.0	0.90	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
Perfluoroheptanoic acid (PFHpA)	1.0	2.0	1.0	ng/L	1	J	EPA 537.1	3/23/23	3/24/23 16:40	JR2
Perfluorooctanoic acid (PFOA)	6.3	2.0	1.0	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
Perfluorooctanesulfonic acid (PFOS)	18	2.0	0.76	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
Perfluorononanoic acid (PFNA)	ND	2.0	0.93	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
Perfluorodecanoic acid (PFDA)	ND	2.0	0.97	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
N-EtFOSAA (NEtFOSAA)	ND	2.0	0.67	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.77	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
N-MeFOSAA (NMeFOSAA)	ND	2.0	0.75	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.72	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.74	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.84	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	2.0	1.2	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
11Cl-PF3OUdS (F53B Major)	ND	2.0	0.67	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
9Cl-PF3ONS (F53B Minor)	ND	2.0	0.82	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	2.0	0.89	ng/L	1		EPA 537.1	3/23/23	3/24/23 16:40	JR2
Surrogates		% Reco	overy	Recovery Limit	s	Flag/Qual				
13C-PFHxA		76.4		70-130					3/24/23 16:40	
M3HFPO-DA		72.6		70-130					3/24/23 16:40	
13C-PFDA		97.4		70-130					3/24/23 16:40	
D5-NEtFOSAA		96.8		70-130					3/24/23 16:40	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Sample Description:

Work Order: 23C2156

Project Location: Raymond, NH Date Received: 3/20/2023 Field Sample #: WA-SFW3A-2023 Sample ID: 23C2156-15 Sample Matrix: Surface Water

Sampled: 3/16/2023 16:45

Sample Matrix. Surface water		s	emivola	tile Organic Comp	oounds by - l	.C/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	0.74	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
Perfluorohexanoic acid (PFHxA)	ND	1.9	0.88	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	0.84	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
Perfluoroheptanoic acid (PFHpA)	ND	1.9	0.93	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
Perfluorooctanoic acid (PFOA)	ND	1.9	0.97	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
Perfluorooctanesulfonic acid (PFOS)	ND	1.9	0.71	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
Perfluorononanoic acid (PFNA)	ND	1.9	0.86	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
Perfluorodecanoic acid (PFDA)	ND	1.9	0.90	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
N-EtFOSAA (NEtFOSAA)	ND	1.9	0.62	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
Perfluoroundecanoic acid (PFUnA)	ND	1.9	0.71	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
N-MeFOSAA (NMeFOSAA)	ND	1.9	0.70	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
Perfluorododecanoic acid (PFDoA)	ND	1.9	0.67	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
Perfluorotridecanoic acid (PFTrDA)	ND	1.9	0.68	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
Perfluorotetradecanoic acid (PFTA)	ND	1.9	0.78	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9	1.2	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
11CI-PF3OUdS (F53B Major)	ND	1.9	0.62	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
9Cl-PF3ONS (F53B Minor)	ND	1.9	0.76	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	0.82	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:06	JR2
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
13C-PFHxA		90.8		70-130					3/22/23 12:06	
M3HFPO-DA		83.2		70-130					3/22/23 12:06	
13C-PFDA		97.4		70-130					3/22/23 12:06	
D5-NEtFOSAA		88.9		70-130					3/22/23 12:06	

Sample Description:

Date Received: 3/20/2023 Field Sample #: WA-SD3-2023

Project Location: Raymond, NH

Sample ID: 23C2156-16 Sample Matrix: Sediment Sampled: 3/16/2023 17:20

		S	emivolatil	e Organic Com	pounds by - l	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluorobutanesulfonic acid (PFBS)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluoropentanoic acid (PFPeA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluorohexanoic acid (PFHxA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
11Cl-PF3OUdS (F53B Major)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
9Cl-PF3ONS (F53B Minor)	ND	0.89		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluorodecanoic acid (PFDA)	ND	0.89		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluorododecanoic acid (PFDoA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
N-EtFOSAA (NEtFOSAA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
N-MeFOSAA (NMeFOSAA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluorotetradecanoic acid (PFTA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluorotridecanoic acid (PFTrDA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluorodecanesulfonic acid (PFDS)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluorooctanesulfonamide (FOSA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluorononanesulfonic acid (PFNS)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluoro-1-butanesulfonamide (FBSA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluorohexanesulfonic acid (PFHxS)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluoropetanesulfonic acid (PFPeS)	ND	0.89		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluoroundecanoic acid (PFUnA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluoroheptanoic acid (PFHpA)	ND	0.89		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluorooctanoic acid (PFOA)	ND	0.89		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluorooctanesulfonic acid (PFOS)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW
Perfluorononanoic acid (PFNA)	ND	0.89		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:18	QNW

Work Order: 23C2156

47.4

% Solids

	39 Spruce Street * East Lo	ngmeadow, MA (01028 * FAX 4	13/525-6405 * TEL	. 413/525-2332			
Project Location: Raymond, NH	Sample Description	1:				Work Order	: 23C2156	
Date Received: 3/20/2023								
Field Sample #: WA-SD3-2023	Sampled: 3/16/202	23 17:20						
Sample ID: 23C2156-16								
Sample Matrix: Sediment								
	Conventional Chemi	stry Parameters b	y EPA/APHA/	SW-846 Methods (1	lotal)			
						Date	Date/Time	
Analyte	Results RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst

1

SM 2540G

3/21/23 3/21/23 9:57

RWS

% Wt

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Sample Description:

Work Order: 23C2156

Project Location: Raymond, NH Date Received: 3/20/2023 Field Sample #: WA-SW2-2023 Sample ID: 23C2156-17

Sample Matrix: Surface Water

Sampled: 3/16/2023 17:40

		S	Semivola	tile Organic Comp	ounds by - I	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	0.71	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
Perfluorohexanoic acid (PFHxA)	ND	1.8	0.85	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	0.81	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
Perfluoroheptanoic acid (PFHpA)	ND	1.8	0.90	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
Perfluorooctanoic acid (PFOA)	ND	1.8	0.94	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
Perfluorooctanesulfonic acid (PFOS)	ND	1.8	0.68	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
Perfluorononanoic acid (PFNA)	ND	1.8	0.83	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
Perfluorodecanoic acid (PFDA)	ND	1.8	0.87	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
N-EtFOSAA (NEtFOSAA)	ND	1.8	0.60	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
Perfluoroundecanoic acid (PFUnA)	ND	1.8	0.69	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
N-MeFOSAA (NMeFOSAA)	ND	1.8	0.67	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.65	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	0.66	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
Perfluorotetradecanoic acid (PFTA)	ND	1.8	0.76	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	1.1	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
11Cl-PF3OUdS (F53B Major)	ND	1.8	0.60	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
9Cl-PF3ONS (F53B Minor)	ND	1.8	0.74	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.80	ng/L	1		EPA 537.1	3/21/23	3/22/23 10:59	JR2
Surrogates		% Reco	overy	Recovery Limits		Flag/Qual				
13C-PFHxA		89.2		70-130					3/22/23 10:59	
M3HFPO-DA		84.0		70-130					3/22/23 10:59	
13C-PFDA		111		70-130					3/22/23 10:59	
D5-NEtFOSAA		106		70-130					3/22/23 10:59	

Sample Description:

Project Location: Raymond, NH Date Received: 3/20/2023

Field Sample #: WA-WSW1-2023

Sample ID: 23C2156-18 Sample Matrix: Surface Water Sampled: 3/16/2023 18:10

		8	Semivola	tile Organic Comp	oounds by - l	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	0.75	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
Perfluorohexanoic acid (PFHxA)	ND	1.9	0.89	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	0.86	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
Perfluoroheptanoic acid (PFHpA)	ND	1.9	0.95	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
Perfluorooctanoic acid (PFOA)	ND	1.9	0.99	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
Perfluorooctanesulfonic acid (PFOS)	ND	1.9	0.72	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
Perfluorononanoic acid (PFNA)	ND	1.9	0.88	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
Perfluorodecanoic acid (PFDA)	ND	1.9	0.92	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
N-EtFOSAA (NEtFOSAA)	ND	1.9	0.63	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
Perfluoroundecanoic acid (PFUnA)	ND	1.9	0.73	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
N-MeFOSAA (NMeFOSAA)	ND	1.9	0.71	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
Perfluorododecanoic acid (PFDoA)	ND	1.9	0.69	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
Perfluorotridecanoic acid (PFTrDA)	ND	1.9	0.70	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
Perfluorotetradecanoic acid (PFTA)	ND	1.9	0.80	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9	1.2	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
11Cl-PF3OUdS (F53B Major)	ND	1.9	0.63	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
9Cl-PF3ONS (F53B Minor)	ND	1.9	0.78	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	0.84	ng/L	1		EPA 537.1	3/21/23	3/22/23 12:13	JR2
Surrogates		% Reco	very	Recovery Limits	1	Flag/Qual				
13C-PFHxA		97.2		70-130					3/22/23 12:13	
M3HFPO-DA		89.8		70-130					3/22/23 12:13	
13C-PFDA		99.1		70-130					3/22/23 12:13	
D5-NEtFOSAA		95.6		70-130					3/22/23 12:13	

Work Order: 23C2156

Sample Description:

Date Received: 3/20/2023 Field Sample #: WA-WSD1-2023

Project Location: Raymond, NH

Sampled: 3/16/2023 18:45

Work Order: 23C2156

Sample ID: 23C2156-19 Sample Matrix: Sediment

		S	emivolatil	e Organic Com	pounds by - I	LC/MS-MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluorobutanesulfonic acid (PFBS)	ND	0.68		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluoropentanoic acid (PFPeA)	ND	0.68		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluorohexanoic acid (PFHxA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
11Cl-PF3OUdS (F53B Major)	ND	0.68		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
9Cl-PF3ONS (F53B Minor)	ND	0.68		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	0.68		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluorodecanoic acid (PFDA)	ND	0.68		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluorododecanoic acid (PFDoA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
N-EtFOSAA (NEtFOSAA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
N-MeFOSAA (NMeFOSAA)	ND	0.68		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluorotetradecanoic acid (PFTA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluorotridecanoic acid (PFTrDA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluorodecanesulfonic acid (PFDS)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluorooctanesulfonamide (FOSA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluorononanesulfonic acid (PFNS)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluoro-1-butanesulfonamide (FBSA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluorohexanesulfonic acid (PFHxS)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluoropetanesulfonic acid (PFPeS)	ND	0.68		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluoroundecanoic acid (PFUnA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluoroheptanoic acid (PFHpA)	ND	0.68		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluorooctanoic acid (PFOA)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluorooctanesulfonic acid (PFOS)	ND	0.68		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW
Perfluorononanoic acid (PFNA)	ND	0.68		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:25	QNW

61.9

% Solids

	39 Spruce S	treet * East L	ongmeadow, MA (1028 * FAX 4	13/525-6405 * TEL	413/525-2332			
Project Location: Raymond, NH	Sa	mple Descripti	on:				Work Orde	r: 23C2156	
Date Received: 3/20/2023									
Field Sample #: WA-WSD1-2023	Sa	mpled: 3/16/2	023 18:45						
Sample ID: 23C2156-19									
Sample Matrix: Sediment									
	Conv	entional Chen	nistry Parameters b	y EPA/APHA/	SW-846 Methods (7	fotal)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst

1

SM 2540G

3/21/23

3/21/23 9:57

RWS

% Wt

Sample Description:

Field Sample #: WA-SD4-2023

Project Location: Raymond, NH

Date Received: 3/20/2023

Sample ID: 23C2156-20 Sample Matrix: Sediment

Sampled: 3/16/2023 19:05

		S	emivolatil	le Organic Con	pounds by - l	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluorobutanesulfonic acid (PFBS)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluoropentanoic acid (PFPeA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluorohexanoic acid (PFHxA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
11Cl-PF3OUdS (F53B Major)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
9Cl-PF3ONS (F53B Minor)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluorodecanoic acid (PFDA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluorododecanoic acid (PFDoA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.59		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
N-EtFOSAA (NEtFOSAA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
N-MeFOSAA (NMeFOSAA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluorotetradecanoic acid (PFTA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluorotridecanoic acid (PFTrDA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluorodecanesulfonic acid (PFDS)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluorooctanesulfonamide (FOSA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluorononanesulfonic acid (PFNS)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluoro-1-butanesulfonamide (FBSA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluorohexanesulfonic acid (PFHxS)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluoropetanesulfonic acid (PFPeS)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluoroundecanoic acid (PFUnA)	ND	0.59		µg∕kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluoroheptanoic acid (PFHpA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluorooctanoic acid (PFOA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluorooctanesulfonic acid (PFOS)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW
Perfluorononanoic acid (PFNA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:32	QNW

Work Order: 23C2156

71.4

% Solids

	39 Spruce S	street * East L	ongmeadow, MA 0	1028 * FAX 4	13/525-6405 * TE	L. 413/525-2332			
Project Location: Raymond, NH	Sa	mple Descript	ion:				Work Order:	23C2156	
Date Received: 3/20/2023									
Field Sample #: WA-SD4-2023	Sa	mpled: 3/16/2	023 19:05						
Sample ID: 23C2156-20									
Sample Matrix: Sediment									
	Conv	entional Cher	nistry Parameters b	y EPA/APHA/	SW-846 Methods (Total)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst

1

SM 2540G

3/21/23

3/21/23 9:57

RWS

% Wt

Sample Description:

Date Received: 3/20/2023 Field Sample #: WA-SD5-2023

Project Location: Raymond, NH

Sumple Descriptio

Sampled: 3/16/2023 19:20

Sample ID: 23C2156-21

		S	emivolatil	e Organic Con	1pounds by - I	LC/MS-MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analys
Perfluorobutanoic acid (PFBA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
Perfluorobutanesulfonic acid (PFBS)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
Perfluoropentanoic acid (PFPeA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
Perfluorohexanoic acid (PFHxA)	ND	0.59		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
1Cl-PF3OUdS (F53B Major)	ND	0.59		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
Cl-PF3ONS (F53B Minor)	ND	0.59		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
,8-Dioxa-3H-perfluorononanoic acid ADONA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
Iexafluoropropylene oxide dimer acid HFPO-DA)	ND	0.59		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	0.59		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluorodecanoic acid (PFDA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluorododecanoic acid (PFDoA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
Perfluoro(2-ethoxyethane)sulfonic acid PFEESA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluoroheptanesulfonic acid (PFHpS)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
I-EtFOSAA (NEtFOSAA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
I-MeFOSAA (NMeFOSAA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluorotetradecanoic acid (PFTA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluorotridecanoic acid (PFTrDA)	ND	0.59		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluorodecanesulfonic acid (PFDS)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluorooctanesulfonamide (FOSA)	ND	0.59		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluorononanesulfonic acid (PFNS)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluoro-1-hexanesulfonamide (FHxSA)	ND	0.59		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluoro-1-butanesulfonamide (FBSA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluorohexanesulfonic acid (PFHxS)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluoro-4-oxapentanoic acid (PFMPA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluoro-5-oxahexanoic acid (PFMBA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluoropetanesulfonic acid (PFPeS)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluoroundecanoic acid (PFUnA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
Ionafluoro-3,6-dioxaheptanoic acid NFDHA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluoroheptanoic acid (PFHpA)	ND	0.59		μg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluorooctanoic acid (PFOA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluorooctanesulfonic acid (PFOS)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW
erfluorononanoic acid (PFNA)	ND	0.59		µg/kg dry	1		SOP-466 PFAS	3/21/23	3/27/23 23:39	QNW

72.0

% Solids

	39 Spruce Street * East Lo	ngmeadow, MA (01028 * FAX 4	13/525-6405 * TEL	. 413/525-2332			
Project Location: Raymond, NH	Sample Description	n:				Work Orde	r: 23C2156	
Date Received: 3/20/2023								
Field Sample #: WA-SD5-2023	Sampled: 3/16/202	23 19:20						
Sample ID: 23C2156-21								
Sample Matrix: Sediment								
	Conventional Chemi	stry Parameters b	y EPA/APHA/	SW-846 Methods (T	'otal)			
						Date	Date/Time	
Analyte	Results RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst

1

SM 2540G

3/21/23 3/21/23 9:57

RWS

% Wt

Sample Extraction Data

Prep Method: EPA 537.1 Analytical Method: EPA 537.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
23C2156-03 [EB-SW]	B334725	281	1.00	03/21/23	
23C2156-04 [L3-SW4-2023]	B334725	289	1.00	03/21/23	
23C2156-05 [L3-SW3-2023]	B334725	278	1.00	03/21/23	
23C2156-08 [L3-WSW2-2023 (MSMSD)]	B334725	266	1.00	03/21/23	
23C2156-09 [L3-WSW2-2023 FRB]	B334725	257	1.00	03/21/23	
23C2156-15 [WA-SFW3A-2023]	B334725	267	1.00	03/21/23	
23C2156-17 [WA-SW2-2023]	B334725	276	1.00	03/21/23	
23C2156-18 [WA-WSW1-2023]	B334725	262	1.00	03/21/23	

Prep Method: EPA 537.1 Analytical Method: EPA 537.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
23C2156-14RE1 [L3-SW5-2023]	B335034	248	1.00	03/23/23

Prep Method: % Solids Analytical Method: SM 2540G

Lab Number [Field ID]	Batch	Date
23C2156-06 [L3-SD11-2023]	B334707	03/21/23
23C2156-07 [L3-SD10-2023]	B334707	03/21/23
23C2156-10 [L3-WSD2-2023]	B334707	03/21/23
23C2156-11 [L3-SD8-2023 (MS/MSD)]	B334707	03/21/23
23C2156-13 [L3-SD9-2023]	B334707	03/21/23
23C2156-16 [WA-SD3-2023]	B334707	03/21/23
23C2156-19 [WA-WSD1-2023]	B334707	03/21/23
23C2156-20 [WA-SD4-2023]	B334707	03/21/23
23C2156-21 [WA-SD5-2023]	B334707	03/21/23

Prep Method: SOP 454-PFAAS Analytical Method: SOP-454 PFAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
	B334730	251	1.00	03/21/23
23C2156-02 [EB-SPADE]	B334730	265	1.00	03/21/23
23C2156-12 [L3-SD8-2023 FB]	B334730	266	1.00	03/21/23

Prep Method: SOP 465-PFAAS Analytical Method: SOP-466 PFAS

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
23C2156-06 [L3-SD11-2023]	B334750	5.86	5.00	03/21/23	
23C2156-07 [L3-SD10-2023]	B334750	5.93	5.00	03/21/23	
23C2156-10 [L3-WSD2-2023]	B334750	5.90	5.00	03/21/23	
23C2156-11 [L3-SD8-2023 (MS/MSD)]	B334750	5.77	5.00	03/21/23	
23C2156-13 [L3-SD9-2023]	B334750	5.98	5.00	03/21/23	
23C2156-16 [WA-SD3-2023]	B334750	5.85	5.00	03/21/23	
23C2156-19 [WA-WSD1-2023]	B334750	5.92	5.00	03/21/23	
23C2156-20 [WA-SD4-2023]	B334750	5.90	5.00	03/21/23	
23C2156-21 [WA-SD5-2023]	B334750	5.87	5.00	03/21/23	

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B334725 - EPA 537.1										
Blank (B334725-BLK1)				Prepared: 03	3/21/23 Anal	yzed: 03/22/2	23			
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	1.9	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	1.9	ng/L							
erfluorooctanoic acid (PFOA)	ND	1.9	ng/L							
erfluorooctanesulfonic acid (PFOS)	ND	1.9	ng/L							
erfluorononanoic acid (PFNA)	ND	1.9	ng/L							
erfluorodecanoic acid (PFDA)	ND	1.9	ng/L							
-EtFOSAA (NEtFOSAA)	ND	1.9	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	1.9	ng/L							
-MeFOSAA (NMeFOSAA)	ND	1.9	ng/L							
erfluorododecanoic acid (PFDoA)	ND	1.9	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	1.9	ng/L							
erfluorotetradecanoic acid (PFTA)	ND	1.9	ng/L							
exafluoropropylene oxide dimer acid IFPO-DA)	ND	1.9	ng/L							
ICI-PF3OUdS (F53B Major)	ND	1.9	ng/L							
Cl-PF3ONS (F53B Minor)	ND	1.9	ng/L							
8-Dioxa-3H-perfluorononanoic acid DONA)	ND	1.9	ng/L							
irrogate: 13C-PFHxA	38.1		ng/L	38.1		99.9	70-130			
irrogate: M3HFPO-DA	36.8		ng/L	38.1		96.5	70-130			
urrogate: 13C-PFDA	37.1		ng/L	38.1		97.1	70-130			
urrogate: D5-NEtFOSAA	135		ng/L	153		88.5	70-130			
CS (B334725-BS1)				Prepared: 03	3/21/23 Anal	yzed: 03/22/2	13			
erfluorobutanesulfonic acid (PFBS)	1.27	1.9	ng/L	1.72		73.5	50-150			J
erfluorohexanoic acid (PFHxA)	1.36	1.9	ng/L	1.94		69.8	50-150			J
erfluorohexanesulfonic acid (PFHxS)	1.11	1.9	ng/L	1.78		62.6	50-150			J
erfluoroheptanoic acid (PFHpA)	1.23	1.9	ng/L	1.94		63.4	50-150			J
erfluorooctanoic acid (PFOA)	1.37	1.9	ng/L	1.94		70.3	50-150			J
erfluorooctanesulfonic acid (PFOS)	1.23	1.9	ng/L	1.80		68.0	50-150			J
erfluorononanoic acid (PFNA)	1.42	1.9	ng/L	1.94		73.0	50-150			J
erfluorodecanoic acid (PFDA)	1.70	1.9	ng/L	1.94		87.4	50-150			J
-EtFOSAA (NEtFOSAA)	1.05	1.9	ng/L	1.94		54.0	50-150			J
erfluoroundecanoic acid (PFUnA)	1.22	1.9	ng/L	1.94		63.0	50-150			J
-MeFOSAA (NMeFOSAA)	1.11	1.9	ng/L	1.94		57.4	50-150			J
erfluorododecanoic acid (PFDoA)	1.19	1.9	ng/L	1.94		61.3	50-150			J
erfluorotridecanoic acid (PFTrDA)	1.28	1.9	ng/L	1.94		65.9	50-150			J
erfluorotetradecanoic acid (PFTA)	1.36	1.9	ng/L	1.94		70.0	50-150			J
exafluoropropylene oxide dimer acid IFPO-DA)	1.22	1.9	ng/L	1.94		63.0	50-150			J
ICI-PF3OUdS (F53B Major)	1.08	1.9	ng/L	1.83		58.7	50-150			J
Cl-PF3ONS (F53B Minor)	1.24	1.9	ng/L	1.81		68.1	50-150			J
,8-Dioxa-3H-perfluorononanoic acid ADONA)	1.16	1.9	ng/L	1.84		63.4	50-150			J
urrogate: 13C-PFHxA	36.9		ng/L	38.9		95.0	70-130			
urrogate: M3HFPO-DA	36.7		ng/L	38.9		94.4	70-130			
urrogate: 13C-PFDA	35.4		ng/L	38.9		91.1	70-130			
urrogate: D5-NEtFOSAA	135		ng/L	155		86.7	70-130			

