TOWN OF RAYMOND

Planning Board Agenda
September 14, 2023
7 p.m. - Raymond High School
Media Center - 45 Harriman Hill
Public Announcement
If this meeting is canceled or postponed for any reason the information can be found on our website, posted at Town Hall, Facebook Notification, and RCTV. *

1. Pledge of Allegiance

2. Public Hearing-

Application \#2021-018 White Rock Place: A Site Plan Application has been submitted by Joseph Coronati of Jones and Beach Engineers, Inc. on behalf of Tuck Realty Corp. The applicant is proposing 156 market rate apartments of three 4 story buildings on slabs with elevators, mix of 1 - and 2-bedroom units with an open space preserved, recreation trails and parking. Access will be from Main Street. The property identified as Raymond Tax Map 23 Lots 25 \& 29 located at 109A \& C Main Street, Raymond NH, 03077 and is within Zone B \& D, allowed under the Sewer Overlay District.

Application \# 2023-006 Floral Ave. LLA: A LOT LINE application is being submitted by Jason Franklin of Franklin Associates, LLC. on behalf of Michael Fahey of Interpro Investments, LLC.. The intent of this application is to consolidate lots $57(1,995 \mathrm{sf}) \& 58(1,596 \mathrm{sf})$, then take $4,047 \mathrm{sf}$ from lot 59 and add it to lot 57 , making lot $57(7,624 \mathrm{sf})$ and lot $59(17,796 \mathrm{sf})$ for the purpose of replacing the septic system for the new lot 57 . The parcels are Map $28-1 /$ Lots $57,58, \& 59$, Zone A and located at 14A, 14B, \& 14 Floral Ave. in Raymond NH.

Application \# 2023-007 Meindl Road Subdivision: A SUBDIVISION application is being submitted by Jospeh Falzone and Beals Associates PLLC on behalf of Frances and Raymond Scanlon. The intent of this application is to subdivide a $10+/-$ acre lot on Meindl Road into 3 individual lots. The parcel is Map 41/Lot 47, Zone B and located on Meindl Road in Raymond NH.

3. Public Comment

4. Approval of Minutes

- 08/24/2023

5. Other Business

- Staff Updates-
- Board Member Updates
- Any other business brought before the board-

[^0]
TOWN OF RAYMOND

Planning Board Agenda
September 14, 2023
7 p.m. - Raymond High School
Media Center - 45 Harriman Hill

6. Adjournment (NO LATER THAN 10:00 P.M.)

Planning Board 2023 Submittal and Meeting Dates

Submittal Deadline for Completed Application \& Materials	Planning Board Meeting Dates (1st \& 3rd Thursdays of the Month)
August 03, 2023	September 07, 2023 2022-009 Jewett Warehouse
Added Meeting	September 14, 2023 2021-018 White Rock Site Plan 2023-006 Floral Ave 2023-007 Meindl Road Subdivision(3 lot)
August 17, 2023	September 21, 2023 TAFT WAY- 674:41 process
Added Meeting	September 28, 2023 WORK SESSION 6-9 pm
September 07, 2023	October 05, 2023 2022-015 White Rock LLA
Added Meeting	October 12, 2023 WORK SESSION 6-9 pm (ROOM 109)
September 21, 2023	October 19, 2023 2022-010 Onyx Excavation Rehearing
Added Meeting	October 26, 2023 WORK SESSION 6-9 pm
October 05, 2023	November 02, 2023 2022-008 Onyx Warehouse
Added Meeting	November 9, 2023 WORK SESSION 6-9 pm
October 19, 2023	November 16, 2023 WORK SESSION 6-9 pm
Added Meeting	November 30, 2023 WORK SESSION 6-9 pm
November 02, 2023	December 07, 2023 WORK SESSION 6-9 PM
Added Meeting	December 14, 2023
November 16, 2023	December 21, 2023

[^1]

Memo To: Town of Raymond Community Development Department
From: Madeleine Dilonno, Regional Planner, Rockingham Planning Commission
Date: February 14, 2023
Subject: Review of Site Plan Application 2021-018; 109 A \& C Main Street, "White Rock Place" (Tax Map 23 Lots 24, 25 \& 29)

Rockingham Planning Commission has reviewed a site plan and lot line adjustment application submitted by Jones \& Beach Engineers on behalf of Tuck Realty Corp for the construction of a 156-unit apartment complex with associated utilities, parking areas, stormwater management two points of access; one main driveway and an emergency access road. The subject property is identified as Tax Map 23 Lot 25 located in Zone D (Industrial).