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B334725 - EPA 537.1										
Matrix Spike (B334725-MS1)	Sourc	e: 23C2156-	08	Prepared: 03	/21/23 Analyz	ed: 03/22/2	23			
Perfluorobutanesulfonic acid (PFBS)	1.04	1.8	ng/L	1.62	ND	64.0	50-150			J
Perfluorohexanoic acid (PFHxA)	1.46	1.8	ng/L	1.83	ND	80.0	50-150			J
Perfluorohexanesulfonic acid (PFHxS)	1.51	1.8	ng/L	1.67	ND	90.6	50-150			J
Perfluoroheptanoic acid (PFHpA)	1.53	1.8	ng/L	1.83	ND	83.5	50-150			J
Perfluorooctanoic acid (PFOA)	2.60	1.8	ng/L	1.83	ND	142	50-150			
erfluorooctanesulfonic acid (PFOS)	5.81	1.8	ng/L	1.70	4.39	83.5	50-150			
Perfluorononanoic acid (PFNA)	1.43	1.8	ng/L	1.83	ND	78.0	50-150			J
Perfluorodecanoic acid (PFDA)	1.69	1.8	ng/L	1.83	ND	92.4	50-150			J
J-EtFOSAA (NEtFOSAA)	1.57	1.8	ng/L	1.83	ND	86.2	50-150			J
erfluoroundecanoic acid (PFUnA)	1.29	1.8	ng/L	1.83	ND	70.9	50-150			J
J-MeFOSAA (NMeFOSAA)	1.16	1.8	ng/L	1.83	ND	63.4	50-150			J
Perfluorododecanoic acid (PFDoA)	1.32	1.8	ng/L	1.83	ND	72.0	50-150			J
Perfluorotridecanoic acid (PFTrDA)	1.35	1.8	ng/L	1.83	ND	73.9	50-150			J
Perfluorotetradecanoic acid (PFTA)	0.942	1.8	ng/L	1.83	ND	51.5	50-150			J
Iexafluoropropylene oxide dimer acid HFPO-DA)	0.936	1.8	ng/L	1.83	ND	51.2	50-150			J
1Cl-PF3OUdS (F53B Major)	1.26	1.8	ng/L	1.72	ND	72.9	50-150			J
Cl-PF3ONS (F53B Minor)	1.21	1.8	ng/L	1.71	ND	70.9	50-150			J
,8-Dioxa-3H-perfluorononanoic acid ADONA)	1.31	1.8	ng/L	1.73	ND	75.8	50-150			J
urrogate: 13C-PFHxA	32.8		ng/L	36.6		89.7	70-130			
Surrogate: M3HFPO-DA	30.5		ng/L	36.6		83.3	70-130			
Surrogate: 13C-PFDA	34.0		ng/L	36.6		93.1	70-130			
Surrogate: D5-NEtFOSAA	131		ng/L	146		89.7	70-130			
Matrix Spike Dup (B334725-MSD1)	Sourc	e: 23C2156-	08	Prepared: 03	/21/23 Analyz	ed: 03/22/2	23			
Perfluorobutanesulfonic acid (PFBS)	0.864	1.8	ng/L	1.59	ND	54.3	50-150	18.3	50	J
Perfluorohexanoic acid (PFHxA)	1.19	1.8	ng/L	1.79	ND	66.6	50-150	20.2	50	J
Perfluorohexanesulfonic acid (PFHxS)	1.27	1.8	ng/L	1.64	ND	77.4	50-150	17.5	50	J
Perfluoroheptanoic acid (PFHpA)	1.20	1.8	ng/L	1.79	ND	66.9	50-150	23.8	50	J
Perfluorooctanoic acid (PFOA)	1.93	1.8	ng/L	1.79	ND	108	50-150	29.5	50	
Perfluorooctanesulfonic acid (PFOS)	5.60	1.8	ng/L	1.66	4.39	72.6	50-150	3.64	50	
Perfluorononanoic acid (PFNA)	1.30	1.8	ng/L	1.79	ND	72.7	50-150	8.94	50	J
Perfluorodecanoic acid (PFDA)	1.63	1.8	ng/L	1.79	ND	90.7	50-150	3.77	50	J
						76.0	50-150	14.4	50	J
J-EtFOSAA (NEtFOSAA)	1.36	1.8	ng/L	1.79	ND	7810			50	J
	1.36 1.18	1.8 1.8	ng/L ng/L	1.79 1.79	ND ND	65.6	50-150	9.53	20	
Perfluoroundecanoic acid (PFUnA)							50-150 50-150	9.53 16.5	50	J
Perfluoroundecanoic acid (PFUnA) I-MeFOSAA (NMeFOSAA)	1.18	1.8	ng/L	1.79	ND	65.6				J J
Perfluoroundecanoic acid (PFUnA) N-MeFOSAA (NMeFOSAA) Perfluorododecanoic acid (PFDoA)	1.18 0.982	1.8 1.8	ng/L ng/L	1.79 1.79	ND ND	65.6 54.7	50-150	16.5	50	J J J
erfluoroundecanoic acid (PFUnA) I-MeFOSAA (NMeFOSAA) erfluorododecanoic acid (PFDoA) erfluorotridecanoic acid (PFTrDA)	1.18 0.982 1.38	1.8 1.8 1.8	ng/L ng/L ng/L	1.79 1.79 1.79	ND ND ND	65.6 54.7 76.9	50-150 50-150	16.5 4.67	50 50	
Perfluoroundecanoic acid (PFUnA) N-MeFOSAA (NMeFOSAA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid (PFTA) Hexafluoropropylene oxide dimer acid	1.18 0.982 1.38 1.27	1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L	1.79 1.79 1.79 1.79	ND ND ND	65.6 54.7 76.9 70.6	50-150 50-150 50-150	16.5 4.67 6.33	50 50 50	J
Perfluoroundecanoic acid (PFUnA) N-MeFOSAA (NMeFOSAA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid (PFTA) Hexafluoropropylene oxide dimer acid HFPO-DA)	1.18 0.982 1.38 1.27 1.12	1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L	1.79 1.79 1.79 1.79 1.79	ND ND ND ND	65.6 54.7 76.9 70.6 62.5	50-150 50-150 50-150 50-150	16.5 4.67 6.33	50 50 50 50	J J
Perfluoroundecanoic acid (PFUnA) N-MeFOSAA (NMeFOSAA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTA) Hexafluoropropylene oxide dimer acid HFPO-DA) 1CI-PF3OUdS (F53B Major)	1.18 0.982 1.38 1.27 1.12 0.879	1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L	1.79 1.79 1.79 1.79 1.79 1.79	ND ND ND ND ND	65.6 54.7 76.9 70.6 62.5 49.0 *	50-150 50-150 50-150 50-150 50-150	16.5 4.67 6.33 17.4	50 50 50 50 50	J J MS-22, J
Perfluoroundecanoic acid (PFUnA) J-MeFOSAA (NMeFOSAA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTA) Atexafluoropropylene oxide dimer acid HFPO-DA) ICI-PF3OUdS (F53B Major) CI-PF3ONS (F53B Minor) ,8-Dioxa-3H-perfluorononanoic acid	1.18 0.982 1.38 1.27 1.12 0.879 1.22	1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L	1.79 1.79 1.79 1.79 1.79 1.79 1.69	ND ND ND ND ND	65.6 54.7 76.9 70.6 62.5 49.0 * 71.9	50-150 50-150 50-150 50-150 50-150 50-150	16.5 4.67 6.33 17.4 3.22	50 50 50 50 50 50	J J MS-22, J J
Perfluoroundecanoic acid (PFUnA) N-MeFOSAA (NMeFOSAA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid (PFTA) 4exafluoropropylene oxide dimer acid HFPO-DA) ICI-PF3OUdS (F53B Major) PCI-PF3ONS (F53B Minor) 4,8-Dioxa-3H-perfluorononanoic acid ADONA)	1.18 0.982 1.38 1.27 1.12 0.879 1.22 1.21	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L	1.79 1.79 1.79 1.79 1.79 1.79 1.69 1.69	ND ND ND ND ND ND	65.6 54.7 76.9 70.6 62.5 49.0 * 71.9 72.5	50-150 50-150 50-150 50-150 50-150 50-150 50-150	16.5 4.67 6.33 17.4 3.22 0.295	50 50 50 50 50 50 50	J J MS-22, J J J
Perfluoroundecanoic acid (PFUnA) N-MeFOSAA (NMeFOSAA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid (PFTA) Hexafluoropropylene oxide dimer acid HFPO-DA) IICI-PF3OUdS (F53B Major) PCI-PF3ONS (F53B Minor) 4,8-Dioxa-3H-perfluorononanoic acid ADONA) Surrogate: 13C-PFHxA	1.18 0.982 1.38 1.27 1.12 0.879 1.22 1.21 0.980	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L	1.79 1.79 1.79 1.79 1.79 1.79 1.69 1.67 1.70	ND ND ND ND ND ND	65.6 54.7 76.9 70.6 62.5 49.0 * 71.9 72.5 57.8	50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150	16.5 4.67 6.33 17.4 3.22 0.295	50 50 50 50 50 50 50	J J MS-22, J J J
N-EFFOSAA (NEtFOSAA) Perfluoroundecanoic acid (PFUnA) N-MeFOSAA (NMeFOSAA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid (PFTA) Hexafluoropropylene oxide dimer acid HFPO-DA) HICI-PF3OUdS (F53B Major) OCI-PF3ONS (F53B Minor) 4,8-Dioxa-3H-perfluorononanoic acid ADONA) Surrogate: 13C-PFHxA Surrogate: M3HFPO-DA Surrogate: 13C-PFDA	1.18 0.982 1.38 1.27 1.12 0.879 1.22 1.21 0.980 29.8	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	1.79 1.79 1.79 1.79 1.79 1.79 1.69 1.67 1.70 35.9	ND ND ND ND ND ND	65.6 54.7 76.9 70.6 62.5 49.0 * 71.9 72.5 57.8 83.0	50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 70-130	16.5 4.67 6.33 17.4 3.22 0.295	50 50 50 50 50 50 50	J J MS-22, J J J

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
8atch B334730 - SOP 454-PFAAS										
Blank (B334730-BLK1)				Prepared: 03	/21/23 Anal	yzed: 03/22/	23			
erfluorobutanoic acid (PFBA)	ND	1.9	ng/L							
erfluorobutanesulfonic acid (PFBS)	ND	1.9	ng/L							
erfluoropentanoic acid (PFPeA)	ND	1.9	ng/L							
erfluorohexanoic acid (PFHxA)	ND	1.9	ng/L							
1Cl-PF3OUdS (F53B Major)	ND	1.9	ng/L							
Cl-PF3ONS (F53B Minor)	ND	1.9	ng/L							
,8-Dioxa-3H-perfluorononanoic acid ADONA)	ND	1.9	ng/L							
Iexafluoropropylene oxide dimer acid HFPO-DA)	ND	1.9	ng/L							
2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.9	ng/L							
erfluorodecanoic acid (PFDA)	ND	1.9	ng/L							
erfluorododecanoic acid (PFDoA)	ND	1.9	ng/L							
erfluoro(2-ethoxyethane)sulfonic acid PFEESA) arfluorohantanasulfonic acid (DEUrS)	ND	1.9	ng/L							
erfluoroheptanesulfonic acid (PFHpS)	ND	1.9 1.9	ng/L							
-EtFOSAA (NEtFOSAA)	ND		ng/L							
-MeFOSAA (NMeFOSAA) erfluorotetradecanoic acid (PFTA)	ND	1.9	ng/L ng/I							
	ND	1.9	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	1.9	ng/L							
2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.9	ng/L							
erfluorodecanesulfonic acid (PFDS)	ND	1.9	ng/L							
erfluorooctanesulfonamide (FOSA)	ND	1.9	ng/L							
erfluorononanesulfonic acid (PFNS)	ND	1.9	ng/L							
erfluoro-1-hexanesulfonamide (FHxSA)	ND	1.9	ng/L							
erfluoro-1-butanesulfonamide (FBSA)	ND	1.9	ng/L							
erfluorohexanesulfonic acid (PFHxS)	ND	1.9	ng/L							
erfluoro-4-oxapentanoic acid (PFMPA)	ND	1.9	ng/L							
erfluoro-5-oxahexanoic acid (PFMBA)	ND	1.9	ng/L							
2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.9	ng/L							
erfluoropetanesulfonic acid (PFPeS)	ND	1.9	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	1.9	ng/L							
onafluoro-3,6-dioxaheptanoic acid NFDHA) erfluoroheptanoic acid (PFHpA)	ND	1.9 1.9	ng/L							
• • • • •	ND		ng/L ng/I							
erfluorooctanoic acid (PFOA) erfluorooctanesulfonic acid (PFOS)	ND	1.9 1.9	ng/L							
erfluorooctanesulfonic acid (PFOS) erfluorononanoic acid (PFNA)	ND		ng/L ng/I							
CS (B334730-BS1)	ND	1.9	ng/L	Prenared 03	/21/23 Anal	vzed: 03/22/	23			
erfluorobutanoic acid (PFBA)	9.10	1.8	ng/L	9.22		98.6	73-129			
erfluorobutanesulfonic acid (PFBS)	9.10 7.95	1.8	ng/L	9.22 8.16		98.0 97.4	73-129			
erfluoropentanoic acid (PFPeA)	7.95 9.04	1.8	ng/L	8.10 9.22		97.4 98.0	72-130			
erfluorohexanoic acid (PFHxA)	9.04 8.86	1.8	ng/L	9.22		98.0 96.0	72-129			
1Cl-PF3OUdS (F53B Major)	8.86 8.57	1.8	ng/L	9.22 8.69		98.0 98.7	55.1-141			
Cl-PF3ONS (F53B Minor)	8.57	1.8	ng/L	8.59		98.7 117	59.6-146			
8-Dioxa-3H-perfluorononanoic acid ADONA)	9.36	1.8	ng/L	8.69		108	60.3 - 131			
Iexafluoropropylene oxide dimer acid HFPO-DA)	7.72	1.8	ng/L	9.22		83.7	37.6-167			
2 Fluorotelomersulfonic acid (8:2FTS A)	7.98	1.8	ng/L	8.85		90.1	67-138			
erfluorodecanoic acid (PFDA)	8.80	1.8	ng/L	9.22		95.4	71-129			
erfluorododecanoic acid (PFDoA)	9.11	1.8	ng/L	9.22		98.8	72-134			
erfluoro(2-ethoxyethane)sulfonic acid	8.79	1.8	ng/L	8.21		107	49.4-154			

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
2 mary t	Kesun		Units	Level	result	/0KEU	Linits	κгD	Linit	notes
Batch B334730 - SOP 454-PFAAS										
LCS (B334730-BS1)				Prepared: 03	0/21/23 Analy	yzed: 03/22/2	23			
Perfluoroheptanesulfonic acid (PFHpS)	9.58	1.8	ng/L	8.81		109	69-134			
N-EtFOSAA (NEtFOSAA)	10.3	1.8	ng/L	9.22		112	61-135			
N-MeFOSAA (NMeFOSAA)	10.1	1.8	ng/L	9.22		109	65-136			
Perfluorotetradecanoic acid (PFTA)	9.57	1.8	ng/L	9.22		104	71-132			
Perfluorotridecanoic acid (PFTrDA)	9.51	1.8	ng/L	9.22		103	65-144			
4:2 Fluorotelomersulfonic acid (4:2FTS A)	8.75	1.8	ng/L	8.62		102	63-143			
Perfluorodecanesulfonic acid (PFDS)	8.05	1.8	ng/L	8.90		90.4	53-142			
Perfluorooctanesulfonamide (FOSA)	9.41	1.8	ng/L	9.22		102	67-137			
Perfluorononanesulfonic acid (PFNS)	9.48	1.8	ng/L	8.85		107	69-127			
Perfluoro-1-hexanesulfonamide (FHxSA)	9.40	1.8	ng/L	9.22		102	61.7-156			
Perfluoro-1-butanesulfonamide (FBSA)	9.81	1.8	ng/L	9.22		106	61.3-145			
Perfluorohexanesulfonic acid (PFHxS)	8.51	1.8	ng/L	8.44		101	68-131			
Perfluoro-4-oxapentanoic acid (PFMPA)	8.66	1.8	ng/L	9.22		93.9	59.8-147			
Perfluoro-5-oxahexanoic acid (PFMBA)	9.22	1.8	ng/L	9.22		99.9	59.5-146			
6:2 Fluorotelomersulfonic acid (6:2FTS A)	8.89	1.8	ng/L	8.76		101	64-140			
Perfluoropetanesulfonic acid (PFPeS)	8.34	1.8	ng/L	8.67		96.2	71-127			
Perfluoroundecanoic acid (PFUnA)	8.12	1.8	ng/L	9.22		88.0	69-133			
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	9.02	1.8	ng/L	9.22		97.8	58.5-143			
Perfluoroheptanoic acid (PFHpA)	9.38	1.8	ng/L	9.22		102	72-130			
Perfluorooctanoic acid (PFOA)	8.85	1.8	ng/L	9.22		95.9	71-133			
Perfluorooctanesulfonic acid (PFOS)	8.59	1.8	ng/L	8.53		101	65-140			
Perfluorononanoic acid (PFNA)	9.01	1.8	ng/L	9.22		97.7	69-130			

Batch B334750 - SOP 465-PFAAS

Blank (B334750-BLK1)			Prepared: 03/21/23 Analyzed: 03/27/23
Perfluorobutanoic acid (PFBA)	ND	0.45	μg/kg wet
Perfluorobutanesulfonic acid (PFBS)	ND	0.45	μg/kg wet
Perfluoropentanoic acid (PFPeA)	ND	0.45	μg/kg wet
Perfluorohexanoic acid (PFHxA)	ND	0.45	μg/kg wet
11Cl-PF3OUdS (F53B Major)	ND	0.45	μg/kg wet
9Cl-PF3ONS (F53B Minor)	ND	0.45	μg/kg wet
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	0.45	μg/kg wet
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	0.45	μg/kg wet
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	0.45	μg/kg wet
Perfluorodecanoic acid (PFDA)	ND	0.45	μg/kg wet
Perfluorododecanoic acid (PFDoA)	ND	0.45	μg/kg wet
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	0.45	μg/kg wet
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.45	μg/kg wet
N-EtFOSAA (NEtFOSAA)	ND	0.45	μg/kg wet
N-MeFOSAA (NMeFOSAA)	ND	0.45	μg/kg wet
Perfluorotetradecanoic acid (PFTA)	ND	0.45	μg/kg wet
Perfluorotridecanoic acid (PFTrDA)	ND	0.45	μg/kg wet
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	0.45	μg/kg wet
Perfluorodecanesulfonic acid (PFDS)	ND	0.45	μg/kg wet
Perfluorooctanesulfonamide (FOSA)	ND	0.45	μg/kg wet
Perfluorononanesulfonic acid (PFNS)	ND	0.45	μg/kg wet
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	0.45	μg/kg wet
Perfluoro-1-butanesulfonamide (FBSA)	ND	0.45	μg/kg wet
Perfluorohexanesulfonic acid (PFHxS)	ND	0.45	μg/kg wet

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B334750 - SOP 465-PFAAS								_	-	
Blank (B334750-BLK1)				Prepared: 03	/21/23 Anal	yzed: 03/27/2	23			
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	0.45	µg/kg wet	-		-				
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	0.45	μg/kg wet							
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	0.45	μg/kg wet							
Perfluoropetanesulfonic acid (PFPeS)	ND	0.45	μg/kg wet							
Perfluoroundecanoic acid (PFUnA)	ND	0.45	μg/kg wet							
Nonafluoro-3,6-dioxaheptanoic acid	ND	0.45	µg/kg wet							
(NFDHA)										
Perfluoroheptanoic acid (PFHpA)	ND	0.45	µg/kg wet							
Perfluorooctanoic acid (PFOA)	ND	0.45	µg/kg wet							
Perfluorooctanesulfonic acid (PFOS)	ND	0.45	µg/kg wet							
Perfluorononanoic acid (PFNA)	ND	0.45	μg/kg wet							
LCS (B334750-BS1)				Prepared: 03	/21/23 Anal	yzed: 03/27/2	23			
Perfluorobutanoic acid (PFBA)	1.79	0.44	µg/kg wet	2.24		79.8	71-135			
Perfluorobutanesulfonic acid (PFBS)	1.53	0.44	µg/kg wet	1.98		77.4	72-128			
Perfluoropentanoic acid (PFPeA)	1.76	0.44	µg/kg wet	2.24		78.8	69-132			
Perfluorohexanoic acid (PFHxA)	1.77	0.44	µg/kg wet	2.24		79.0	70-132			
11Cl-PF3OUdS (F53B Major)	1.99	0.44	µg/kg wet	2.11		94.5	41.8-128			
9Cl-PF3ONS (F53B Minor)	2.03	0.44	µg/kg wet	2.08		97.2	51.1-141			
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	1.79	0.44	$\mu g/kg$ wet	2.11		85.2	55.2-122			
Hexafluoropropylene oxide dimer acid (HFPO-DA)	1.62	0.44	µg/kg wet	2.24		72.6	27.6-137			
8:2 Fluorotelomersulfonic acid (8:2FTS A)	1.50	0.44	µg/kg wet	2.15		69.8	65-137			
Perfluorodecanoic acid (PFDA)	1.77	0.44	µg/kg wet	2.24		79.0	69-133			
Perfluorododecanoic acid (PFDoA)	1.97	0.44	µg/kg wet	2.24		88.2	69-135			
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	1.66	0.44	µg/kg wet	1.99		83.3	56.7-133			
Perfluoroheptanesulfonic acid (PFHpS)	1.94	0.44	µg/kg wet	2.14		90.7	70-132			
N-EtFOSAA (NEtFOSAA)	2.00	0.44	µg/kg wet	2.24		89.6	61-139			
N-MeFOSAA (NMeFOSAA)	2.44	0.44	µg/kg wet	2.24		109	63-144			
Perfluorotetradecanoic acid (PFTA)	1.69	0.44	µg/kg wet	2.24		75.6	69-133			
Perfluorotridecanoic acid (PFTrDA)	1.84	0.44	µg/kg wet	2.24		82.4	66-139			
4:2 Fluorotelomersulfonic acid (4:2FTS A)	1.67	0.44	µg/kg wet	2.09		79.6	62-145			
Perfluorodecanesulfonic acid (PFDS)	1.42	0.44	µg/kg wet	2.16		65.8	59-134			
Perfluorooctanesulfonamide (FOSA)	1.84	0.44	µg/kg wet	2.24		82.4	67-137			
Perfluorononanesulfonic acid (PFNS)	1.85	0.44	µg/kg wet	2.15		86.4	69-125			
Perfluoro-1-hexanesulfonamide (FHxSA)	2.00	0.44	µg/kg wet	2.24		89.5	51.4-142			
Perfluoro-1-butanesulfonamide (FBSA)	2.00	0.44	µg/kg wet	2.24		89.5	53.5-129			
Perfluorohexanesulfonic acid (PFHxS)	1.63	0.44	µg/kg wet	2.05		79.4	67-130			
Perfluoro-4-oxapentanoic acid (PFMPA)	1.58	0.44	µg/kg wet	2.24		70.5	57.8-127			
Perfluoro-5-oxahexanoic acid (PFMBA)	1.80	0.44	µg/kg wet	2.24		80.2	56.5-132			
6:2 Fluorotelomersulfonic acid (6:2FTS A)	2.04	0.44	µg/kg wet	2.13		96.1	64-140			
Perfluoropetanesulfonic acid (PFPeS)	1.57	0.44	μg/kg wet	2.10		74.8	73-123			
Perfluoroundecanoic acid (PFUnA)	1.60	0.44	μg/kg wet	2.24		71.7	64-136			
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	1.88	0.44	μg/kg wet	2.24		84.0	54.5-128			
Perfluoroheptanoic acid (PFHpA)	1.77	0.44	µg∕kg wet	2.24		79.3	71-131			
Perfluorooctanoic acid (PFOA)	1.72	0.44	μg/kg wet	2.24		76.8	69-133			
Perfluorooctanesulfonic acid (PFOS)	1.72	0.44	μg/kg wet	2.07		95.2	68-136			
Perfluorononanoic acid (PFNA)	1.97	0.44	μg/kg wet	2.07		75.8	72-129			

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	Result	Emit	Cinto	Lever	result	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Linita		Linit	110105
Batch B335034 - EPA 537.1										
Blank (B335034-BLK1)				Prepared: 03	/23/23 Anal	yzed: 03/24/2	23			
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	2.0	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L							
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L							
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L							
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L							
J-EtFOSAA (NEtFOSAA)	ND	2.0	ng/L							
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L							
J-MeFOSAA (NMeFOSAA)	ND	2.0	ng/L							
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L							
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L							
Iexafluoropropylene oxide dimer acid	ND	2.0	ng/L							
HFPO-DA) 1Cl-PF3OUdS (F53B Major)	NID	2.0	ng/L							
CI-PF3ONS (F53B Minor)	ND	2.0	ng/L							
I,8-Dioxa-3H-perfluorononanoic acid	ND	2.0	ng/L							
ADONA)	ND	2.0	ng/L							
Surrogate: 13C-PFHxA	40.0		ng/L	39.6		101	70-130			
Surrogate: M3HFPO-DA	42.2		ng/L	39.6		107	70-130			
Surrogate: 13C-PFDA	38.9		ng/L	39.6		98.3	70-130			
urrogate: D5-NEtFOSAA	156		ng/L	158		98.8	70-130			
LCS (B335034-BS1)				Prepared: 03	/23/23 Anal	yzed: 03/24/2	23			
Perfluorobutanesulfonic acid (PFBS)	1.77	2.0	ng/L	1.73		102	50-150			J
Perfluorohexanoic acid (PFHxA)	1.78	2.0	ng/L	1.95		90.9	50-150			J
Perfluorohexanesulfonic acid (PFHxS)	1.73	2.0	ng/L	1.79		97.2	50-150			J
Perfluoroheptanoic acid (PFHpA)	1.98	2.0	ng/L	1.95		102	50-150			J
Perfluorooctanoic acid (PFOA)	2.65	2.0	ng/L	1.95		136	50-150			
Perfluorooctanesulfonic acid (PFOS)	1.47	2.0	ng/L	1.81		80.9	50-150			J
Perfluorononanoic acid (PFNA)	1.78	2.0	ng/L	1.95		90.9	50-150			J
Perfluorodecanoic acid (PFDA)	1.93	2.0	ng/L	1.95		99.0	50-150			J
N-EtFOSAA (NEtFOSAA)	1.58	2.0	ng/L	1.95		80.9	50-150			J
Perfluoroundecanoic acid (PFUnA)	1.74	2.0	ng/L	1.95		89.0	50-150			J
N-MeFOSAA (NMeFOSAA)	2.09	2.0	ng/L	1.95		107	50-150			
Perfluorododecanoic acid (PFDoA)	1.45	2.0	ng/L	1.95		74.3	50-150			J
Perfluorotridecanoic acid (PFTrDA)	1.57	2.0	ng/L	1.95		80.6	50-150			J
Perfluorotetradecanoic acid (PFTA)	1.79	2.0	ng/L	1.95		91.9	50-150			J
lexafluoropropylene oxide dimer acid	1.96	2.0	ng/L	1.95		100	50-150			J
HFPO-DA)										
1CI-PF3OUdS (F53B Major)	1.88	2.0	ng/L	1.84		102	50-150			J
Cl-PF3ONS (F53B Minor)	1.70	2.0	ng/L	1.82		93.3	50-150			J
ł,8-Dioxa-3H-perfluorononanoic acid ADONA)	1.73	2.0	ng/L	1.85		93.5	50-150			J
Surrogate: 13C-PFHxA	40.0		ng/L	39.1		102	70-130			
Surrogate: M3HFPO-DA	40.3		ng/L	39.1		103	70-130			
Surrogate: 13C-PFDA	38.9		ng/L	39.1		99.7	70-130			
Surrogate: D5-NEtFOSAA	161		ng/L	156		103	70-130			

				e "			A/856			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Indiye	Result	Emit	enits	Lever	Result	/01020	Emito	Id D	Linit	110105
Batch B335034 - EPA 537.1										
LCS Dup (B335034-BSD1)				Prepared: 03	3/23/23 Anal	yzed: 03/24/2	23			
Perfluorobutanesulfonic acid (PFBS)	1.85	2.0	ng/L	1.76		105	50-150	4.74	50	J
Perfluorohexanoic acid (PFHxA)	1.95	2.0	ng/L	1.98		98.3	50-150	9.42	50	J
Perfluorohexanesulfonic acid (PFHxS)	1.87	2.0	ng/L	1.81		103	50-150	7.69	50	J
Perfluoroheptanoic acid (PFHpA)	2.06	2.0	ng/L	1.98		104	50-150	3.83	50	
Perfluorooctanoic acid (PFOA)	1.98	2.0	ng/L	1.98		99.9	50-150	28.8	50	J
Perfluorooctanesulfonic acid (PFOS)	1.75	2.0	ng/L	1.84		94.8	50-150	17.4	50	J
Perfluorononanoic acid (PFNA)	1.95	2.0	ng/L	1.98		98.2	50-150	9.32	50	J
Perfluorodecanoic acid (PFDA)	2.21	2.0	ng/L	1.98		111	50-150	13.2	50	
N-EtFOSAA (NEtFOSAA)	1.55	2.0	ng/L	1.98		78.1	50-150	1.91	50	J
Perfluoroundecanoic acid (PFUnA)	2.01	2.0	ng/L	1.98		101	50-150	14.5	50	
N-MeFOSAA (NMeFOSAA)	1.72	2.0	ng/L	1.98		86.8	50-150	19.4	50	J
Perfluorododecanoic acid (PFDoA)	1.96	2.0	ng/L	1.98		98.6	50-150	29.6	50	J
Perfluorotridecanoic acid (PFTrDA)	1.88	2.0	ng/L	1.98		94.6	50-150	17.6	50	J
Perfluorotetradecanoic acid (PFTA)	1.82	2.0	ng/L	1.98		91.8	50-150	1.52	50	J
Hexafluoropropylene oxide dimer acid (HFPO-DA)	2.10	2.0	ng/L	1.98		106	50-150	7.20	50	
11Cl-PF3OUdS (F53B Major)	1.92	2.0	ng/L	1.87		103	50-150	2.31	50	J
9Cl-PF3ONS (F53B Minor)	1.97	2.0	ng/L	1.85		107	50-150	14.9	50	J
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	1.85	2.0	ng/L	1.88		98.8	50-150	7.18	50	J
Surrogate: 13C-PFHxA	41.2		ng/L	39.7		104	70-130			
Surrogate: M3HFPO-DA	41.1		ng/L	39.7		104	70-130			
Surrogate: 13C-PFDA	39.9		ng/L	39.7		101	70-130			
Surrogate: D5-NEtFOSAA	162		ng/L	159		102	70-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
MS-22	Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is within method specified criteria.

INTERNAL STANDARD AREA AND RT SUMMARY

SOP-454 PFAS

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
EB-AUGER (23C2156-01)	•		Lab File ID: 23C2	56-01.d		Analyzed: 03/2	2/23 11:36	•	-
M8FOSA	215066.9	4.00455	267,796.00	4.00455	80	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	68420.77	2.58715	92,871.00	2.58715	74	50 - 150	0.0000	+/-0.50	
M2PFTA	506627.2	4.329683	695,354.00	4.329683	73	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	76137.56	3.8028	85,336.00	3.8028	89	50 - 150	0.0000	+/-0.50	
MPFBA	291788.7	1.0834	324,336.00	1.0834	90	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	89651.39	2.904767	107,431.00	2.904767	83	50 - 150	0.0000	+/-0.50	
M6PFDA	472323.3	3.803317	496,031.00	3.803317	95	50 - 150	0.0000	+/-0.50	
M3PFBS	91004.01	1.969733	100,751.00	1.96145	90	50 - 150	0.0083	+/-0.50	
M7PFUnA	478383	3.954033	577,276.00	3.954033	83	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	62973.89	3.453267	72,545.00	3.453267	87	50 - 150	0.0000	+/-0.50	
M5PFPeA	290365.7	1.7826	315,160.00	1.7826	92	50 - 150	0.0000	+/-0.50	
M5PFHxA	427143.8	2.680533	452,281.00	2.680533	94	50 - 150	0.0000	+/-0.50	
M3PFHxS	69925.84	3.2345	77,181.00	3.2345	91	50 - 150	0.0000	+/-0.50	
M4PFHpA	468654.5	3.203083	476,502.00	3.203083	98	50 - 150	0.0000	+/-0.50	
M8PFOA	548675.8	3.461933	544,943.00	3.461933	101	50 - 150	0.0000	+/-0.50	
M8PFOS	76507.67	3.644167	78,480.00	3.644167	97	50 - 150	0.0000	+/-0.50	
M9PFNA	518801.8	3.653183	498,456.00	3.653183	104	50 - 150	0.0000	+/-0.50	
MPFDoA	413774.7	4.096633	507,136.00	4.08865	82	50 - 150	0.0080	+/-0.50	
D5-NEtFOSAA	127302.5	3.9615	166,323.00	3.9615	77	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	168665.8	3.88175	186,319.00	3.88175	91	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