Tax Map 23 Lot 25 was originally included in Raymond's Sewer Overlay District, in which, multi-family residential development was a permitted use (Article 14: Allowed Uses Table, Raymond Zoning Ordinance 2020). The Sewer Overlay District was removed from the Zoning Ordinance by town vote in March 2021; however, the provisions of the Sewer Overlay District are still applicable to this application.

RSA 676:12, VI states applications that have been submitted and noticed for Design Review are protected from subsequent regulatory changes provided that a formal application is filed within 12 months of the end of the design review process. Application 2021-018 came before the Planning Board for Design Review on November 5, 2020, and a formal application was filed November 4, 2021. Therefore, the application is legally vested.

My specific comments are as follows:

General Comments:

It appears the following Permits are required for this application: 1) NHDES Alteration of Terrain Permit and 2) Town of Raymond Driveway Permit. It's recommended each required permit be received prior to or as a condition of approval; and receipt of each permit be acknowledged in a note on the Cover Sheet of the final plans.

The following waivers have been requested from the Raymond Site Plan and Subdivision Regulations:

1. Site Plan regulation 6.06 - Parking Standards
2. Site Plan regulation 3.03 .03 - Licensed Landscape Architect (*Note 5b on Sheet C3 should be revised to reflect the accurate section).
3. Subdivision Regulation 5.6.D.1 (Road Design Standards) - Maximum Road Grade (for emergency access road only)
4. Subdivision Regulation ROW Design Matrix - Minimum Pavement Width (for emergency access road only.

It is recommended that a petition for the above waivers be submitted in writing using the town's Waiver Request Form in accordance with Section 7.08 of the Raymond Site Plan Regulations and Section 1.4.d of the Raymond Subdivision Regulations. In the event the Planning Board grants one or more of the waivers, it is recommended that notes acknowledging such relief be provided on the cover sheet of the final plans.

Zoning Matters:

1. It is recommended that the applicant provide a written Unified Development Plan in accordance with the provisions of the Sewer Overlay District (Section 5.3.2 of the 2020 Raymond Zoning Ordinance). See full text on page 4.
2. Sheets $C 2$ and $C 3$ show front and side building setbacks of 30 feet. Article 15.2 .7 states "any residential structure proposed for location within a Commercial (C.1 and C.2) or Industrial zone (D) requires a minimum setback of one hundred feet (100^{\prime}) from property lines, or, in the alternative, fifty feet (50^{\prime}) inclusive of a minimum of twenty feet (20^{\prime}) of dense vegetative buffer and a fence of a type..." It is recommended the plans be revised accordingly.
3. A special permit is required for impacts to Zone G land (in this case, 128,000 square feet of steep slope disturbance). It is recommended the applicant seek input from the Raymond Conservation Commission on such impacts in accordance with Article 4.9.6.2.2 of the Zoning Ordinance.

Site Plan Submission Requirements:

1. It is recommended that a Community Impact Analysis be prepared in accordance with SPR 4.02.03. The Community Impact Analysis shall describe the proposed use and include a description of how the proposed activity, both during and following construction, will impact traffic, parking and circulation, storm drainage, utilities, schools, noise, the Town's fiscal condition and other Community services.
2. It is recommended that a traffic impact analysis be prepared in accordance with SPR 5.03.13.
3. It is recommended that architectural concept drawings be submitted for proposed buildings in accordance SPR 5.03.14.f. Said plans shall consist of plan and exterior elevation views or proposed improvements, with external mechanical components of the building (i.e., heating, ventilation, and air conditioning). Plans shall be conceptual only, but of sufficient detail to determine compliance with Town Regulations.

Road Design, Access, and Parking:

1. The width of the proposed access road is 22 feet where a width of 25 feet is required (SPR 6.02.01.a). The plans should be revised accordingly. It is understood that a waiver has been requested from this requirement for the emergency access road only.
2. According to the Right of Way Design Matrix in the Raymond Subdivision Regulations, sidewalks are required on private streets serving 20 units or more. The plans should be revised accordingly.
3. The grade of the proposed emergency access road is 9%. It is understood that a waiver has been requested from section 5.6.D. 1 of the Raymond Subdivision Regulations, which states grades of streets shall not exceed 8\%. It is recommended that the applicant consult with the Raymond Fire and Police Departments as to the adequacy of both roadways for emergency access.
4. Note 3 on Sheet P1 states "as built plans will be submitted to the town prior to acceptance of the roadway." Are one or both proposed access roads intended to be dedicated as public streets? If so, it is recommended that Note 3 on sheet P1 be revised to clarify this intent. Additionally, it is
recommended that a note be added to the final plans acknowledging that all maintenance of the future streets is the responsibility of the applicant until such time as it may be accepted as a Class V public way by the Town of Raymond in accordance with RSA 674:40.
5. The minimum parking requirements for a residential / multi-family development is 3 spaces per unit (SPR 6.06), which would require 468 spaces for the proposed development. A total of 281 spaces are currently proposed. It is understood that the applicant is requesting a waiver from this requirement. SPR 6.06 .03 states that the Planning Board has the prerogative to adjust these (parking) requirements and such decision will be based on the expected number of trips generated by the activity at its peak hour. It is recommended that the applicant provide such information and any other supporting documentation to justify the reduced parking count.

SPR 6.06.04.i states when a waiver is requested for relief from the number of parking spaces required by the Raymond Site Plan Review Regulations, the applicant must present a plan showing the ability to install the full number of spaces in the future if the need arises. It is recommended the applicant provide such information.

Water / Stormwater:

1. SPR 6.05.02 states that connection to the municipal water system requires a letter from the Raymond Water Department indicating acceptance of the proposed design and agreement to furnish the requested service(s).

It is my understanding that the proposed development has been submitted to the town's consulting engineer, Underwood Engineers, for evaluation of impacts to the town's water distribution system.
2. Inspection and maintenance responsibilities for the stormwater management and erosion control measures should be noted on the final plans in accordance with 6.11.07 of the Raymond Site Plan Regulations.

Fire Protection

1. It is recommended that the applicant meet with the Fire Department to review the proposed protection activities, such as fire alarms, sprinkler systems, fire hydrants, dry hydrants, emergency access and cisterns in accordance with Section 6.09 of the Raymond Site Plan Regulations.