SOP-454 PFAS

NL-42FTS 76477.00 2.8871.60 2.5871.60 820 50.150 0.0000 4-6.50 M2PFTA 6.6696.4 4.3296.83 696.354.00 4.3296.83 8.9 50.150 0.0000 4-6.50 M2-8.FTS 78767.3 3.8028 853.16.00 3.8028 92 50.150 0.0000 4-6.50 MBFPA 31121.01 1.0834 3243.600 1.0834 92 50.150 0.0000 4-6.50 MBFPA 49090.7 3.803.71 406.310 50.150 0.0000 4-6.50 MBFPA 98972.23 1.969733 100,751.00 3.84337 100 50.150 0.0000 4-6.50 MLPGETS 6614.2 3.452.67 7.254.50 3.4532.67 94 50.150 0.0000 4-6.50 MSPFDA 38987.8 1.782.6 3.4532.67 94 50.150 0.0000 4-6.50 MSPFDA 38987.8 1.782.6 3.4532.67 94 50.150 0.0000 4-6.50 <	Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q		
NL-42FTS 7647.00 2.8871.60 2.8871.60 2.8871.60 2.8871.60 8.20 50.150 0.0000 4.40.00 M2PFTA 616040.4 4.329633 695,354.00 3.892.8 8.9 50.150 0.0000 4.40.00 M2-82FTS 78767.3 3.3028 833.36.00 3.892.8 92 50.150 0.0000 4.40.00 MBFPA 31121.01 1.0884 324,36.00 1.0814 96 50.150 0.0000 4.40.50 MBFPA 4909.07 3.83317 446,63.00 3.83917 101 50.150 0.0000 4.40.50 MSPFDA 98732.23 1.90733 100,71.00 3.84337 100 50.150 0.0000 4.40.50 M2-62FTS 6814.2 3.453267 72,55.00 3.43326 94 50.150 0.0000 4.40.50 MSPFRA 7640.64 2.680533 452,81.00 2.68033 101 50.150 0.0000 4.40.50 MSPFRA 71.04.04 3.245.01	Image:						Analyzed: 03/22/23 11:43					
NMPETA 6160694 4.320683 665.54.00 4.320683 80 50.150 0.0000 4-0.50 M2.8:2FTS 78767.3 3.8028 85,33.00 3.8028 92 50.150 0.0000 4-0.50 MPFRA 311210.3 1.0834 334,33.00 1.0834 96 50.150 0.0000 4-0.50 MHPPODA 115349.6 2.904767 10741.00 2.804767 101 50.150 0.0000 4-0.50 MAPPDA 49909.7 3.80337 496.031.00 3.80337 100 50.150 0.0000 4-0.50 MPPDA 99702.3 1.96973.3 100,71.00 3.95433 100 50.150 0.0000 4-0.50 M2-62FTS 68143.2 3.453207 7.24500 3.45237 94 50.150 0.0000 4-0.50 MSPFEA 38987.8 1.7826 315.600 1.7826 98 50.150 0.0000 4-0.50 MSPFEA 349508.6 2.48153 474.500 3.40433 <	M8FOSA	244585.6	4.00455	267,796.00	4.00455	91	50 - 150	0.0000	+/-0.50			
NA.S.2.FTS 7.8767.3 3.8028 8.5,3.6.00 3.8028 9.2 50-150 0.0000 +/-0.50 NPFBA 311210.3 1.0834 324,36.00 1.0834 96 50-150 0.0000 +/-0.50 0 MIHPO-DA 115340.60 2.904767 107 107 50-150 0.0000 +/-0.50 0 MIPFBA 49900.70 3.803317 446,031.00 3.803317 101 50-150 0.0000 +/-0.50 0 MIPFBA 98732.23 1.969733 100,751.00 3.94033 1010 50-150 0.0000 +/-0.50 0 MZ-SETS 68142 3.453267 72,752.00 3.45403 50-150 0.0000 +/-0.50 0 0.0000 +/-0.50 0 0.0000 +/-0.50 0 0.0000 +/-0.50 0 0.0000 +/-0.50 0 0.0000 +/-0.50 0 0.0000 +/-0.50 0 0.0000 +/-0.50 0 0.0000 +/-0.50 0 0.0000<	M2-4:2FTS	76477.02	2.58715	92,871.00	2.58715	82	50 - 150	0.0000	+/-0.50	1		
MPEBA 311210.3 1.0834 324,35.00 1.0834 96 50 - 150 0.0000 4/-050 MMILFPO-DA 115349.6 2.904767 107,431.00 2.904767 107 50 - 150 0.0000 4/-0.50 MGPFDA 499009.7 3.803317 496,031.00 3.403317 101 50 - 150 0.0000 4/-0.50 MSPFBS 98732.23 1.969733 100,751.00 1.9645 98 50 - 150 0.0000 4/-0.50 M2-62FTS 68143.2 3.43267 72.545.00 3.45267 94 50 - 150 0.0000 4/-0.50 MSPFPA 456906.86 2.60533 452.81.00 2.68933 101 50 - 150 0.0000 4/-0.50 MSPFDA 49902.1 3.20383 476,502.00 3.20383 105 50 - 150 0.0000 4/-0.50 MSPFDA 499702.1 3.20383 476,502.00 3.64167 105 50 - 150 0.0000 4/-0.50 MSPFDA 55118.8 3.64167 74,80.	M2PFTA	616969.4	4.329683	695,354.00	4.329683	89	50 - 150	0.0000	+/-0.50			
MMHPRO-DA 115349.6 2.904767 107,431.00 2.904767 107 50 - 150 0.0000 ++0.50 MOPFDA 4.900907 3.803317 4.96,031.00 3.803317 101 50 - 150 0.0000 ++0.50 MSPFBS 98732.23 1.969733 100,751.00 1.96145 98 50 - 150 0.0000 ++0.50 MSPFBA 98732.33 1.969733 100,751.00 3.954033 100 50 - 150 0.0000 ++0.50 MSPFPA 68143.2 3.453267 72,545.00 3.453267 944 50 - 150 0.0000 ++0.50 MSPFPA 308987.8 1.7826 3.151.000 1.7826 98 50 - 150 0.0000 ++0.50 MSPFIXA 7916.68 3.23454 77.181.00 3.24354 102 50 - 150 0.0000 ++0.50 MSPFIXA 7916.68 3.46133 445,020 3.20853 1012 50 - 150 0.0000 ++0.50 MSPFDA 571639.6 3.461333 544,9430	M2-8:2FTS	78767.3	3.8028	85,336.00	3.8028	92	50 - 150	0.0000	+/-0.50			
MMPFDA 4990907 3.803317 496,031.00 3.803317 101 50-150 0.0000 ++0.50 MIPFBS 98732.23 1.969733 100,751.00 1.96145 98 50-150 0.0003 ++0.50 0 MIPFUA 57746.05 3.954033 577,276.00 3.954033 100 50-150 0.0000 ++0.50 0 M2-62PTS 681432 3.453267 72,545.00 3.453267 94 50-150 0.0000 ++0.50 0 MSPFPA 308987.8 1.7826 315,160.00 1.7826 98 50-150 0.0000 ++0.50 0 MSPFPA 45506.66 2.680533 452,281.00 2.680533 101 50-150 0.0000 ++0.50 0 0.0000 ++0.50 0 0.0000 ++0.50 0 0.0000 ++0.50 0 0.0000 ++0.50 0 0.0000 ++0.50 0 0.0000 ++0.50 0 0.0000 ++0.50 0 0 0 <t< td=""><td>MPFBA</td><td>311210.3</td><td>1.0834</td><td>324,336.00</td><td>1.0834</td><td>96</td><td>50 - 150</td><td>0.0000</td><td>+/-0.50</td><td></td></t<>	MPFBA	311210.3	1.0834	324,336.00	1.0834	96	50 - 150	0.0000	+/-0.50			
MAPPINS 98732.23 1.969733 100,751.00 1.96145 98 50-150 0.0083 4-0.50 MTPFUnA 577460.5 3.954033 577,276.00 3.954033 100 50-150 0.0000 -4-0.50 I ML5c2FTS 68143.2 3.433267 72,545.00 3.433267 94 50-150 0.0000 -4-0.50 I MSPFPA 308987.8 1.7826 315,160.00 1.7826 98 50-150 0.0000 -4-0.50 I MSPFPA 45508.6 2.680533 452,281.00 2.680533 101 50-150 0.0000 -4-0.50 I MMPFINS 79106.48 3.2445 77,181.00 3.2445 102 50-150 0.0000 -4-0.50 I MMPFOA 571639.6 3.461933 544.943.00 3.461933 105 50-150 0.0000 -4-0.50 I MPFOA 55118.8 3.65183 498.450.01 3.64163 1105 50-150 0.0000 -4-0.50 <td< td=""><td>M3HFPO-DA</td><td>115349.6</td><td>2.904767</td><td>107,431.00</td><td>2.904767</td><td>107</td><td>50 - 150</td><td>0.0000</td><td>+/-0.50</td><td></td></td<>	M3HFPO-DA	115349.6	2.904767	107,431.00	2.904767	107	50 - 150	0.0000	+/-0.50			
MTPFUnA 577460.5 3.954033 577,276.00 3.954033 100 50 - 150 0.0000 +/-0.50 M2-62FTS 68143.2 3.453267 72,545.00 3.453267 94 50 - 150 0.0000 +/-0.50 1 MSPFPA 308987.8 1.7826 315,160.00 1.7826 98 50 - 150 0.0000 +/-0.50 1 MSPFPA 455068.6 2.680533 452,281.00 2.680533 101 50 - 150 0.0000 +/-0.50 1 MSPFMA 499702.1 3.20383 476,502.00 3.203083 105 50 - 150 0.0000 +/-0.50 1 MMPFMA 499702.1 3.20383 476,502.00 3.64167 105 50 - 150 0.0000 +/-0.50 1 MSPFOS 82740.08 3.64147 78,400.00 3.64167 105 50 - 150 0.0000 +/-0.50 1 D5-NEFOA 494566.5 4.08865 507,136.00 3.6617 106 50 - 150 0.0000 +/-0.	M6PFDA	499009.7	3.803317	496,031.00	3.803317	101	50 - 150	0.0000	+/-0.50			
M2-6-2FTS 661143.2 3.453267 72,545.00 3.453267 94 50 - 150 0.0000 1/-0.50 MSPFPCA 308987.8 1.7826 315,160.00 1.7826 98 50 - 150 0.0000 1/-0.50	M3PFBS	98732.23	1.969733	100,751.00	1.96145	98	50 - 150	0.0083	+/-0.50			
MSPFPA 308987.8 1.7826 315,16.00 1.7826 98 50.150 0.0000 +/.0.50 MSPFPA 45508.6 2.680533 452,281.00 2.680533 101 50.150 0.0000 +/.0.50 1 M3PFHS 79106.48 3.2345 77.181.00 3.2345 102 50.150 0.0000 +/.0.50 1 M4PFHA 49970.1 3.203083 476,502.00 3.203083 105 50.150 0.0000 +/.0.50 1 M8PFOA 571639.6 3.461933 544,943.00 3.461933 105 50.150 0.0000 +/.0.50 1 MSPFOA 555118.8 3.653183 498,456.00 3.65183 111 50.150 0.0000 +/.0.50 1 MSPFOA 49456.5 4.08865 507.136.00 4.08865 98 50.150 0.0000 +/.0.50 1 D5-NEIFOSAA 16340.4 3.88175 186,319.00 3.88175 88 50.150 0.0000 +/.0.50 1	M7PFUnA	577460.5	3.954033	577,276.00	3.954033	100	50 - 150	0.0000	+/-0.50			
MSPFHxA 455068.6 2.68053 452,281.00 2.680533 101 50 - 150 0.0000 +/-0.50 M3PFHxS 79106.48 3.2345 77,181.00 3.2345 102 50 - 150 0.0000 +/-0.50 0 M4PFHpA 499702.1 3.203083 476,502.00 3.203083 105 50 - 150 0.0000 +/-0.50 0 M8PFOA 571639.6 3.461933 544,943.00 3.64167 1055 50 - 150 0.0000 +/-0.50 0 M8PFOA 55118.8 3.653183 498,456.00 3.654167 1055 50 - 150 0.0000 +/-0.50 0 MPFDA 494566.5 4.08865 507,136.00 4.08865 98 50 - 150 0.0000 +/-0.50 0 D3-NEIFOSAA 163408.4 3.88175 186,319.00 3.88175 88 50 - 150 0.0000 +/-0.50 0 D3-NMEFOSA 163408.4 3.88175 186,319.00 3.16265 89 50 - 150 0.0000 <	M2-6:2FTS	68143.2	3.453267	72,545.00	3.453267	94	50 - 150	0.0000	+/-0.50			
MAPFHAS 79106.48 3.2345 77,181.00 3.2345 102 50-150 0.0000 +/-0.50 0 MAPFHA 499702.1 3.203083 476,502.00 3.203083 105 50-150 0.0000 +/-0.50 0 MAPFA 571639.6 3.461933 544,943.00 3.461933 105 50-150 0.0000 +/-0.50 0 MAPFOA 571639.6 3.461933 544,943.00 3.64167 105 50-150 0.0000 +/-0.50 0 MAPFOA 555118.8 3.653183 498,456.00 3.653183 111 50-150 0.0000 +/-0.50 0 MPFDA 494566.5 4.08865 507,136.00 4.08865 98 50-150 0.0000 +/-0.50 0 DS-NEFOSAA 176343.9 3.8175 166,323.00 3.9615 106 50-150 0.0000 +/-0.50 0 DS-NEFOSA 16484 3.8175 166,323.00 3.16265 89 50-150 0.0000 +/-0	M5PFPeA	308987.8	1.7826	315,160.00	1.7826	98	50 - 150	0.0000	+/-0.50			
MPFHpA 499702.1 3.203083 476,502.00 3.203083 105 50-150 0.0000 +/-0.50 MRFGA 571639.6 3.461933 544,943.00 3.461933 105 50-150 0.0000 +/-0.50 0 MRFGS 82740.08 3.64167 78,480.00 3.64167 105 50-150 0.0000 +/-0.50 0 MPFNA 555118.8 3.653183 498,456.00 3.64167 105 50-150 0.0000 +/-0.50 0 DS-NEIFOSA 49456.5 4.08865 507,136.00 4.08865 98 50-150 0.0000 +/-0.50 0 DS-NEIFOSA 17634.9 3.9615 166,323.00 3.9615 106 50-150 0.0000 +/-0.50 0 DS-NEFOSA 163408.4 3.8175 186,319.00 3.88175 88 50-150 0.0000 +/-0.50 0 DS-NEFOSA 54773.9 3.16265 615,764.00 3.16265 88 50-150 0.0000 +/-0.50	M5PFHxA	455068.6	2.680533	452,281.00	2.680533	101	50 - 150	0.0000	+/-0.50			
M8PFOS 571639.6 3.461933 544,943.00 3.461933 105 50 - 150 0.0000 +/-0.50 M8PFOS 82740.08 3.644167 78,480.00 3.644167 105 50 - 150 0.0000 +/-0.50 0 M9PFNA 555118.8 3.653183 498,456.00 3.653183 111 50 - 150 0.0000 +/-0.50 0 MPFDA 494566.5 4.08865 507,136.00 4.08865 98 50 - 150 0.0000 +/-0.50 0 D5.NEIFOSAA 17634.9 3.9615 166,323.00 3.9615 106 50 - 150 0.0000 +/-0.50 D3.NMEFOSAA 16340.84 3.88175 186,319.00 3.88175 88 50 - 150 0.0000 +/-0.50 D3.NMEFOSA 16340.84 3.88175 186,319.00 3.86637 88 50 - 150 0.0000 +/-0.50 1 D3.NMEFOSA 547734.9 3.16265 615,764.00 3.16265 89 50 - 150 0.0000 +/-0.50 1<	M3PFHxS	79106.48	3.2345	77,181.00	3.2345	102	50 - 150	0.0000	+/-0.50	1		
M8PFOS 82740.08 3.644167 78,480.00 3.644167 105 50 - 150 0.0000 +/-0.50 0 M9PFNA 555118.8 3.653183 498,450.0 3.653183 111 50 - 150 0.0000 +/-0.50 0 MPFDA 494566.5 4.08865 507,136.00 4.08865 98 50 - 150 0.0000 +/-0.50 0 D5-NEIFOSAA 176343.9 3.9615 166,323.00 3.9615 106 50 - 150 0.0000 +/-0.50 0 D5-NEIFOSAA 163408.4 3.88175 186,319.00 3.88175 88 50 - 150 0.0000 +/-0.50 0 D5-NEIFOSA 163408.4 3.88175 186,319.00 3.88175 88 50 - 150 0.0000 +/-0.50 0 10	M4PFHpA	499702.1	3.203083	476,502.00	3.203083	105	50 - 150	0.0000	+/-0.50			
M9PFNA 555118.8 3.653183 498,456.00 3.653183 111 50 - 150 0.0000 +/-0.50 0 MPFDoA 494566.5 4.08865 507,136.00 4.08865 98 50 - 150 0.0000 +/-0.50 1 0 <	M8PFOA	571639.6	3.461933	544,943.00	3.461933	105	50 - 150	0.0000	+/-0.50	-		
MPFDoA 494566.5 4.08865 507,136.00 4.08865 98 50 - 150 0.0000 +/-0.50 D5-NEIFOSAA 176343.9 3.9615 166,323.00 3.9615 106 50 - 150 0.0000 +/-0.50 D5-NEIFOSAA 163408.4 3.88175 186,319.00 3.88175 88 50 - 150 0.0000 +/-0.50 D5-NMEFOSAA 163408.4 3.88175 186,319.00 3.88175 88 50 - 150 0.0000 +/-0.50 EB-SW (23C2156-03) Lab File ID: 23C2156-03.d Analyzed: 03/22/3 10:09 13C-PFOA 547734.9 3.16265 615,764.00 3.16265 89 50 - 150 0.0000 +/-0.50 13C-PFOS 274544 3.466367 322,015.00 3.466367 85 50 - 150 0.0000 +/-0.50 L3SW4-2023 (23C2156-04) S85749.1 3.757283 771,761.00 3.757283 111 50 - 150 0.0000 +/-0.50 L3-SW4-2023 (23C2156-04) S26610.8 3.16265 615,764.00 3.16265 86 50 -	M8PFOS	82740.08	3.644167	78,480.00	3.644167	105	50 - 150	0.0000	+/-0.50			
D5-NEIFOSAA 176343.9 3.9615 166,323.00 3.9615 106 50 - 150 0.0000 +/-0.50 1 D5-NEIFOSAA 163408.4 3.88175 186,319.00 3.88175 88 50 - 150 0.0000 +/-0.50 D3-NMEFOSAA 163408.4 3.88175 186,319.00 3.88175 88 50 - 150 0.0000 +/-0.50 EB-SW (23C2156-03) Lab File ID: 23C21-50-03.d Analyzed: 03/22-23 10:09 3.16265 89 50 - 150 0.0000 +/-0.50 13C-PFOA 547734.9 3.16265 615,764.00 3.16265 89 50 - 150 0.0000 +/-0.50 13C-PFOA 274544 3.466367 322,015.00 3.466367 85 50 - 150 0.0000 +/-0.50 L3-SW4-2023 (23C2156-04) .16252 Lab File ID: 23C21-50-04.d Analyzed: 03/22-23 10:10 .1 10 0.0000 +/-0.50 13C-PFOA 526610.8 3.16265 615,764.00 3.16265 86 <	M9PFNA	555118.8	3.653183	498,456.00	3.653183	111	50 - 150	0.0000	+/-0.50			
D3-NMEFOSAA 163408.4 3.88175 186,319.00 3.88175 88 50 - 150 0.0000 +/-0.50 EB-SW (23C2156-03.) Lab File ID: 23C2156-03.d Analyzed: 03/22/3 10:09 13C-PFOA 547734.9 3.16265 615,764.00 3.16265 89 50 - 150 0.0000 +/-0.50 1 13C-PFOA 274544 3.466367 322,015.00 3.466367 85 50 - 150 0.0000 +/-0.50 1 D3-NMEFOSAA 858749.1 3.757283 771,761.00 3.757283 111 50 - 150 0.0000 +/-0.50 1 L3-SW4-2023 (23C2156-04.) Lab File ID: 23C2156-04.d Analyzed: 03/22/31 10:16 L3-SW4-2023 (23C2156-04) Lab File ID: 23C2156-04.d Analyzed: 03/22/31 10:16 L3-SW4-2023 (23C2156-04) 526610.8 3.16265 615,764.00 3.16265 86 50 - 150 0.0000 +/-0.50 1 L3-SPFOS 251640.6 3.466383 322,015.00 3.466367 78 50 - 150 0.0000	MPFDoA	494566.5	4.08865	507,136.00	4.08865	98	50 - 150	0.0000	+/-0.50			
EB-SW (23C2156-03) Lab File ID: 23C2156-03.d Analyzed: 03/22/23 10:09 13C-PFOA 547734.9 3.16265 615,764.00 3.16265 89 50 - 150 0.0000 +/-0.50 13C-PFOS 274544 3.466367 322,015.00 3.466367 85 50 - 150 0.0000 +/-0.50 D3-NMEFOSAA 858749.1 3.757283 771,761.00 3.757283 111 50 - 150 0.0000 +/-0.50 L3-SW4-2023 (23C2156-04) Lab File ID: 23C2156-04.d Analyzed: 03/22/23 10:16 L3C-PFOS 256610.8 3.16265 615,764.00 3.16265 86 50 - 150 0.0000 +/-0.50 L3C-PFOS 251640.6 3.466383 322,015.00 3.466367 78 50 - 150 0.0000 +/-0.50 L3-SW3-2023 (23C2156-05) Lab File ID: 23C2156-05.d Analyzed: 03/22/23 10:24 <	D5-NEtFOSAA	176343.9	3.9615	166,323.00	3.9615	106	50 - 150	0.0000	+/-0.50			
I3C-PFOA 547734.9 3.16265 615,764.00 3.16265 89 50 - 150 0.0000 +/-0.50 I3C-PFOS 274544 3.466367 322,015.00 3.466367 85 50 - 150 0.0000 +/-0.50 D3-NMeFOSAA 858749.1 3.757283 771,761.00 3.757283 111 50 - 150 0.0000 +/-0.50 L3-SW4-2023 (23C2156-04) Lab File ID: 23C2156-04.d Analyzed: 03/22/23 10:16 13C-PFOA 526610.8 3.16265 615,764.00 3.16265 86 50 - 150 0.0000 +/-0.50 13C-PFOA 526610.8 3.16265 615,764.00 3.16265 86 50 - 150 0.0000 +/-0.50 13C-PFOS 251640.6 3.466383 322,015.00 3.466367 78 50 - 150 0.0000 +/-0.50 D3-NMeFOSAA 834162.9 3.757317 771,761.00 3.757283 108 50 - 150 0.0000 +/-0.50 L3-SW3-2023 (23C2156-05.) Lab File ID: 23C2156-05.d Analyzed: 03/22/23 10:24 13C-PFOA 528313.4 3.16265 615,764.00 3.16265 86 50 - 150	D3-NMeFOSAA	163408.4	3.88175	186,319.00	3.88175	88	50 - 150	0.0000	+/-0.50	1		
I3C-PFOS 274544 3.466367 322,015.00 3.466367 85 50 - 150 0.0000 +/-0.50 D3-NMeFOSAA 858749.1 3.757283 771,761.00 3.757283 111 50 - 150 0.0000 +/-0.50 L3-SW4-2023 (23C2156-04.) Lab File ID: 23C2156-04.d Analyzed: 03/22/23 10:16 I3C-PFOA 526610.8 3.16265 615,764.00 3.16265 86 50 - 150 0.0000 +/-0.50 I3C-PFOS 251640.6 3.466383 322,015.00 3.466367 78 50 - 150 0.0000 +/-0.50 D3-NMeFOSAA 834162.9 3.757317 771,761.00 3.757283 108 50 - 150 0.0000 +/-0.50 L3-SW3-2023 (23C2156-05.) Lab File ID: 23C215-05.d L3-SW3-2023 (23C2156-05.) <td colsp<="" td=""><td>EB-SW (23C2156-03)</td><td>I</td><td></td><td>Lab File ID: 23C2</td><td>156-03.d</td><td></td><td colspan="5">Analyzed: 03/22/23 10:09</td></td>	<td>EB-SW (23C2156-03)</td> <td>I</td> <td></td> <td>Lab File ID: 23C2</td> <td>156-03.d</td> <td></td> <td colspan="5">Analyzed: 03/22/23 10:09</td>	EB-SW (23C2156-03)	I		Lab File ID: 23C2	156-03.d		Analyzed: 03/22/23 10:09				
D3-NMeFOSAA 858749.1 3.757283 771,761.00 3.757283 111 50 - 150 0.0000 +/-0.50 L3-SW4-2023 (23C2156-04.) Lab File ID: 23C2156-04.d Analyzed: 03/22/23 10:16 L3-SW4-2023 (23C2156-04.) Lab File ID: 23C2156-04.d Analyzed: 03/22/23 10:16 L3-SW4-2023 (23C2156-04.) Second	13C-PFOA	547734.9	3.16265	615,764.00	3.16265	89	50 - 150	0.0000	+/-0.50			
L3-SW4-2023 (23C2156-04.) Lab File ID: 23C2156-04.d Analyzed: 03/22/23 10:16 13C-PFOA 526610.8 3.16265 615,764.00 3.16265 86 50 - 150 0.0000 +/-0.50 13C-PFOS 251640.6 3.466383 322,015.00 3.466367 78 50 - 150 0.0000 +/-0.50 D3-NMeFOSAA 834162.9 3.757317 771,761.00 3.757283 108 50 - 150 0.0000 +/-0.50 L3C-PFOA 528313.4 3.16265 615,764.00 3.16265 86 50 - 150 0.0000 +/-0.50 L3-SW3-2023 (23C2156-05) Lab File ID: 23C2156-05.d Analyzed: 03/22/23 10:24	13C-PFOS	274544	3.466367	322,015.00	3.466367	85	50 - 150	0.0000	+/-0.50			
13C-PFOA 526610.8 3.16265 615,764.00 3.16265 86 50 - 150 0.0000 +/-0.50 13C-PFOS 251640.6 3.466383 322,015.00 3.466367 78 50 - 150 0.0000 +/-0.50 D3-NMEFOSAA 834162.9 3.757317 771,761.00 3.757283 108 50 - 150 0.0000 +/-0.50 L3-SW3-2023 (23C2156-05) Lab File ID: 23C2156-05.d Analyzed: 03/22/23 10:24 13C-PFOA 528313.4 3.16265 615,764.00 3.16265 86 50 - 150 0.0000 +/-0.50 13C-PFOS 249841.4 3.466367 322,015.00 3.466367 78 50 - 150 0.0000 +/-0.50	D3-NMeFOSAA	858749.1	3.757283	771,761.00	3.757283	111	50 - 150	0.0000	+/-0.50			
I3C-PFOS 251640.6 3.466383 322,015.00 3.466367 78 50 - 150 0.0000 +/-0.50 D3-NMeFOSAA 834162.9 3.757317 771,761.00 3.757283 108 50 - 150 0.0000 +/-0.50 L3-SW3-2023 (23C2156-05) Lab File ID: 23C2156-05.d Analyzed: 03/22/23 10:24 I3C-PFOA 528313.4 3.16265 615,764.00 3.16265 86 50 - 150 0.0000 +/-0.50 13C-PFOS 249841.4 3.466367 322,015.00 3.466367 78 50 - 150 0.0000 +/-0.50	L3-SW4-2023 (23C2156-04)	I		Lab File ID: 23C2	156-04.d		Analyzed: 03/2	2/23 10:16				
D3-NMEFOSAA 834162.9 3.757317 771,761.00 3.757283 108 50 - 150 0.0000 +/-0.50 L3-SW3-2023 (23C2156-05.) Lab File ID: 23C2156-05.d Analyzed: 03/22/23 10:24 13C-PFOA 528313.4 3.16265 615,764.00 3.16265 86 50 - 150 0.0000 +/-0.50 13C-PFOS 249841.4 3.466367 322,015.00 3.466367 78 50 - 150 0.0000 +/-0.50	13C-PFOA	526610.8	3.16265	615,764.00	3.16265	86	50 - 150	0.0000	+/-0.50			
L3-SW3-2023 (23C2156-05.) Lab File ID: 23C2156-05.d Analyzed: 03/22/23 10:24 13C-PFOA 528313.4 3.16265 615,764.00 3.16265 86 50 - 150 0.0000 +/-0.50 13C-PFOS 249841.4 3.466367 322,015.00 3.466367 78 50 - 150 0.0000 +/-0.50	13C-PFOS	251640.6	3.466383	322,015.00	3.466367	78	50 - 150	0.0000	+/-0.50			
13C-PFOA 528313.4 3.16265 615,764.00 3.16265 86 50 - 150 0.0000 +/-0.50 13C-PFOS 249841.4 3.466367 322,015.00 3.466367 78 50 - 150 0.0000 +/-0.50	D3-NMeFOSAA	834162.9	3.757317	771,761.00	3.757283	108	50 - 150	0.0000	+/-0.50	\square		
13C-PFOS 249841.4 3.466367 322,015.00 3.466367 78 50 - 150 0.0000 +/-0.50	L3-SW3-2023 (23C2156-05)	1		Lab File ID: 23C2	156-05.d		Analyzed: 03/2	2/23 10:24				
	13C-PFOA	528313.4	3.16265	615,764.00	3.16265	86	50 - 150	0.0000	+/-0.50			
D3-NMeFOSAA 833405.5 3.7573 771,761.00 3.757283 108 50-150 0.0000 +/-0.50	13C-PFOS	249841.4	3.466367	322,015.00	3.466367	78	50 - 150	0.0000	+/-0.50	1		
	D3-NMeFOSAA	833405.5	3.7573	771,761.00	3.757283	108	50 - 150	0.0000	+/-0.50	\top		

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
L3-SD11-2023 (23C2156-06)			Lab File ID: 23C2	56-06.d	Analyzed: 03/27/23 22:34				-
M8FOSA	258223.9	4.060517	284,207.00	4.060517	91	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	64230.25	2.6531	96,797.00	2.661333	66	50 - 150	-0.0082	+/-0.50	
M2PFTA	454656.3	4.394667	526,238.00	4.394667	86	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	89279.3	3.866833	139,880.00	3.86685	64	50 - 150	0.0000	+/-0.50	
MPFBA	324984.7	1.13325	315,974.00	1.13325	103	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	45373.75	2.9622	48,238.00	2.9622	94	50 - 150	0.0000	+/-0.50	
M6PFDA	471767.3	3.867333	593,447.00	3.867333	79	50 - 150	0.0000	+/-0.50	
M3PFBS	72242.89	2.02765	72,415.00	2.02765	100	50 - 150	0.0000	+/-0.50	
M7PFUnA	485395.7	4.009984	548,515.00	4.017983	88	50 - 150	-0.0080	+/-0.50	
M2-6:2FTS	53641.22	3.5176	78,286.00	3.517617	69	50 - 150	0.0000	+/-0.50	
M5PFPeA	241886.9	1.841083	247,662.00	1.8411	98	50 - 150	0.0000	+/-0.50	
M5PFHxA	349905.5	2.747217	384,630.00	2.747233	91	50 - 150	0.0000	+/-0.50	
M3PFHxS	64618.13	3.2923	66,286.00	3.2923	97	50 - 150	0.0000	+/-0.50	
M4PFHpA	311906.2	3.268017	377,382.00	3.268033	83	50 - 150	0.0000	+/-0.50	
M8PFOA	376558.2	3.526133	375,398.00	3.52615	100	50 - 150	0.0000	+/-0.50	
M8PFOS	93357.62	3.708283	104,096.00	3.7083	90	50 - 150	0.0000	+/-0.50	
M9PFNA	453394.3	3.709283	509,945.00	3.709283	89	50 - 150	0.0000	+/-0.50	1
MPFDoA	440059.8	4.153133	493,970.00	4.153133	89	50 - 150	0.0000	+/-0.50	1
D5-NEtFOSAA	97368.21	4.01745	106,675.00	4.02545	91	50 - 150	-0.0080	+/-0.50	1
D3-NMeFOSAA	126895.6	3.945867	139,410.00	3.945867	91	50 - 150	0.0000	+/-0.50	1

INTERNAL STANDARD AREA AND RT SUMMARY

	_		Reference	Reference		Area %		RT Diff		
Internal Standard	Response	RT	Response	RT	Area %	Limits	RT Diff	Limit	Q	
L3-SD10-2023 (23C2156-07)			Lab File ID: 23C2	156-07.d		Analyzed: 03/2	7/23 22:41			
M8FOSA	263369	4.060517	284,207.00	4.060517	93	50 - 150	0.0000	+/-0.50		
M2-4:2FTS	73115.12	2.6531	96,797.00	2.661333	76	50 - 150	-0.0082	+/-0.50		
M2PFTA	427293	4.394667	526,238.00	4.394667	81	50 - 150	0.0000	+/-0.50		
M2-8:2FTS	82221.41	3.86685	139,880.00	3.86685	59	50 - 150	0.0000	+/-0.50		
MPFBA	329082.5	1.12495	315,974.00	1.13325	104	50 - 150	-0.0083	+/-0.50		
M3HFPO-DA	46248.86	2.9622	48,238.00	2.9622	96	50 - 150	0.0000	+/-0.50		
M6PFDA	506867.8	3.867333	593,447.00	3.867333	85	50 - 150	0.0000	+/-0.50		
M3PFBS	70805.21	2.02765	72,415.00	2.02765	98	50 - 150	0.0000	+/-0.50		
M7PFUnA	454260.6	4.009984	548,515.00	4.017983	83	50 - 150	-0.0080	+/-0.50		
M2-6:2FTS	58036.05	3.517617	78,286.00	3.517617	74	50 - 150	0.0000	+/-0.50		
M5PFPeA	244401.2	1.8328	247,662.00	1.8411	99	50 - 150	-0.0083	+/-0.50		
M5PFHxA	345180.5	2.73905	384,630.00	2.747233	90	50 - 150	-0.0082	+/-0.50		
M3PFHxS	61098.75	3.2923	66,286.00	3.2923	92	50 - 150	0.0000	+/-0.50		
M4PFHpA	314208.8	3.268033	377,382.00	3.268033	83	50 - 150	0.0000	+/-0.50		
M8PFOA	355737.6	3.52615	375,398.00	3.52615	95	50 - 150	0.0000	+/-0.50		
M8PFOS	85897.59	3.7083	104,096.00	3.7083	83	50 - 150	0.0000	+/-0.50		
M9PFNA	466774.1	3.709283	509,945.00	3.709283	92	50 - 150	0.0000	+/-0.50		
MPFDoA	419749.6	4.153133	493,970.00	4.153133	85	50 - 150	0.0000	+/-0.50		
D5-NEtFOSAA	113562	4.01745	106,675.00	4.02545	106	50 - 150	-0.0080	+/-0.50		
D3-NMeFOSAA	129073.8	3.945867	139,410.00	3.945867	93	50 - 150	0.0000	+/-0.50		
L3-WSW2-2023 (MSMSD) (23C2156-08)			Lab File ID: 23C2	156-08.d		Analyzed: 03/22/23 10:31				
13C-PFOA	507709.2	3.16265	615,764.00	3.16265	82	50 - 150	0.0000	+/-0.50		
13C-PFOS	244630.3	3.466383	322,015.00	3.466367	76	50 - 150	0.0000	+/-0.50	1	
D3-NMeFOSAA	797486.7	3.757283	771,761.00	3.757283	103	50 - 150	0.0000	+/-0.50		
L3-WSW2-2023 FRB (23C2156-09)	1		Lab File ID: 23C2	156-09.d		Analyzed: 03/2	2/23 10:38			
13C-PFOA	492125.8	3.16265	615,764.00	3.16265	80	50 - 150	0.0000	+/-0.50		
13C-PFOS	244834.9	3.466367	322,015.00	3.466367	76	50 - 150	0.0000	+/-0.50		
D3-NMeFOSAA	732740.7	3.757283	771,761.00	3.757283	95	50 - 150	0.0000	+/-0.50	1	
			1							

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
L3-WSD2-2023 (23C2156-10)			Lab File ID: 23C2	56-10.d		Analyzed: 03/2	7/23 22:48		
M8FOSA	220311.4	4.060517	284,207.00	4.060517	78	50 - 150	0.0000	+/-0.50	Τ
M2-4:2FTS	52402.24	2.6531	96,797.00	2.661333	54	50 - 150	-0.0082	+/-0.50	
M2PFTA	372117.8	4.394667	526,238.00	4.394667	71	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	74972.2	3.86685	139,880.00	3.86685	54	50 - 150	0.0000	+/-0.50	
MPFBA	265790.2	1.13325	315,974.00	1.13325	84	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	37253	2.9622	48,238.00	2.9622	77	50 - 150	0.0000	+/-0.50	
M6PFDA	393561.1	3.867333	593,447.00	3.867333	66	50 - 150	0.0000	+/-0.50	
M3PFBS	57455.73	2.02765	72,415.00	2.02765	79	50 - 150	0.0000	+/-0.50	
M7PFUnA	382520.5	4.009984	548,515.00	4.017983	70	50 - 150	-0.0080	+/-0.50	
M2-6:2FTS	48010.54	3.517617	78,286.00	3.517617	61	50 - 150	0.0000	+/-0.50	
M5PFPeA	196160.3	1.8411	247,662.00	1.8411	79	50 - 150	0.0000	+/-0.50	T
M5PFHxA	278757.3	2.747233	384,630.00	2.747233	72	50 - 150	0.0000	+/-0.50	
M3PFHxS	51364.76	3.2923	66,286.00	3.2923	77	50 - 150	0.0000	+/-0.50	
M4PFHpA	264928.4	3.268033	377,382.00	3.268033	70	50 - 150	0.0000	+/-0.50	
M8PFOA	301147.3	3.52615	375,398.00	3.52615	80	50 - 150	0.0000	+/-0.50	
M8PFOS	74710.14	3.7083	104,096.00	3.7083	72	50 - 150	0.0000	+/-0.50	
M9PFNA	389172	3.7093	509,945.00	3.709283	76	50 - 150	0.0000	+/-0.50	1
MPFDoA	343958.3	4.153133	493,970.00	4.153133	70	50 - 150	0.0000	+/-0.50	1
D5-NEtFOSAA	93078.8	4.01745	106,675.00	4.02545	87	50 - 150	-0.0080	+/-0.50	1
D3-NMeFOSAA	121855.7	3.945867	139,410.00	3.945867	87	50 - 150	0.0000	+/-0.50	\top

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
L3-SD8-2023 (MS/MSD) (23C2156-11)			Lab File ID: 23C2	.56-11.d	Analyzed: 03/27/23 23:03					
M8FOSA	257102.7	4.060534	284,207.00	4.060517	90	50 - 150	0.0000	+/-0.50		
M2-4:2FTS	65421.82	2.6531	96,797.00	2.6531	68	50 - 150	0.0000	+/-0.50		
M2PFTA	422725.9	4.386567	526,238.00	4.394667	80	50 - 150	-0.0081	+/-0.50		
M2-8:2FTS	89182.12	3.86685	139,880.00	3.86685	64	50 - 150	0.0000	+/-0.50		
MPFBA	302306.4	1.12495	315,974.00	1.12495	96	50 - 150	0.0000	+/-0.50		
M3HFPO-DA	44565.36	2.962217	48,238.00	2.962217	92	50 - 150	0.0000	+/-0.50		
M6PFDA	474012.3	3.86735	593,447.00	3.867333	80	50 - 150	0.0000	+/-0.50		
M3PFBS	66801.14	2.02765	72,415.00	2.02765	92	50 - 150	0.0000	+/-0.50		
M7PFUnA	435830.3	4.01	548,515.00	4.009984	79	50 - 150	0.0000	+/-0.50		
M2-6:2FTS	55994.15	3.517633	78,286.00	3.509617	72	50 - 150	0.0080	+/-0.50		
M5PFPeA	231491.5	1.8328	247,662.00	1.8328	93	50 - 150	0.0000	+/-0.50		
M5PFHxA	329037.1	2.73905	384,630.00	2.73905	86	50 - 150	0.0000	+/-0.50		
M3PFHxS	59178.01	3.2923	66,286.00	3.2923	89	50 - 150	0.0000	+/-0.50		
M4PFHpA	293651.7	3.25995	377,382.00	3.25995	78	50 - 150	0.0000	+/-0.50		
M8PFOA	342298.5	3.52615	375,398.00	3.52615	91	50 - 150	0.0000	+/-0.50		
M8PFOS	89942.3	3.7083	104,096.00	3.7083	86	50 - 150	0.0000	+/-0.50		
M9PFNA	446827.3	3.7093	509,945.00	3.709283	88	50 - 150	0.0000	+/-0.50		
MPFDoA	398238.6	4.15315	493,970.00	4.153133	81	50 - 150	0.0000	+/-0.50		
D5-NEtFOSAA	95346.84	4.017467	106,675.00	4.01745	89	50 - 150	0.0000	+/-0.50		
D3-NMeFOSAA	129489.7	3.937883	139,410.00	3.937883	93	50 - 150	0.0000	+/-0.50		

INTERNAL STANDARD AREA AND RT SUMMARY

SOP-454 PFAS

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
L3-SD8-2023 FB (23C2156-12)	!		Lab File ID: 23C2	56-12.d	Analyzed: 03/22/23 11:50					
M8FOSA	194808.8	4.00455	267,796.00	4.00455	73	50 - 150	0.0000	+/-0.50	1	
M2-4:2FTS	73247.56	2.58715	92,871.00	2.58715	79	50 - 150	0.0000	+/-0.50		
M2PFTA	519532.5	4.329683	695,354.00	4.329683	75	50 - 150	0.0000	+/-0.50		
M2-8:2FTS	77443.84	3.8028	85,336.00	3.8028	91	50 - 150	0.0000	+/-0.50		
MPFBA	298953.1	1.0834	324,336.00	1.0834	92	50 - 150	0.0000	+/-0.50		
M3HFPO-DA	101874.4	2.904767	107,431.00	2.904767	95	50 - 150	0.0000	+/-0.50		
M6PFDA	442461.5	3.803317	496,031.00	3.803317	89	50 - 150	0.0000	+/-0.50		
M3PFBS	89283.34	1.96145	100,751.00	1.96145	89	50 - 150	0.0000	+/-0.50		
M7PFUnA	507648	3.954033	577,276.00	3.954033	88	50 - 150	0.0000	+/-0.50		
M2-6:2FTS	61067.68	3.453267	72,545.00	3.453267	84	50 - 150	0.0000	+/-0.50		
M5PFPeA	279110.3	1.7826	315,160.00	1.7826	89	50 - 150	0.0000	+/-0.50		
M5PFHxA	414251.2	2.680533	452,281.00	2.680533	92	50 - 150	0.0000	+/-0.50		
M3PFHxS	69060.52	3.2345	77,181.00	3.2345	89	50 - 150	0.0000	+/-0.50		
M4PFHpA	450864.4	3.203083	476,502.00	3.203083	95	50 - 150	0.0000	+/-0.50		
M8PFOA	514960.2	3.461933	544,943.00	3.461933	94	50 - 150	0.0000	+/-0.50		
M8PFOS	73668.36	3.644167	78,480.00	3.644167	94	50 - 150	0.0000	+/-0.50		
M9PFNA	504102.7	3.653183	498,456.00	3.653183	101	50 - 150	0.0000	+/-0.50		
MPFDoA	401862.8	4.096633	507,136.00	4.08865	79	50 - 150	0.0080	+/-0.50		
D5-NEtFOSAA	149364.1	3.9615	166,323.00	3.9615	90	50 - 150	0.0000	+/-0.50		
D3-NMeFOSAA	152509.1	3.88175	186,319.00	3.88175	82	50 - 150	0.0000	+/-0.50		

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
L3-SD9-2023 (23C2156-13)			Lab File ID: 23C2	156-13.d		Analyzed: 03/27/23 23:10				
M8FOSA	319008.6	4.0605	284,207.00	4.060517	112	50 - 150	0.0000	+/-0.50	1	
M2-4:2FTS	89187	2.6531	96,797.00	2.6531	92	50 - 150	0.0000	+/-0.50		
M2PFTA	502126.2	4.394667	526,238.00	4.394667	95	50 - 150	0.0000	+/-0.50		
M2-8:2FTS	115935.7	3.86685	139,880.00	3.86685	83	50 - 150	0.0000	+/-0.50		
MPFBA	366665.3	1.12495	315,974.00	1.12495	116	50 - 150	0.0000	+/-0.50		
M3HFPO-DA	56615.49	2.9622	48,238.00	2.962217	117	50 - 150	0.0000	+/-0.50		
M6PFDA	580097.1	3.867333	593,447.00	3.867333	98	50 - 150	0.0000	+/-0.50		
M3PFBS	80302.05	2.019367	72,415.00	2.02765	111	50 - 150	-0.0083	+/-0.50		
M7PFUnA	485523.8	4.009984	548,515.00	4.009984	89	50 - 150	0.0000	+/-0.50		
M2-6:2FTS	71877.88	3.517617	78,286.00	3.509617	92	50 - 150	0.0080	+/-0.50		
M5PFPeA	274837.3	1.8328	247,662.00	1.8328	111	50 - 150	0.0000	+/-0.50		
M5PFHxA	394892.4	2.739033	384,630.00	2.73905	103	50 - 150	0.0000	+/-0.50		
M3PFHxS	72844.18	3.2923	66,286.00	3.2923	110	50 - 150	0.0000	+/-0.50		
M4PFHpA	379324.2	3.25995	377,382.00	3.25995	101	50 - 150	0.0000	+/-0.50		
M8PFOA	421856.3	3.52615	375,398.00	3.52615	112	50 - 150	0.0000	+/-0.50		
M8PFOS	105453.8	3.7083	104,096.00	3.7083	101	50 - 150	0.0000	+/-0.50		
M9PFNA	541096.6	3.709283	509,945.00	3.709283	106	50 - 150	0.0000	+/-0.50		
MPFDoA	480805	4.153133	493,970.00	4.153133	97	50 - 150	0.0000	+/-0.50		
D5-NEtFOSAA	112699	4.01745	106,675.00	4.01745	106	50 - 150	0.0000	+/-0.50		
D3-NMeFOSAA	140323.9	3.945867	139,410.00	3.937883	101	50 - 150	0.0080	+/-0.50		
L3-SW5-2023 (23C2156-14RE1)			Lab File ID: 23C2	156-14RE1.d		Analyzed: 03/2	4/23 16:40			
13C-PFOA	520568.3	3.146167	524,777.00	3.154417	99	50 - 150	-0.0082	+/-0.50		
13C-PFOS	231989.4	3.450017	264,911.00	3.450033	88	50 - 150	0.0000	+/-0.50	1	
D3-NMeFOSAA	844614.7	3.740967	760,726.00	3.740983	111	50 - 150	0.0000	+/-0.50		
WA-SFW3A-2023 (23C2156-15)		•	Lab File ID: 23C2	156-15R.d	-	Analyzed: 03/2	2/23 12:06		-	
13C-PFOA	509341.6	3.16265	615,764.00	3.16265	83	50 - 150	0.0000	+/-0.50	Τ	
13C-PFOS	226258	3.466367	322,015.00	3.466383	70	50 - 150	0.0000	+/-0.50	1	
D3-NMeFOSAA	834196.3	3.757283	771,761.00	3.757283	108	50 - 150	0.0000	+/-0.50	1	
		1				1			_	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
WA-SD3-2023 (23C2156-16)			Lab File ID: 23C2156-16.d			Analyzed: 03/27/23 23:18				
M8FOSA	276110.1	4.0605	284,207.00	4.060517	97	50 - 150	0.0000	+/-0.50	Τ	
M2-4:2FTS	73657.47	2.6531	96,797.00	2.6531	76	50 - 150	0.0000	+/-0.50	1	
M2PFTA	444840.7	4.394667	526,238.00	4.394667	85	50 - 150	0.0000	+/-0.50		
M2-8:2FTS	93806.11	3.866833	139,880.00	3.86685	67	50 - 150	0.0000	+/-0.50		
MPFBA	333970.9	1.12495	315,974.00	1.12495	106	50 - 150	0.0000	+/-0.50	1	
M3HFPO-DA	45644.48	2.9622	48,238.00	2.962217	95	50 - 150	0.0000	+/-0.50		
M6PFDA	502887.6	3.867333	593,447.00	3.867333	85	50 - 150	0.0000	+/-0.50	1	
M3PFBS	73260.05	2.02765	72,415.00	2.02765	101	50 - 150	0.0000	+/-0.50		
M7PFUnA	467194.2	4.009984	548,515.00	4.009984	85	50 - 150	0.0000	+/-0.50		
M2-6:2FTS	69026.16	3.517617	78,286.00	3.509617	88	50 - 150	0.0080	+/-0.50		
M5PFPeA	247901.3	1.8328	247,662.00	1.8328	100	50 - 150	0.0000	+/-0.50		
M5PFHxA	357020.9	2.73905	384,630.00	2.73905	93	50 - 150	0.0000	+/-0.50		
M3PFHxS	62686.89	3.2923	66,286.00	3.2923	95	50 - 150	0.0000	+/-0.50		
M4PFHpA	332743.6	3.25995	377,382.00	3.25995	88	50 - 150	0.0000	+/-0.50		
M8PFOA	386559.1	3.526133	375,398.00	3.52615	103	50 - 150	0.0000	+/-0.50		
M8PFOS	94470.88	3.708283	104,096.00	3.7083	91	50 - 150	0.0000	+/-0.50		
M9PFNA	472739.9	3.709283	509,945.00	3.709283	93	50 - 150	0.0000	+/-0.50		
MPFDoA	420139.5	4.153117	493,970.00	4.153133	85	50 - 150	0.0000	+/-0.50		
D5-NEtFOSAA	105688.5	4.01745	106,675.00	4.01745	99	50 - 150	0.0000	+/-0.50		
D3-NMeFOSAA	134491	3.937867	139,410.00	3.937883	96	50 - 150	0.0000	+/-0.50		
WA-SW2-2023 (23C2156-17)			Lab File ID: 23C2	156-17.d		Analyzed: 03/2	2/23 10:59			
13C-PFOA	433670.5	3.16265	615,764.00	3.16265	70	50 - 150	0.0000	+/-0.50		
13C-PFOS	206291.1	3.466367	322,015.00	3.466367	64	50 - 150	0.0000	+/-0.50		
D3-NMeFOSAA	675158.7	3.757283	771,761.00	3.757283	87	50 - 150	0.0000	+/-0.50	1	
WA-WSW1-2023 (23C2156-18)		-	Lab File ID: 23C2	156-18R.d	-	Analyzed: 03/2	2/23 12:13	-	<u> </u>	
13C-PFOA	486917.4	3.16265	615,764.00	3.16265	79	50 - 150	0.0000	+/-0.50		
13C-PFOS	227981.9	3.466367	322,015.00	3.466383	71	50 - 150	0.0000	+/-0.50		
D3-NMeFOSAA	788639.6	3.7573	771,761.00	3.757283	102	50 - 150	0.0000	+/-0.50		
									_	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
WA-WSD1-2023 (23C2156-19)			Lab File ID: 23C2	Analyzed: 03/27/23 23:25					
M8FOSA	281781.7	4.060517	284,207.00	4.060517	99	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	82189.98	2.6531	96,797.00	2.6531	85	50 - 150	0.0000	+/-0.50	
M2PFTA	390600.4	4.394683	526,238.00	4.394667	74	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	109647.1	3.86685	139,880.00	3.86685	78	50 - 150	0.0000	+/-0.50	
MPFBA	353609	1.12495	315,974.00	1.12495	112	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	50797.71	2.9622	48,238.00	2.962217	105	50 - 150	0.0000	+/-0.50	
M6PFDA	537077.9	3.86735	593,447.00	3.867333	91	50 - 150	0.0000	+/-0.50	
M3PFBS	76089.5	2.02765	72,415.00	2.02765	105	50 - 150	0.0000	+/-0.50	
M7PFUnA	462326.2	4.01	548,515.00	4.009984	84	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	63994.16	3.517617	78,286.00	3.509617	82	50 - 150	0.0080	+/-0.50	
M5PFPeA	261356.5	1.8328	247,662.00	1.8328	106	50 - 150	0.0000	+/-0.50	
M5PFHxA	374830	2.739033	384,630.00	2.73905	97	50 - 150	0.0000	+/-0.50	
M3PFHxS	66567.54	3.2923	66,286.00	3.2923	100	50 - 150	0.0000	+/-0.50	
M4PFHpA	354391.3	3.25995	377,382.00	3.25995	94	50 - 150	0.0000	+/-0.50	
M8PFOA	414053.9	3.526133	375,398.00	3.52615	110	50 - 150	0.0000	+/-0.50	
M8PFOS	88919.63	3.7083	104,096.00	3.7083	85	50 - 150	0.0000	+/-0.50	
M9PFNA	458147.1	3.7093	509,945.00	3.709283	90	50 - 150	0.0000	+/-0.50	
MPFDoA	409597.9	4.153133	493,970.00	4.153133	83	50 - 150	0.0000	+/-0.50	1
D5-NEtFOSAA	85623.74	4.017467	106,675.00	4.01745	80	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	129680.1	3.945883	139,410.00	3.937883	93	50 - 150	0.0080	+/-0.50	1