Landscaping and Screening

1. It is understood that the applicant is seeking a waiver from section Site Plan regulation 3.03.03 which requires landscape plans be developed by a licensed landscape architect.
2. It is recommended that a note be added to the landscape plan stating the owner and tenant of the property shall be jointly responsible for the maintenance of all required plant material and continued compliance with the Raymond Site Plan Regulations (SPR 6.10.07).
5.3.2. UNIFIED DEVELOPMENT: All development within this SOD must take place in accordance with a Unified Development Plan approved by the Planning Board. For purposes of this Ordinance, a Unified Development Plan shall be defined as an overall plan that identifies in a conceptual nature how the lot or lots contained in the plan will be developed in a manner consistent with the intent of this Ordinance and how the plan will allow and encourage the development of other lots within the SOD zoning district, in a manner consistent with the intent of the Ordinance.
5.3.2.1. The Unified Development Plan must describe and illustrate, in written and graphic format, and shall specify the intended locations and types of proposed uses, the layout of proposed vehicle and pedestrian access and circulation systems, provision of transit facilities and water and sewer facilities, and areas designated to meet requirements for open space, parking, on site amenities, utilities and landscaping. It shall include statements or conceptual plans describing how signage and lighting will be designed in a unified and integrated manner within the district. In addition, the Unified Development Plan shall indicate how the proposed uses will relate to the surrounding properties both within and outside of the district.
5.3.2.2. The submittal of written concept statement(s) in lieu of a Unified Development Plan shall not be accepted. In determining whether to approve a Unified Development Plan, the Planning Board will consider the following criteria:
5.3.2.2.1. Compatibility of the plan with the goals and objectives set forth in the Town's Master Plan;
5.3.2.2.2. Compatibility of the plan with the permitted uses in the Sewer Overlay District.
5.3.2.2.3. Approval of the Unified Development Plan must occur prior to the consideration of individual site development plans for one or several contiguous lots within the SOD. All site development plans must be reviewed and approved in accordance with this Ordinance and the Planning Board's Site Plan, Subdivision and Earth Excavation Regulations prior to the issuance of any building permits within the district.
5.3.3. AMENDMENT TO UNIFIED DEVELOPMENT PLAN: Any Unified Development Plan may be changed or amended by an applicant and such changes may occur concurrently with, or prior to the submittal of individual site development plans. To the extent that the approved Unified Development Plan addresses lots within the SOD which are not owned by the applicant, then such approved plan shall be binding only on the applicant and the owners of such other lots may seek changes to the Unified Development Plan consistent with their own development project.
5.3.4. SPECIAL PROVISIONS: All new development, change of use, subdivision, site review or development requiring a building permit must be connected to both town water and town sewer services. Notwithstanding the above, application for new development may be made prior to the availability of town water and sewer, provided that the proposed use is permitted as a matter of right in the underlying districts or provided that relief is obtained from the Zoning Board of Adjustment, and provided that the applicant proposes development subject to a condition of approval that the property shall be connected to town water and sewer when it becomes available within one hundred (100) feet of the property line.

Developments with Regional Impact
 Project Name:
 Application No.:
 Tax Map \& Lot:

The Rockingham Planning Commission has developed this guidance document to aid our communities in evaluating whether or not a development should be determined to have regional impact. The document summarizes the statutory process that must be followed under New Hampshire state law and suggest a number of triggering factors that should be considered for making this determination. Bear in mind that the criteria suggested here are our recommendations: they have no regulatory force.

Statutory Authority: refer to RSA 36:54-58 - The purpose of this statute is to establish the framework to be followed by a community that is reviewing a development proposal with potential impacts beyond its municipal boundaries.

Findings of YES on one or more of the items below indicates the possible need for a local land use board to make a determination that the development proposal results in regional impacts.

NOTE: THIS IS ON A REGIONAL BASIS NOT A LOCAL BASIS

1. School Impacts: Does the development create significant new student population affecting a regional school district? \qquad Yes \qquad No
2. Traffic Generation: Will the project generate traffic that will create an impact on surrounding municipalities? \qquad Yes \qquad No
3. Road Networks: Does the development provide the opportunity to create a more efficient road network for the regional area or potentially affect regional travel patterns? \qquad Yes \qquad No
4. Building Size: Is the proposed building greater than 50,000 square feet and located within 2,500 feet of a municipal line? \qquad Yes \qquad No
5. Visual Impacts: Will the development create visual impacts to neighboring municipalities such as light pollution, glare, or structures visible from neighboring municipalities? \qquad Yes \qquad No
6. Pollution: Does the development propose the operation of a facility or business which would generate excessive amount of air pollution, wastewater discharge, noise, or hazardous waste transport?
\qquad Yes \qquad No
7. Water Supply Impacts: Will the development require a major impact wetland permit from NH DES?
\qquad Yes \qquad No

Will impacts to known aquifers occur? \qquad Yes \qquad No

Does the project involve permitting for a large groundwater withdrawal? \qquad Yes \qquad No