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
WA-SD4-2023 (23C2156-20)			Lab File ID: 23C2	56-20.d	Analyzed: 03/27/23 23:32				
M8FOSA	280328.7	4.060517	284,207.00	4.060517	99	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	70079.03	2.644867	96,797.00	2.6531	72	50 - 150	-0.0082	+/-0.50	
M2PFTA	414066.9	4.38655	526,238.00	4.394667	79	50 - 150	-0.0081	+/-0.50	
M2-8:2FTS	100076.2	3.86685	139,880.00	3.86685	72	50 - 150	0.0000	+/-0.50	
MPFBA	309044.6	1.12495	315,974.00	1.12495	98	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	52724.72	2.9622	48,238.00	2.962217	109	50 - 150	0.0000	+/-0.50	
M6PFDA	450866.7	3.867333	593,447.00	3.867333	76	50 - 150	0.0000	+/-0.50	
M3PFBS	67130.57	2.019367	72,415.00	2.02765	93	50 - 150	-0.0083	+/-0.50	
M7PFUnA	441099.1	4.009984	548,515.00	4.009984	80	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	62960.71	3.517617	78,286.00	3.509617	80	50 - 150	0.0080	+/-0.50	
M5PFPeA	231747.4	1.8328	247,662.00	1.8328	94	50 - 150	0.0000	+/-0.50	
M5PFHxA	334527	2.73905	384,630.00	2.73905	87	50 - 150	0.0000	+/-0.50	
M3PFHxS	58165.59	3.2923	66,286.00	3.2923	88	50 - 150	0.0000	+/-0.50	
M4PFHpA	321121.9	3.25995	377,382.00	3.25995	85	50 - 150	0.0000	+/-0.50	
M8PFOA	345098	3.526133	375,398.00	3.52615	92	50 - 150	0.0000	+/-0.50	
M8PFOS	85989.41	3.7083	104,096.00	3.7083	83	50 - 150	0.0000	+/-0.50	
M9PFNA	437171.7	3.7093	509,945.00	3.709283	86	50 - 150	0.0000	+/-0.50	
MPFDoA	364803.5	4.153133	493,970.00	4.153133	74	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	93758.06	4.01745	106,675.00	4.01745	88	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	117460	3.937883	139,410.00	3.937883	84	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	
	response	Ki	Lab File ID: 23C2		71104 70	Analyzed: 03/2'		Linit	
WA-SD5-2023 (23C2156-21) M8FOSA	304425.8	4.060517	284,207.00	4.060517	107	50 - 150	0.0000	+/-0.50	<u> </u>
M2-4:2FTS	86445.48	2.644867	96,797.00	2.6531	89	50 - 150	-0.0082	+/-0.50	—
M2PFTA	468210.8	4.38655	526,238.00	4.394667	89	50 - 150	-0.0081	+/-0.50	
M2-8:2FTS	116843.4	3.86685	139,880.00	3.86685	84	50 - 150	0.0000	+/-0.50	+
MPFBA	371378.3	1.12495	315,974.00	1.12495	118	50 - 150	0.0000	+/-0.50	+
M3HFPO-DA	50661.23	2.962217	48,238.00	2.962217	105	50 - 150	0.0000	+/-0.50	_
M6PFDA	579825.1	3.859383	593,447.00	3.867333	98	50 - 150	-0.0080	+/-0.50	_
M3PFBS	80754.01	2.019367	72,415.00	2.02765	112	50 - 150	-0.0083	+/-0.50	_
M7PFUnA	527669.6	4.01	548,515.00	4.009984	96	50 - 150	0.0000	+/-0.50	_
M2-6:2FTS	70111.24	3.509633	78,286.00	3.509617	90	50 - 150	0.0000	+/-0.50	_
M5PFPeA	278329.7	1.8328	247,662.00	1.8328	112	50 - 150	0.0000	+/-0.50	
M5PFHxA	406860	2.73905	384,630.00	2.73905	106	50 - 150	0.0000	+/-0.50	
M3PFHxS	73604.15	3.292317	66,286.00	3.2923	111	50 - 150	0.0000	+/-0.50	
M4PFHpA	373625	3.259967	377,382.00	3.25995	99	50 - 150	0.0000	+/-0.50	
M8PFOA	427006.5	3.52615	375,398.00	3.52615	114	50 - 150	0.0000	+/-0.50	
M8PFOS	100718.1	3.7083	104,096.00	3.7083	97	50 - 150	0.0000	+/-0.50	
M9PFNA	523802.1	3.7093	509,945.00	3.709283	103	50 - 150	0.0000	+/-0.50	
MPFDoA	460239.2	4.153133	493,970.00	4.153133	93	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	102112.8	4.017467	106,675.00	4.01745	96	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	142949.2	3.937883	139,410.00	3.937883	103	50 - 150	0.0000	+/-0.50	
Blank (B334725-BLK1)			Lab File ID: B334	725-BLK1.d		Analyzed: 03/22	2/23 09:48		
13C-PFOA	617630.9	3.170883	615,764.00	3.16265	100	50 - 150	0.0082	+/-0.50	
13C-PFOS	297951	3.466367	322,015.00	3.466367	93	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	921788.4	3.757283	771,761.00	3.757283	119	50 - 150	0.0000	+/-0.50	
LCS (B334725-BS1)			Lab File ID: B334	725-BS1.d		Analyzed: 03/22	2/23 09:32	•	_
13C-PFOA	557636.4	3.16265	615,764.00	3.16265	91	50 - 150	0.0000	+/-0.50	
13C-PFOS	272549.5	3.466367	322,015.00	3.466367	85	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	819661.9	3.757283	771,761.00	3.757283	106	50 - 150	0.0000	+/-0.50	
Matrix Spike (B334725-MS1)			Lab File ID: B334	725-MS1R.d		Analyzed: 03/22	2/23 11:52		-
13C-PFOA	570185.2	3.16265	615,764.00	3.16265	93	50 - 150	0.0000	+/-0.50	
13C-PFOS	267587	3.4582	322,015.00	3.466383	83	50 - 150	-0.0082	+/-0.50	
D3-NMeFOSAA	863162.4	3.757283	771,761.00	3.757283	112	50 - 150	0.0000	+/-0.50	
Matrix Spike Dup (B334725-MSD1)			Lab File ID: B334'	725-MSD1.d		Analyzed: 03/22	2/23 10:02		
13C-PFOA	547820.9	3.16265	615,764.00	3.16265	89	50 - 150	0.0000	+/-0.50	Τ
13C-PFOS	258154.4	3.466367	322,015.00	3.466367	80	50 - 150	0.0000	+/-0.50	1
D3-NMeFOSAA	856397.9	3.757283	771,761.00	3.757283	111	50 - 150	0.0000	+/-0.50	+

INTERNAL STANDARD AREA AND RT SUMMARY

SOP-454 PFAS

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Blank (B334730-BLK1)			Lab File ID: B334'	Analyzed: 03/22/23 09:11					
M8FOSA	200360.1	4.00455	267,796.00	4.00455	75	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	69893.22	2.595367	92,871.00	2.595367	75	50 - 150	0.0000	+/-0.50	
M2PFTA	495992.7	4.3378	695,354.00	4.329683	71	50 - 150	0.0081	+/-0.50	
M2-8:2FTS	68224.73	3.8028	85,336.00	3.810767	80	50 - 150	-0.0080	+/-0.50	
MPFBA	264820	1.0834	324,336.00	1.0834	82	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	95410.07	2.904767	107,431.00	2.904767	89	50 - 150	0.0000	+/-0.50	
M6PFDA	410704.6	3.803317	496,031.00	3.803317	83	50 - 150	0.0000	+/-0.50	
M3PFBS	86623.02	1.969733	100,751.00	1.969733	86	50 - 150	0.0000	+/-0.50	
M7PFUnA	419663.9	3.954033	577,276.00	3.954033	73	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	65811.05	3.453267	72,545.00	3.453267	91	50 - 150	0.0000	+/-0.50	
M5PFPeA	271682.4	1.7826	315,160.00	1.7826	86	50 - 150	0.0000	+/-0.50	
M5PFHxA	400586	2.680533	452,281.00	2.680533	89	50 - 150	0.0000	+/-0.50	
M3PFHxS	66328.42	3.2345	77,181.00	3.2345	86	50 - 150	0.0000	+/-0.50	
M4PFHpA	438864.2	3.203083	476,502.00	3.203083	92	50 - 150	0.0000	+/-0.50	
M8PFOA	491043.4	3.461933	544,943.00	3.469917	90	50 - 150	-0.0080	+/-0.50	
M8PFOS	67528.39	3.644167	78,480.00	3.644167	86	50 - 150	0.0000	+/-0.50	
M9PFNA	458538.1	3.653183	498,456.00	3.653183	92	50 - 150	0.0000	+/-0.50	
MPFDoA	366064.4	4.096633	507,136.00	4.096633	72	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	116165.7	3.9615	166,323.00	3.9615	70	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	151231.3	3.88175	186,319.00	3.88175	81	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

SOP-454 PFAS

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
LCS (B334730-BS1)			Lab File ID: B334730-BS1.d			Analyzed: 03/22/23 09:04				
M8FOSA	226780.8	3.996567	267,796.00	4.00455	85	50 - 150	-0.0080	+/-0.50		
M2-4:2FTS	75567.98	2.595367	92,871.00	2.595367	81	50 - 150	0.0000	+/-0.50		
M2PFTA	542903.9	4.329683	695,354.00	4.329683	78	50 - 150	0.0000	+/-0.50		
M2-8:2FTS	80202.77	3.8028	85,336.00	3.810767	94	50 - 150	-0.0080	+/-0.50		
MPFBA	297320.2	1.0834	324,336.00	1.0834	92	50 - 150	0.0000	+/-0.50		
M3HFPO-DA	108321.5	2.904767	107,431.00	2.904767	101	50 - 150	0.0000	+/-0.50	-	
M6PFDA	453008.8	3.803317	496,031.00	3.803317	91	50 - 150	0.0000	+/-0.50		
M3PFBS	91646.48	1.969733	100,751.00	1.969733	91	50 - 150	0.0000	+/-0.50		
M7PFUnA	468952	3.954033	577,276.00	3.954033	81	50 - 150	0.0000	+/-0.50		
M2-6:2FTS	69334.91	3.453267	72,545.00	3.453267	96	50 - 150	0.0000	+/-0.50		
M5PFPeA	298426.5	1.7826	315,160.00	1.7826	95	50 - 150	0.0000	+/-0.50		
M5PFHxA	447316.8	2.680533	452,281.00	2.680533	99	50 - 150	0.0000	+/-0.50		
M3PFHxS	69093.2	3.2345	77,181.00	3.2345	90	50 - 150	0.0000	+/-0.50		
M4PFHpA	470778.3	3.203083	476,502.00	3.203083	99	50 - 150	0.0000	+/-0.50		
M8PFOA	534863.1	3.461933	544,943.00	3.469917	98	50 - 150	-0.0080	+/-0.50		
M8PFOS	65816.23	3.644167	78,480.00	3.644167	84	50 - 150	0.0000	+/-0.50		
M9PFNA	481604.8	3.653183	498,456.00	3.653183	97	50 - 150	0.0000	+/-0.50		
MPFDoA	423903.2	4.096633	507,136.00	4.096633	84	50 - 150	0.0000	+/-0.50		
D5-NEtFOSAA	132686.7	3.9615	166,323.00	3.9615	80	50 - 150	0.0000	+/-0.50		
D3-NMeFOSAA	166811.1	3.88175	186,319.00	3.88175	90	50 - 150	0.0000	+/-0.50		

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Blank (B334750-BLK1)			Lab File ID: B334'	Analyzed: 03/27/23 21:21				-	
M8FOSA	284158.8	4.0605	284,207.00	4.060517	100	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	79414.94	2.661333	96,797.00	2.661333	82	50 - 150	0.0000	+/-0.50	
M2PFTA	411368.1	4.394667	526,238.00	4.394667	78	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	105468.9	3.866833	139,880.00	3.86685	75	50 - 150	0.0000	+/-0.50	
MPFBA	315567.4	1.13325	315,974.00	1.13325	100	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	42999.74	2.970317	48,238.00	2.9622	89	50 - 150	0.0081	+/-0.50	
M6PFDA	494409.2	3.867333	593,447.00	3.867333	83	50 - 150	0.0000	+/-0.50	
M3PFBS	71420.16	2.02765	72,415.00	2.02765	99	50 - 150	0.0000	+/-0.50	
M7PFUnA	478104.2	4.017967	548,515.00	4.017983	87	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	65331.32	3.517617	78,286.00	3.517617	83	50 - 150	0.0000	+/-0.50	
M5PFPeA	247119.5	1.841083	247,662.00	1.8411	100	50 - 150	0.0000	+/-0.50	
M5PFHxA	364527.4	2.747233	384,630.00	2.747233	95	50 - 150	0.0000	+/-0.50	
M3PFHxS	63923.72	3.300333	66,286.00	3.2923	96	50 - 150	0.0080	+/-0.50	
M4PFHpA	338334.9	3.268033	377,382.00	3.268033	90	50 - 150	0.0000	+/-0.50	
M8PFOA	367859.5	3.526133	375,398.00	3.52615	98	50 - 150	0.0000	+/-0.50	
M8PFOS	92544.69	3.708283	104,096.00	3.7083	89	50 - 150	0.0000	+/-0.50	
M9PFNA	456970.9	3.709283	509,945.00	3.709283	90	50 - 150	0.0000	+/-0.50	
MPFDoA	435071.3	4.153117	493,970.00	4.153133	88	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	97437.16	4.025434	106,675.00	4.02545	91	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	125175.2	3.945867	139,410.00	3.945867	90	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
	Kesponse	KI			Alta 70			Liiiit	Q
LCS (B334750-BS1)		1	Lab File ID: B334	750-BS1.d	1	Analyzed: 03/2	7/23 21:13	1	
M8FOSA	320477.6	4.060534	284,207.00	4.060517	113	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	95225.9	2.661333	96,797.00	2.661333	98	50 - 150	0.0000	+/-0.50	
M2PFTA	468136.3	4.394683	526,238.00	4.394667	89	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	141405.8	3.86685	139,880.00	3.86685	101	50 - 150	0.0000	+/-0.50	
MPFBA	367362.2	1.13325	315,974.00	1.13325	116	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	57249.57	2.970333	48,238.00	2.9622	119	50 - 150	0.0081	+/-0.50	
M6PFDA	563476	3.86735	593,447.00	3.867333	95	50 - 150	0.0000	+/-0.50	
M3PFBS	82529.87	2.02765	72,415.00	2.02765	114	50 - 150	0.0000	+/-0.50	
M7PFUnA	596846.3	4.018	548,515.00	4.017983	109	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	74694.66	3.517617	78,286.00	3.517617	95	50 - 150	0.0000	+/-0.50	
M5PFPeA	282108.5	1.8411	247,662.00	1.8411	114	50 - 150	0.0000	+/-0.50	T
M5PFHxA	419647.3	2.747233	384,630.00	2.747233	109	50 - 150	0.0000	+/-0.50	
M3PFHxS	73543.89	3.30035	66,286.00	3.2923	111	50 - 150	0.0080	+/-0.50	
M4PFHpA	395939.4	3.268033	377,382.00	3.268033	105	50 - 150	0.0000	+/-0.50	T
M8PFOA	419533.7	3.52615	375,398.00	3.52615	112	50 - 150	0.0000	+/-0.50	
M8PFOS	107682	3.7083	104,096.00	3.7083	103	50 - 150	0.0000	+/-0.50	
M9PFNA	553751.2	3.709283	509,945.00	3.709283	109	50 - 150	0.0000	+/-0.50	T
MPFDoA	507475.6	4.15315	493,970.00	4.153133	103	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	111921.3	4.025466	106,675.00	4.02545	105	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	133745.1	3.945883	139,410.00	3.945867	96	50 - 150	0.0000	+/-0.50	
Blank (B335034-BLK1)			Lab File ID: B335)34-BLK1.d		Analyzed: 03/2	4/23 14:53		
13C-PFOA	516424.5	3.154417	524,777.00	3.1544	98	50 - 150	0.0000	+/-0.50	Τ
13C-PFOS	245065.3	3.4582	264,911.00	3.458183	93	50 - 150	0.0000	+/-0.50	1
D3-NMeFOSAA	758141.1	3.749133	760,726.00	3.740967	100	50 - 150	0.0082	+/-0.50	
LCS (B335034-BS1)		1	Lab File ID: B335)34-BS1.d	1	Analyzed: 03/2	4/23 14:38		
13C-PFOA	539308.2	3.1544	524,777.00	3.1544	103	50 - 150	0.0000	+/-0.50	Т
13C-PFOS	259158.8	3.458183	264,911.00	3.458183	98	50 - 150	0.0000	+/-0.50	\uparrow
D3-NMeFOSAA	788680.6	3.749117	760,726.00	3.740967	104	50 - 150	0.0082	+/-0.50	+
LCS Dup (B335034-BSD1)	B335034-BSD1) Lab File ID: B335034-BSD1.d Analyzed: 03/24/23 14:46							<u> </u>	
13C-PFOA	514861.5	3.1544	524,777.00	3.1544	98	50 - 150	0.0000	+/-0.50	Τ
13C-PFOS	251604.3	3.458183	264,911.00	3.458183	95	50 - 150	0.0000	+/-0.50	+
D3-NMeFOSAA	788948.7	3.740967	760,726.00	3.740967	104	50 - 150	0.0000	+/-0.50	+

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 CERTIFICATIONS

Certified Analyses included in this Report

Analyte

Certifications

EPA 537.1 in Drinking Water	
Perfluorobutanesulfonic acid (PFBS)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
Perfluorohexanoic acid (PFHxA)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
Perfluorohexanesulfonic acid (PFHxS)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
Perfluoroheptanoic acid (PFHpA)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
Perfluorooctanoic acid (PFOA)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
Perfluorooctanesulfonic acid (PFOS)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
Perfluorononanoic acid (PFNA)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
Perfluorodecanoic acid (PFDA)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
N-EtFOSAA (NEtFOSAA)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
Perfluoroundecanoic acid (PFUnA)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
N-MeFOSAA (NMeFOSAA)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
Perfluorododecanoic acid (PFDoA)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
Perfluorotridecanoic acid (PFTrDA)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
Perfluorotetradecanoic acid (PFTA)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
Hexafluoropropylene oxide dimer acid (HFPO-DA)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
11Cl-PF3OUdS (F53B Major)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
9Cl-PF3ONS (F53B Minor)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH,OH
OP-454 PFAS in Water	
Perfluorobutanoic acid (PFBA)	NH-P
Perfluorobutanesulfonic acid (PFBS)	NH-P
Perfluoropentanoic acid (PFPeA)	NH-P
Perfluorohexanoic acid (PFHxA)	NH-P
11Cl-PF3OUdS (F53B Major)	NH-P
9Cl-PF3ONS (F53B Minor)	NH-P
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	NH-P
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P
Perfluorodecanoic acid (PFDA)	NH-P
Perfluorododecanoic acid (PFDoA)	NH-P
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH-P
Perfluoroheptanesulfonic acid (PFHpS)	NH-P
N-EtFOSAA (NEtFOSAA)	NH-P
N-MeFOSAA (NMeFOSAA)	NH-P
Perfluorotetradecanoic acid (PFTA)	NH-P
Perfluorotridecanoic acid (PFTrDA)	NH-P
4:2 Fluorotelomersulfonic acid (4:2FTS A)	NH-P
Perfluorodecanesulfonic acid (PFDS)	NH-P
Perfluorooctanesulfonamide (FOSA)	NH-P
Perfluorononanesulfonic acid (PFNS)	NH-P
Perfluoro-1-hexanesulfonamide (FHxSA)	NH-P
Perfluoro-1-butanesulfonamide (FBSA)	NH-P
Perfluorohexanesulfonic acid (PFHxS)	NH-P
Perfluoro-4-oxapentanoic acid (PFMPA)	NH-P
Perfluoro-5-oxahexanoic acid (PFMBA)	NH-P
× ,	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SOP-454 PFAS in Water	
Perfluoropetanesulfonic acid (PFPeS)	NH-P
Perfluoroundecanoic acid (PFUnA)	NH-P
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH-P
Perfluoroheptanoic acid (PFHpA)	NH-P
Perfluorooctanoic acid (PFOA)	NH-P
Perfluorooctanesulfonic acid (PFOS)	NH-P
Perfluorononanoic acid (PFNA)	NH-P
SOP-466 PFAS in Soil	
Perfluorobutanoic acid (PFBA)	NH-P
Perfluorobutanesulfonic acid (PFBS)	NH-P
Perfluoropentanoic acid (PFPeA)	NH-P
Perfluorohexanoic acid (PFHxA)	NH-P
11Cl-PF3OUdS (F53B Major)	NH-P
9Cl-PF3ONS (F53B Minor)	NH-P
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	NH-P
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P
Perfluorodecanoic acid (PFDA)	NH-P
Perfluorododecanoic acid (PFDoA)	NH-P
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH-P
Perfluoroheptanesulfonic acid (PFHpS)	NH-P
N-EtFOSAA (NEtFOSAA)	NH-P
N-MeFOSAA (NMeFOSAA)	NH-P
Perfluorotetradecanoic acid (PFTA)	NH-P
Perfluorotridecanoic acid (PFTrDA)	NH-P
4:2 Fluorotelomersulfonic acid (4:2FTS A)	NH-P
Perfluorodecanesulfonic acid (PFDS)	NH-P
Perfluorooctanesulfonamide (FOSA)	NH-P
Perfluorononanesulfonic acid (PFNS)	NH-P
Perfluoro-1-hexanesulfonamide (FHxSA)	NH-P
Perfluoro-1-butanesulfonamide (FBSA)	NH-P
Perfluorohexanesulfonic acid (PFHxS)	NH-P
Perfluoro-4-oxapentanoic acid (PFMPA)	NH-P
Perfluoro-5-oxahexanoic acid (PFMBA)	NH-P
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P
Perfluoropetanesulfonic acid (PFPeS)	NH-P
Perfluoroundecanoic acid (PFUnA)	NH-P
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH-P
Perfluoroheptanoic acid (PFHpA)	NH-P
Perfluorooctanoic acid (PFOA)	NH-P
Perfluorooctanesulfonic acid (PFOS)	NH-P
Perfluorononanoic acid (PFNA)	NH-P
remucronomanore actu (r r tvA)	1111-1

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
MA	Massachusetts DEP	M-MA100	06/30/2023
CT	Connecticut Department of Public Health	PH-0821	12/31/2024
NY	New York State Department of Health	10899 NELAP	04/1/2024
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2024
NJ	New Jersey DEP	MA007 NELAP	06/30/2023
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2023
ME	State of Maine	MA00100	06/9/2023
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2023
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2023
MI	Dept. of Env, Great Lakes, and Energy	9100	06/30/2023
ОН	Ohio Environmental Protection Agency	87781	04/1/2024

23C2156	AH

				http://www.g	oacelabs.	<u>com</u>						Re 07/13	/2021			
vtica	Phone: 413-525-2332				CHAIM	OF CUSTO	DY RECC		uce Street ongmeadov	v, MA 010.		J				Page
yuu	Fax: 413-525-6405	ſ	Le		ecolesión	e		OR OVER WE				ANAL	YSIS REQU	ESTED		•
	Access COC's and Support Reques	ts 7	7-Day		10-Day		O	Field Fil	tered		3					² Preserv
	ENAC	1	PFAS 10-Day		Due Date		0	Lab to f			3	5				0
	TS, ALTON, NH 03			(051-512-043) (051-512-043)				9191112112	STORAGE STREET, STORAGE STREET, STORAGE ST		ని	i, c				
5 ~	5100 0018		I-Day		3-Day		0	Field Fil Lab to I		1		Diluti				ĺ
	ONYX RAYMOND IAL DRIVE, RAYMOND		?-Day		4-Day	(DALCHAR)	0 999		nitei		Ę	0				
<u>۲۲ م</u>			Format:	PDF	EXCEL	\square		PCB O	NLY		Ē	8				
	GREENWOOD		Other:								537.1	sotop				32
:				a Pkg Required:		······	SOXH		L		Li Li	3				÷
				20 metr				SOXHLET	ſ		<u> </u>					
]		H	***** *: d	enawuns	ich@ n	netroce	t. ne	<u>f</u>			¥ ا	LAS S				Glass
		eginning ate/Time	Ending Date/Time	COMP/GRAB	¹ Matrix Code	Conc Code	VIALS	GLASS PLASTI	C BACTERIA	ENCORE	PFAS	<u>в</u>				-
	EB-AUGER 3/	1623	11:20	GRAB	0	C		1								Glassw
2	EB-SPADE 3/	1623	11:25	GRAB	Ö	C		1				5				Prepac
3		16 23	(1:30	GRAB	0	C		2			~					'Pa
4		1623		GRAB	SW	u		2	-		~					responsi from
		16 23		GRAB	SW	u		2			~					' M
		16 23		GRAB	SED	u		1								GŴ WN
7		16 23		GRAB	SED	u		1								DW
<u>:/</u> &	L3-WSW2-2023 (ms/min)3			GRAB	SW	4/0		- ·								A = S =
$\frac{\partial}{\partial}$				}		$\frac{\pi}{c}$										SL SOI
(116 23		GRAB	0	<u> </u>					•					l 0 ≏ def
		116 23		GRAB	DED	<u> </u>										2 <u>Pre</u>
sel				AB RED	wre	70		SW	- su	rfa	CE H	SATO	ع			1 = lc
al.				LDER			7	SED	- SE	DIM	ENT					H = I
e)	Date/Time:	al curat	estimes:	alugamentas]							[M - 1
17											Required	ŧ		ring codes to i tration within		N = 1
P	39 Date/Time: 3/20/23 /(30)-								MCP Certif				Code colu	mn above:		S = S
<u> </u>								"	RCP Certif		Required	H - High; A	W - Medium; I Unkr	L·Low; C·C nown	lean; U	D
Ŭ'					1		······	· · · ·					QIIIA	0017		B = S
	Date/Time:								ж	A State DW	Required					X = S
		dinita e			PWSID #	<u></u>			·			NELAC	SHIPPER BURNINGS	AP, LLC Accre	dited	T - S
e)	Date/Time: Pr	oject Enti	ty Government	5	Municipa	dina		MWRA	1		WRTA		Other	Chromatog	1(20)	Thio
	Date/Time:		Federal		21 J	any and a second s		Schoo								0=0
			City	Ē.	Brownfie	ld	Ē	M8TA								defir
ort	537.1m (isotope dilut	ion) b	ecasu	e of volu	ume.	JLH 4	/6/23	3 Chai analy	n of Custo /ses the la	idy is a le boratory	gal docur will perfe	nent that r orm. Any r	nust be com nissing infor	omitted info plete and ac mation is no will try to a	ccurate ar	nd is use oratory's
												-	be held ac	-		-

.

			s A	1300	1156			1				
Phone: 413-525-2332		<u>hti</u>	o://www	pacelabs.c		DY RECORD	39 Spruce Street East Longmeadov	# 381 Rev.	- •			
Fax: 413-525-6405			et Tim	la cialiti	2000 - N. A.	$\frac{1}{2}$		0	ANAL	YSIS RE	QUEST	<u>FD</u>
Access COC's and Support Requests	7-Day			10-Day		0	Field Filtered	3				
NAC	PFAS 10-Da	ıy (std)		Due Date:		0	Lab to Filter	NO S				
, ALTON, NH 03809		Factor.	a a put a ca	Required		() ()	Hieldson messennis	3 .t				
>	1-Day			3-Day		0	Field Filtered	2				
IX RAYMOND	2-Day			4-Day		0	Lab to Filter	101				
DRIVE, RAYMOND, NH					951) (Delli	AST AN OWNER		Ż				
	Format	PDF		FXCFI			PCB ONLY	< 9		-		

lytical [°]

ENAC	PFAS 10-Day (std)	Due Date:	U Lab to 11		ંદ		Ć
1075, ALTON, NH 03809	Raso-Aapp	oval Roquired	Brencolacerheite				<u>``.</u>
5-810D	1-Day	3-Day 🗌	O Field Filte	red 🥑 🤊	3		
ONYX RAYMOND	Z-Day	4-Day	O Lab to Fil	ter 🗸 🗸	Diwti		3
TRIML DRIVE, RAYMOND, NH		Dava Be		2			i,
0-681	Format: PDF 💽	🕈 EXCEL 🛄	PCB ON	LY S	Š.		2
D GREENWOOD	Other:		SOXHLET	3	sotape		ġ,a
	CLP Like Data Pkg Requ				X		č
	Email To: tage m	nsch@metroco	NON SOXHLET	_			
J			st. net	_	E		Glass
Client Sample ID / Description Beginning Date/Time	Ending Date/Time COMP/GR	AB ^{'Matrix} Conc Code	VIALS GLASS PLASTIC	BACTERIA ENCORE	1 L		
1 13-508-2023 (MYMOD) 3/16/23	14:20 GRAN	3 SED U	3		4	GI	lassw
2 L3-SD8-2023 FB 3/16/23		3 0 C	1		4	Pr	epacl
3 13-509-2023 3/16/23	14:50 GRAI	B SED U				rec	*Pac sponsil
4 L3-SW5-2023 3/16/23	15:25 GRA	B SW U	2				from
	16:45 GRA	B SW U	2				1 <u>Ma</u>
6 WA-SD3-2023 3/16/23	17:20 GRA	B SED W	<u> </u>	<u> </u>	<u> </u>		GW WW DW
7 WA - SW2 - 2023 3/16/23	17:40 GRA	BSWU	2]		Å ≠
	18:10 GRA		2				S = SL -
4 WA-WSD1-2023 3/16/23	18:45 GRAE	S SED W					50L 0 =
	19:05 GRAI	3 SED L			4		def:
e) Date/Time: Client Con Sch 3/20/23 12:00 MS/1	nments: MSD LAB R	LEQUIRED	SW -	SURFACE WI	ATER		² <u>Pre</u> I = Ic
	THE ORDE		SED.	- SEDIMENT			H = ŀ
784	and annul teachermonts						M - M
and place/time: 1630				MA MCP Required		ving codes to indicate	N = M
1 00 Rate Jins: 1/201				MCP Certification Form Required	11	Eration within the Conc	
1 3.9 Bate 1/1 18: 1630				CT RCP Required	H - High; M - Medium; I	L - Low; C - Clean; U ·	\$ = S
g) Date/Time:				RCP Certification Form Required	4 Unkr	nown	B≂S
Date/Time:				MA State DW Required	1		X = S
All and a second s		PWSID #			NELAC and AlHA-L	AP, LLC Accredited	T = S
e) Date/Time: Project Er	ntîty	I			Other		Thios
	Government	Municipality	MWRA	WRTA		Chromatogram	~ <i>(</i>
Date/Time:	Federal	21 J	School		[AIHA-LAP,LLC	0 ≈ C defin
	City	Brownfield	MBTA		l		
			Discla	imer: Pace Analytical is n	ot responsible for any	omitted information on ti	he Ch
			4	of Custody is a legal docu		•	
· · · · ·			4 · ·	es the laboratory will perf			-
				ical values your partnersh	not be held ac		22 II I B

Page **2**

² Preserva

bttp://www.pacelabs.com Doc # 381 Rev_C 07/13/2 ViiCal Phone: 413-525-2332 CHAIH OF CUSTODY RECORD 39 Spruce Streat East Longmeadow, MA 01028 Fax: 413-525-6405 Interview Price P	
Access COC's and Support Requests 7-Day 10-Day O Field Filtered ENAC PFAS 10-Day (std) Due Date: O Lab to Filter IOTS ALTON, NH O3809 ACCMS/ TAXES O Field Filtered S-Stoo 1-Day 3-Day O Field Filtered S S-Stoo 1-Day 3-Day O Field Filtered S ONYx CAP moND 2-Day 4-Day O Lab to Filter ONYx RAY mOND 2-Day 4-Day O Lab to Filter ONYx RAY mOND 2-Day 4-Day O Lab to Filter ONYx RAY mOND Under the Control SOXHLET NON For CLP Like Data Pkg Required: SOXHLET NON SOXHLET I Email To: Tage Methocast,	Page
IDIS ALTON, NH 03809 ALTON, NH 03809 O Field Filtered S-\$100 1-Day 3-Day O Field Filtered O Field Filtered ONYX RAY MOND 2-Day 4-Day O Lab to Filter Image: Compare the second seco	
Indian DRIVE, RAYMOND NH Pormat: PDF PDF PCB ONLY 0- 681 Format: PDF EXCEL PCB ONLY 0D GREENWOOD Other: SOXHLEI Image: SoxHLEI	2 Preserva
Indian DRIVE, RAYMOND NH Pormat: PDF PDF PCB ONLY 0- 681 Format: PDF EXCEL PCB ONLY 0D GREENWOOD Other: SOXHLEI Image: SoxHLEI	
Indian DRIVE, RAYMOND NH Pormat: PDF PDF PCB ONLY 0- 681 Format: PDF EXCEL PCB ONLY 0D GREENWOOD Other: SOXHLEI Image: SoxHLEI	
Indian DRIVE, RAYMOND NH Pormat: PDF PDF PCB ONLY 0- 681 Format: PDF EXCEL PCB ONLY 0D GREENWOOD Other: SOXHLEI Image: SoxHLEI	
D-681 Format: PDF EXCEL PCB ONLY D-6REE.NWOOD Other: SOXHLE I Image: SoxHLE I Image: SoxHLE I Imail To: CLP Like Data Pkg Required: Imail To: SOXHLE I Imail To: Email To: Tage: Method Cast. Net NON SOXHLE I Imail To: For. To: For. To: Imail To: Cast. Net Client Sample ID / Description Beginning Ending COMP/GRAB Imailtrix Conc Code VIALS GLASS PLASTIC BACTERIA ENCORE	
Email To: TOGO MethoCOST. NeT NON SOXHLET For To # Cleving MethoCOST. NeT For To # Cleving MethoCOST. Net NON SOXHLET Client Sample ID / Description Beginning Date/Time Ending COMP/GRAB Matrix Code Cone Code VIALS GLASS PLASTIC BACTERIA ENCORE	
Email To: TOGO MethoCOST. NeT NON SOXHLET For To # Cleving MethoCOST. NeT For To # Cleving MethoCOST. Net NON SOXHLET Client Sample ID / Description Beginning Date/Time Ending COMP/GRAB Matrix Code Cone Code VIALS GLASS PLASTIC BACTERIA ENCORE	
Email To: TOGO MethoCOST. NeT NON SOXHLET For To # Cleving MethoCOST. NeT For To # Cleving MethoCOST. Net NON SOXHLET Client Sample ID / Description Beginning Date/Time Ending COMP/GRAB Matrix Code Cone Code VIALS GLASS PLASTIC BACTERIA ENCORE	
For To # clerburunsch@ metricast. net Client Sample ID / Description Beginning Date/Time Ending Date/Time COMP/GRAB Matrix Code Conc Code VIALS GLASS PLASTIC BACTERIA ENCORE	
Client Sample ID 7 Description Beginning Date/Time COMP/GRAB COMP/GRAB Conc Code VIALS GLASS PLASTIC BACTERIA ENCORE	
Control Sample D / Description Date/Time Comp/GRAB Code Conc Code VIALS GLASS PLASTIC BACTERIA ENCORE Code 21 WA -S D5 - 2023 3/16/23 19:20 GRAPS SED U 1 1 1	Glassv
21 WA-SD5-2023 3/16/23 19:20 GRAB SED U I	
Image: state stat	Glasswa
	Prepack
	*Pace
	responsib
	from
	1.669
	WW
	DW =
	S ≈ Si
	SL = SOL
	defin
2 Date/Time: 3/20/23 12:00 MS/MSD LAB REQUIRED SW-SURFACE WATER	² Prese I = lcec
1-1 3/20/23 DD BOTTLE ORDER #2302147 SED-SEDIMENT	H = HC
Date/Time: //20 Detection and Resourcements Special Resourcements	M = Me
MA MCP Bequired Please use t	following codes to indicate N = Nit
a max ("#) mur up and a company (") and a compan	concentration within the Conc N = Nit
	dium; L - Low; C - Clean; U -
) Date/Time: RCP Certification Form Required	Unknown B = Soc
Date/Time:	
inA state by Registed	X = Soc
) Date/Time: Project Entity	T = Soc
Government Municipality MWRA WRTA	Thiosul
Date/Time: Federal 21 J School	Chromatogram
City Brownfield M8TA	define
Disclaimer: Pace Analytical is not responsible Chain of Custody is a legal document that must analyses the laboratory will perform. Any miss Analytical values your partnership on each proj not be	e complete and accurate and is used information is not the laboratory's re

39 Spruce St. East Longmeadow, MA. 01028 P: 413-525-2332 F:413-525-6405

www.pacelabs.com

ENV-FRM-ELON-0009V02_Sample Receiving Checklist 1-12-2023

Log In Back-Sheet

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False statement will be brought to the attention of the Client - True or False

Pace

PEOPLE	ADVANCING	SCIENCE

Client_E									Tru	ie	False
Project_O	nyx Raymon	<u>'d</u>	·····						y.	7	
	quired No					eceived c			¥	7	
Deliverable F	Package Req. <u>NO</u>				<u></u>	eceived i	n Cooler			1	
Location	Raymind, N	1+			<u> </u>	ustody Se	eal: DATE	TIM	<u> </u>	J • /	
PWSID# (Wh	en Applicable)	VA			<u></u>	OC Relino	uished			¥	
Arrival Meth					C	OC/Samp	les Labels	Agree		<u>r</u>	
					A	ll Sample	s in Good	Condition	E	1 ,	
	/ Date / Time ME			12216				ithin Holding		3	
Received by	By / Date / Time $\underline{\mathcal{M}}$	<u></u> Z	In h	$\frac{1}{2}$ $\frac{1}{7}$	16					7	
				50			ough Volu		<u>~</u>	- 7	
Temperature	Method <u>GUN</u>		$\frac{\pi}{7\alpha}$		<u>P</u>	roper Me	dia/Conta	iner Used	<u>L</u>	2 7	
Temp	< 6º C Actual Tempera	ature	<u>>· 1</u>	·····		plitting S	amples Re	quired	L	J	
Rush Sample	es: Yes / No Notify				IV.	1S/MSD				<u> </u>	
Short Hold:	Yes / No Notify				т	rip Blank:	s		Ľ]	Ø,
Notes	regarding Samples	/000 0	utside	of SOP:					· [7	1 /	
	regularing barriples	<u></u>				ab to Filte	ers			- x	
			<u></u>			OC Legib		a ali all'in aki			
	<u></u>					_		eck all inclu			rt 1/
·					C	lient L	An An	alysis	Sampler I	Name	
					P	roject		s 🛛	Collection	n Date/Tim	
										7	
					A	All Samp	les Prop	er pH:	N/A) C]	
Contain	er (Circle when applicable) UnP	НСІ	HNO3	- A H2SO4	II Samp	les Prop	er pH: NaS2O3	N/A C] ervative	
	er (Circle when applicable Amber Plastic) UnP	нсі	HNO3		•	· ·	•	N/A C] ervative	
Contain 1L 500 mL) UnP	HCI	HNO3		•	Trizma	•	N/A C] ervative	
1L 500 mL 250 mL	Amber Plastic Amber Plastic Amber Plastic) UnP	HCI	HNO3		•	· ·	•	N/A C] ervative	
1L 500 mL 250 mL Other	Amber Plastic Amber Plastic Amber Plastic Amber Clear Plastic		HCI	HNO3		•	Trizma	•	Other Prese] ervative	
1L 500 mL 250 mL Other <i>A</i> 1602	Amber Plastic Amber Plastic Amber Plastic Amber Clear Plastic Amber Clear		HCI	HNO3		•	Trizma	•	N/A C] ervative	
1L 500 mL 250 mL Other / 16oz 8oz	Amber Plastic Amber Plastic Amber Plastic Amber Clear Clear Amber Clear Amber Clear		HCI	HNO3		•	Trizma	•	Other Prese] ervative	
1L 500 mL 250 mL Other <i>J</i> 16oz 8oz 4oz	Amber Plastic Amber Plastic Amber Plastic Amber Clear Plastic Amber Clear Amber Clear Amber Clear Amber Clear		HCI	HNO3		•	Trizma	•	Other Prese] ervative	
1L 500 mL 250 mL Other / 16oz 8oz 4oz 2oz	Amber Plastic Amber Plastic Amber Plastic Amber Clear Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear		HCI	HNO3		•	Trizma	•	Other Prese] ervative	
1L 500 mL 250 mL Other / 16oz 8oz 4oz 2oz Col/Bac	Amber Plastic Amber Plastic Amber Plastic Amber Clear Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear teria		HCI	HNO3		•	Trizma	•	Other Prese] ervative	
1L 500 mL 250 mL Other / 16oz 8oz 4oz 2oz Col/Bac Flashpo	Amber Plastic Amber Plastic Amber Plastic Amber Clear Plastic Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear teria		HCI	HNO3		•	Trizma	•	Other Prese] ervative	
1L 500 mL 250 mL Other / 16oz 8oz 4oz 2oz Col/Bac Flashpo Plastic F	Amber Plastic Amber Plastic Amber Plastic Amber Clear Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear teria int Bag		HCI	HNO3		•	Trizma	•	Other Prese] ervative	
1L 500 mL 250 mL Other A 16oz 8oz 4oz 2oz Col/Bac Flashpo Plastic E SOC KIt	Amber Plastic Amber Plastic Amber Plastic Amber Clear Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear teria int Bag		HCI	HNO3		•	Trizma	•	Other Prese] ervative	
1L 500 mL 250 mL Other / 16oz 8oz 4oz 2oz Col/Bac Flashpo Plastic E SOC KIt Perchlo	Amber Plastic Amber Plastic Amber Plastic Amber Clear Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear teria int Bag		HCI	HNO3		•	Trizma	•	Other Prese] ervative	
1L 500 mL 250 mL Other / 16oz 8oz 4oz 2oz Col/Bac Flashpo Plastic E SOC Klt Perchlo Encore	Amber Plastic Amber Plastic Amber Plastic Amber Clear Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear teria int Bag		HCI	HNO3		•	Trizma	•	Other Prese] ervative	
1L 500 mL 250 mL Other / 16oz 8oz 4oz 2oz Col/Bac Flashpo Plastic E SOC KIt Perchlo	Amber Plastic Amber Plastic Amber Plastic Amber Clear Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear teria int Bag		HCI	HNO3	H2SO4	•	Trizma	•] ervative	

1	Planning Board Minutes
2	April 20, 2023 @ 7:00 PM Media Center Raymond High School
3 4	45 Harriman Hill Road, Raymond, NH 03077
5	
6	Planning Board Members Present:
7 8	Dee Luszcz
9	Jim McLeod
10	Bob McDonald
11	Gretchen Gott
12	Dave Rice
13 14	Patricia Bridgeo Don Roy (Alternate)
15	
16	Planning Board Members Absent:
17	None
18 19	Staff Present:
20	Madeleine Dilonno - Circuit Rider Planner, RPC
21	
22	Pledge of Allegiance: Recited by all in attendance.
23	
24 25	Meeting called to order: The meeting started at approximately 7:00 pm.
23 26	The meeting started at approximately 7.00 pm.
27	Roll Call:
28	Gretchen Gott, Maddie Dilonno (Rockingham Planning Commission), Jim McLeod, Dee
29	Luszcz, Dave Rice, Bob McDonald, Tricia Bridgeo.
30 31	Public Hearing:
32	
33	Application # 2022-008: A SITE PLAN application is being submitted by Wayne Morrill
34	of Jones & Beach Engineers, Inc. on behalf of ONYX Partners LTD. They are proposing
35 36	to construct a 550,025 S.F. industrial distribution warehouse with associated loading docks, truck parking, and employee vehicle parking. Property is located on Industrial
30 37	Drive and Raymond Tax Map 22 / Lots 44,45,46, & 47 and Raymond Tax Map 28-3/Lot
38	120-1.
39	
40	Dan Roy, Planning Board Alternate, joined the Board at approximately 7:03pm as an
41 42	unseated member.
42 43	Mrs. Luszcz explained that this application was a continuance even though the agenda
44	did not list it as such and that it would only be a six-member board because the Board
45	of Selectmen have not chosen a representative to the Board yet.
46	
	Page 1 of 7

Mr. Anton Melchionda, the owner of record, stated that they would like to start the 47 hearing by going over the correspondence to make sure all the corrections were made. 48 49 50 Wayne Morrill of Jones and Beach engineers, Inc, explained that they brought consultants with them to present the VII traffic analysis, a letter about parking and a 51 drainage amendment presentation. Mr. Morrill stated that they would not meet with GZA 52 until GZA agrees to a date to have a public meeting. 53 54 Jeff Dirk with Vanasse and Associates joined that applicant and stated that he would 55 respond to the questions and comments that were submitted at the last meeting. Mr. 56 57 Dirk said that the square footage of the building was reconciled to 550,025 square feet and they provided new calculations for the Board. The difference between the original 58 trip generation and the updated calculations resulted in about 80 additional trips daily. 59 Mr. Dirk suggested perhaps in providing a monitoring program to validate the trips 60 because they don't have a tenant. 61 62 63 Mr. Roy asked if they are going to allow tandem trailers? 64 Mr. Morrill said they are not anticipating that type of truck for the facility. Mr. Morrill said 65 66 there are enough auxiliary parking spaces that it could accommodate the unhooking of a trailer and get another cab to bring another load off of the site. The site is designed for 67 a standard type of tractor trailer. 68 69 Ms. Gott commented that she is not a fan of not knowing who the client is. 70 71 72 Mr. Melchionda responded saying that they are only going to market the building to a single tenant. What they have designed is the way the trucks have to operate. The 73 traffic is very controlled. 74 75 76 Mr. Dirk said they will contact the New Hampshire Department of Transportation regarding the nose of the median and moving the sign back. Mr. Dirk continued with 77 questions 4 and 5 which were both about access to the pond. He said the applicant has 78 79 agreed to widen the roadway and provide a 5-foot shoulder along the south side of Industrial Drive. 80 81 82 Ms. Gott asked if the applicant was aware of the Piping Plovers that nest on the ramp going down into the pond. There is also a blandings turtle that needs to be considered. 83 84 85 Mr. Melchionda said they could block off the area. 86 87 Mr. Dirk continued to explain that they are increasing the corner radius from Old 88 Manchester Road to Industrial Drive so the truck can turn without crossing the center line on either road. 89 90 91 Mr. McLeod quoted RSA 231:190 and :191 regarding limits on the roads. 92

Ms. Gott suggested putting in an OPTICON for emergency vehicles at the intersection. 93 94 Mr. Morrill explained that there are 326 parking spaces at the front of the building. They 95 are estimating that there will be an office on this building, roughly 17,500 square feet of 96 space to accommodate 52.5 cars daily for the office workers and the warehouse 97 workers would take up 208 spaces. The trucking operation is a separate operation 98 around the entire site. Mr. Morrill reported that 211 tractor trailer parking spaces would 99 be needed, and they are showing 244. Mr. Morrill said there would not be showers in 100 the facility or a cafeteria, it would strictly be a warehouse facility. 101 102 103 Eric Poulin from Jones and Beach stated that contamination has been a big concern with storm water being directed in the direction of the tannery site and concerns with 104 ground water and drinking water. They have submitted updated drainage plans and a 105 brief drainage summary. Mr. Poulin stated that they added some pretext catch basins 106 with additional sediment removal. The other thing they decided to add was oil/water 107 separators. In Pond 5 they went with a focal point filtration system where the water is 108 109 filtered through the filter media and is discharged through the underdrain. They also removed the large surface pond over by lagoon 3 from the tannery because they did not 110 want to discharge to lagoon 3 and added another subsurface storm Tek system 111 112 underneath the pavement that will provide the detention and treatment of the stormwater and moved the discharge point downgrade of lagoon 3. They have added to 113 the northwest corner a plunge pool. 114 115 Dr. Robert Rosine introduced himself and demonstrated on exhibit plan 1 the infiltration 116 pond and the infiltration areas. Dr. Rosine identified the primary treatment plan. From 117 the systems standpoint Dr. Rosine asked how they are going to mitigate the concerns 118 about the contamination. 119 120 Mrs. Luszcz said that would be addressed at another meeting with GZA. 121 122 Mr. McLeod asked about snow storage running off into lagoon #3. 123 124 125 Dr. Rosine replied that they would need to relocate the snow storage. He further explained that they have tried to eliminate the interaction between lagoon #3 and the 126 site. There will be no infiltration pond on its shoulder. There will be no subsurface 127 structure leaking towards it. 128 129 Mr. McDonald wanted to bring to the applicant's attention to the zoning ordinance 130 131 **4.9.3.1 Shoreline Protection Area** any area within 75 feet of a seasonal highwater, any river, brook, stream, pond, or lake as shown on the Water Resource Management Plan. 132 Mr. McDonald would like to see a 75-foot setback from lagoon #3 and the perennial 133 134 stream heading to the left of the driveway. 135 Mr. Morrill demonstrated on the plan that there is no stream in the area Mr. McDonald 136 137 was concerned about. It is a wetland not a stream. 138

139 140	Mr. McLeod said that they had submitted some questions to DES and got responses from them. (See attached letter from February)
141 142 143	Public Comment:
143 144 145 146	Tracey Stickney, budget committee member speaking as a resident, asked how can the Board accurately figure out a traffic plan without knowing the lessee?
147 148 149 150	Mr. McLeod responded that they cannot plan for the worst-case scenario, but we need to be aware of what the worst-case scenario is. When we are doing planning at this stage, we have to have some sort of reference. In this case it is the ITE manuals.
151 152 153	Tracey Stickney also asked about any electric car charging stations and how that would be addressed.
154 155 156	Mr. McLeod said that that question had been asked and they said that there was no provision for electrical charging.
157 158 159	Kera Clements asked if there was a community impact study and when would that be considered?
160 161	Ms. Gott said that she had raised it and it should be part of the Board's consideration.
162 163 164 165	Kera Clements further commented about the traffic turning right out of Industrial Drive and asked that any blinky, shiny signage be placed to prevent trucks from heading toward the elementary school.
166 167 168	Warren Gibbie sked if the truck drivers are going to have an area where they could eat their lunches while they are waiting? He also asked about snow storage having a place to drain back into the stormwater system.
169 170 171 172	Mrs. Luszcz said the truck drivers will have restroom access but there is no cafeteria on site.
172 173 174	Mr. Melchionda asked the Board what their next step are.
175 176 177	Poll: Mrs. Luszcz polled the board to see if they would agree to have the applicant go to the engineers and then come back. The Board had a consensus that it should go to the engineers.
178 179 180 181 182 183	Motion: Ms. Gott made a motion to ask the applicant for an additional extension of 60 days. Mr. Rice seconded the motion. A roll call vote was taken.
184	

185	Ms. Gott – Aye
186	Mr. McLeod – Aye
187	Mrs. Luszcz – Aye
188	Mr. Rice – Aye
189	Mr. McDonald – Aye
190	Ms. Bridgeo – Aye
191	U
192	The motion passed with a unanimous vote of 6 in favor, 0 opposed and 0 abstentions.
193	
194	Motion:
195	Mr. McLeod made a motion to continue application 2022- 008 until June 15,
196	2023, at 7pm at the Raymond High School Media Center, 45 Harriman Hill
197	Road.
198	Mr. McDonald seconded the motion.
199	A roll call vote was taken.
200	Ms. Gott – Aye
201	Mr. McLeod – Aye
202	Mrs. Luszcz – Aye
203	Mr. Rice – Aye
204	Mr. McDonald – Aye
205	Ms. Bridgeo – Aye
205	mo. Briageo Aye
207	The motion passed with a unanimous vote of 6 in favor, 0 opposed and 0 abstentions.
208	······································
209	Other Business:
210	
211	Mr. Mcleod stated that in the Planning Board Rules and Procedures 2.100 Makeup of
212	Board - Planning Board Members shall be elected per RSA 673:2(II). The Board shall
213	consist of seven (7) Members, one (1) of which is to be a Selectman serving as an ex
214	officio Member. The Board may appoint up to five (5) Alternate Members, as authorized
215	by RSA 673:6(II). The problem with this is that the board can only have one selectboard
216	member on the Planning Board and Member Bridgeo is already a member so they
217	cannot send the Board another member as an ex officio. What they can do is send a
218	non-member that is an administrative official as an ex officio. But it is not in the Rules
219	and Procedures. The Board needs to update the Rules and Procedures so that it reads
220	an ex officio member or their appointee.
220	
222	Motion:
222	Motion. Ms. Gott made a motion to update the Rules and Procedures to read an ex
223	officio member or their appointee.
225	Ms. Bridgeo seconded the motion.
226	Discussion:
227	
228	Mr. McLeod said this might not be the most update copy of the rules and
229	procedures.
230	

231	Mrs. Luszcz suggested changing the word Selectmen to the words
232	Selectmen's representative.
	Gelectmen 3 representative.
233	
234	Ms. Gott amended the motion to update the Rules and Procedures to read
235	Selectmen's representative.
236	
237	Ms. Bridgeo seconded the motion.
238	A roll call vote was taken.
239	Ms. Gott – Aye
240	Mr. McLeod – Aye
241	Mrs. Luszcz – Aye
242	Mr. Rice – Aye
243	Mr. McDonald – Aye
244	Ms. Bridgeo – Aye
245	
246	The motion passed with a unanimous vote of 6 in favor, 0 opposed and 0 abstentions.
247	
248	Motion:
249	Mr. McLeod made a motion to correct any other changes that need to be
250	made in any of the Board's paperwork based on the previous motion.
	No second or vote was taken.
251	No second or vole was taken.
252	
253	Approval of minutes:
254	
255	Motion:
256	Mrs. Luszcz made a motion to table the minutes from 3/23/23 and 4/6/23.
	Mr. McDonald seconded the motion.
257	
258	The motion passed with a unanimous vote of 6 in favor, 0 opposed and 0
259	abstentions.
260	
261	Additional Business:
262	
263	Mrs. Luszcz asked if anyone was interested in being a representative for the Cemetery
264	Advisory Committee that meets the first Wednesday of the month.
265	Mr. McDonald volunteered.
266	
267	Nomination:
268	
269	Mr. McLeod nominated Mr. McDonald as representative to the Cemetery
	Advisory Committee.
270	
271	Mrs. Luszcz seconded the nomination.
272	A vote of hands was taken.
273	
274	Ms. Gott – Aye
275	Mr. McLeod – Aye
276	Mrs. Luszcz – Aye
270	III J. LUJZUZ - Ayu

277 278 279 280	Mr. Rice – Aye Mr. McDonald – Aye Ms. Bridgeo – Aye
281 282 283	Mr. McDonald was appointed to the Cemetery Advisory committee. No alternate was chosen at this time.
283 284 285	Kera Clements gave the Board some information about the SSI.
285 286 287	Adjournment:
288 289 290	Motion: Ms. Gott made am motion to adjourn. Mr. McDonald seconded the motion.
291 292	A vote of hands was taken.
293	Ms. Gott – Aye
294 295	Mr. McLeod – Aye Mrs. Luszcz – Aye
296	Mr. Rice – Aye
297	Mr. McDonald – Aye
298	Ms. Bridgeo – Aye
299 300 301 302	The motion passed with a unanimous vote of 6 in favor, 0 opposed and 0 abstentions.
303	Mrs. Luszcz adjourned the meeting at approximately 9:59pm.
304 305 306 307	The video of this meeting is to be preserved as part of the permanent and official record.
308	Respectfully submitted,
309 310 311	Jill A. Vadeboncoeur
312 313	Attachments: Etter from DES dated February

The State of New Hampshire **DEPARTMENT OF ENVIRONMENTAL SERVICES**

Robert R. Scott, Commissioner

EMAIL ONLY

February 10, 2023

Brad Reed, Planning Board Chairman Town of Raymond 4 Epping Road Raymond, NH 03077

Subject: Raymond – Former Regis Tannery, Lot 43, Old Manchester Road DES Site #198705081, Project #278

Former Regis Tannery, Lot 120, Old Manchester Road DES Site #201110061, Project #27227

Planning Board Questions, Letter dated January 30, 2023, prepared by Raymond Planning Board (Attached)

Dear Brad Reed:

The New Hampshire Department of Environmental Services (NHDES) is in receipt of the abovereferenced letter from the Planning Board with questions pertaining to the Former Regis Tannery sites, Lot 43 and Lot 120, in Raymond. The questions from the letter are repeated here in *italicized text* and NHDES responses follow each question.

1. Is it accurate to state that contaminate [Sic] impacted soils that tested below the Soil Remediation Standard may remain within the original site investigation boundary?

Answer: Yes, NHDES refers you to the <u>Remedial Action Implementation Report</u> prepared by StoneHill Environmental Inc. dated September 30, 2011, for additional information. Specifically, Tables 3 and 4 present post excavation analytical results for soil samples.

2. Is it accurate to state that all past sources of contamination may not have been removed as PFAS were not part of the original SI or subsequent SSI's?

Answer: The original 2004 Site Investigation (SI) and subsequent 2005 Supplemental Site Investigation (SSI) did not evaluate per- and polyfluoroalkyl substances (PFAS). PFAS were not evaluated until 2018 when groundwater samples collected from site monitoring wells were first analyzed for PFAS. NHDES requested that the town perform a Supplemental Site Investigation to address Ambient Groundwater Quality Standards (AGQS) violations for PFAS in a letter dated July 1, 2022.

3. Is it accurate to say that every site is unique and other factors other than just gradient may cause groundwater to be impacted by PFAS. (This site also has seeps, a newly discovered concrete pipe, and natural and man-made topography that channels runoff from lot 120 to the area around and downstream of the former lagoon #3 before discharging into the Lamprey River).

Answer: Many factors, both man-made and natural, affect the fate and transport of contaminants in the environment, resulting in each site being unique. Hydraulic gradient is

Brad Reed DES #198705081 DES #201110061 February 10, 2023 Page 2 of 2

one of several factors, such as the characteristics of the rock or soil that make up the aquifer, that influence the movement of groundwater through the subsurface. While a hydraulic gradient does not cause contamination, it has an important influence on the movement of contaminated groundwater.

4. There is no MCL for PFAS in surface water. Is it reasonable for a municipality to regard PFAS detections in surface water (about 2PPT) as an indicator that further investigation may be warranted?

Answer: There are currently no surface water standards for PFAS; however, if the surface water in question is a source for a public drinking water supply (not the case here) then the drinking water Maximum Contaminant Level (MCL) would apply. In general, a detection of 2 parts per trillion (PPT) of PFAS in surface water does not necessarily warrant additional investigation by a municipality. Low level PPT detections of PFAS in surface water are fairly common in New Hampshire – see the <u>NHDES PFAS Sampling Map</u> for analytical results for surface water samples collected throughout the state. It is always prudent to consider the context in which a sample is collected when evaluating the need for additional investigation. For example, a low-level detection of a regulated PFAS adjacent to a surface water intake for a public water system would likely warrant additional sampling to better understand the variability of PFAS over time, since the water in this example is used for human consumption.

5. Based on its proximity to the current GMZ on lot 120 and the detections of PFAS nearing the MCL for PFOS in the surface water of L#3 is it reasonable for the municipality to include the former tannery lagoon #3 and outflow area, the adjoining seeps, and the newly discovered underground concrete pipe in the scope of the SSI in addition to the down gradient area between lot 43 / 120 and the Lamprey River?

Answer: NHDES encourages the town's environmental consultant to consider all available relevant PFAS data in the context of other factors, such as site history and hydrogeology, when designing a scope of work for the requested supplemental site investigation.

Should you have any questions, please contact me at NHDES' Waste Management Division.

Sincerely,

Jeffrey M. Marts, P.G. Bureau Administrator Hazardous Waste Remediation Bureau Tel: (603) 271-3744 Email: Jeffrey.M.Marts@des.nh.gov

Attm: Planning Board Questions, Letter dated January 30, 2023

ec: Ernest Creveling, Raymond Town Manager Raymond Health Officer

TOWN OF RAYMOND

Raymond Town Hall 4 Epping Street Raymond, NH 03077 Telephone: (603) 895-7016 www.raymondnh.gov

Jefferey M. Marts, P.G. Bureau Administrator NHDES January 30, 2023

Dear Mr. Marts,

I am contacting you on behalf of the Raymond Planning Board regarding a project bordering the former Regis Tannery Site. We would appreciate your responses to the following questions:

1. Is it accurate to state that contaminate impacted soils that tested below the Soil Remediation Standard may remain within the original site investigation boundary?

2. Is it accurate to state that all past sources of contamination may not have been removed as PFAS were not part of the original SI or subsequent SSI's?

3. Is it accurate to say that every site is unique and other factors other than just gradient may cause groundwater to be impacted by PFAS. (This site also has seeps, a newly discovered concrete pipe, and natural and man-made topography that channels runoff from lot 120 to the area around and downstream of the former lagoon #3 before discharging into the Lamprey River).

4. There is no MCL for PFAS in surface water. Is it reasonable for a municipality to regard PFAS detections in surface water (about 2PPT) as an indicator that further investigation may be warranted?

In this case we have a test result of 11+ppt PFOS, 5+ppt PFOA, and 4+ppt other = 21.11 ppt total PFAS in the surface water of former tannery lagoon#3 within 100's of feet of a currently PFAS exceeded GMZ (as opposed to non-detect in an actually upgradient stream which discharges to the outflow area of the same lagoon and 4ppt in Wetland A that intermittently flows into the lagoon).

5. Based on its proximity to the current GMZ on lot 120 and the detections of PFAS nearing the MCL for PFOS in the surface water of L#3 is it reasonable for the municipality to include the former tannery lagoon #3 and outflow area, the adjoining seeps, and the newly discovered underground concrete pipe in the scope of the SSI in addition to the down gradient area between lot 43 / 120 and the Lamprey River?

Thank You for your time and assistance. Brad Reed Chairman Raymond Planning Board