Will the development cause negative impacts to another community's municipal water supply?
\qquad Yes \qquad No
8. Conservation Lands: Does the development abut existing conservation lands, greenway or existing farmland such that coordination between municipalities could lead to the creation or preservation of greenways or wildlife habitat areas or prevent fragmentation of forests, farms or other conservation lands?
\qquad Yes \qquad No
9. Economic Impacts: Does the development propose the creation of business or industry that would significantly impact regional economic development? \qquad Yes \qquad No
10. Emergency Response: Does the proposal create a significant increased demand for emergency services response (including mutual aid) from abutting communities? \qquad Yes \qquad No
11. Historic or Cultural Resources: Does the proposed development have negative impacts on historic or cultural resources that may have significance regionally? \qquad Yes \qquad No
12. Other: Does the development create other regional impacts not listed in items $1-11$ above?
\qquad Yes \qquad No

Describe: \qquad
\qquad

AT\&TCOMPANY
1010 PINE, 9E4-01
ST. LOUIS, MO 63101

A T \&T COMPANY
754 PEACHTREE STREET
ATLANTA, GA 30308

ARTHIUR, LINDA \& JOHN 91 MAIN STREET RAYMOND, NH 03077

BERGERON, MICHAEL B MAUREEN R BERGERON 100 MAIN STREEET RAYMOND, NH 03077

BREWITT, JOHN J.,JR. \& ER 110 MAIN STREET RAYMOND, NH 03077

LBRUHMULLER, DANIEL 123 MAIN STREE"I" RAYMOND, NH 03077

BUCKUS, JILLIAN
109 MAIN STREET RAYMOND, NH 03077

COLE-CALNAN, NANCY 6 ORCHARD STREET RAYMOND, NIM 03077

CONNOLLYY, SEAN M, 3 MOULTON STREET RAYMOND, NH 03077

GARNHAM, DENNIS
JANET BUTLER 95 MAIN STREET RAYMOND, NH 03077

GILES, ERIN B. \& BRIAN D. 1 MOULTON STREETT RAYMOND, NH 03077

JOHNSON, CARLYLE R. MARICELA JOHNSON 9 MOULTON STREET RAYMOND, NH $030 \% 7$

KING, WILLIAM C JANICE L KING 101 MAIN STREET RAYMOND, NH 0307\%

- KITTREDGE, OCEANNE SARAH ADAM KITTREDGE 126 MAIN STREEET
RAYMOND, NH 03077

LACASSE, ALISON F. W. \& R INEZ WEELCH
103 MAIN STREET
RAYMOND, NH 03077

LURIE, AUDREY J.
111 MAIN STREET
RAYMOND, NH 03077

MCCARTHY, TONA \& CYNTHIA CINDY A. TOWNSEND
112 MAIN STREET
RAYMOND, NH 03077

MERKEL EMPIRE, LLC 17 PINEWOOD DRIVE
STRATHAM, NH 03885

METRO PCS 12920 SE 38TH Street Bellevue, WA 98006

MICHAELS, KEITH J. 11 ORCHARD STREET RAYMOND, NH 03077

MOULTON, EDWARD W 2 OLD FREMONT ROAD RAYMOND, NH 03077

MOULTON, EDWARD W JEAN MOULTON 2 OLD FREMONT ROAD RAYMOND, NH 03077

ONYX RAYMOND LLLC. 200 PESERVOIR STREET SUITE 306
NEEDHAM, MA 02494

PERREAULT, JOHN W 116 MAIN STREET RAYMOND, NH 03077

POWER, JOHN W 5 MOULTON STREET RAYMOND, NH 0307%

PRATT, KEVIN M. KERRY J. PRATT 11 SMITH POND ROAD RAYMOND, NHI 03077

RICE, CHARLES F.JR. REVOC CHARLES F. RICE, JF. / TR 97 MAIN STREET RAYMOND, NH 03077

RUELAS, JEREMY S \& SUSANN 114 MAIN STREET
RAYMOND, NH 03077

SPOFFORD, LISA REVOCABLE LISA M. DESISTO / TRUSTEE 38 W. BROADWAY DERRY, NH 03038

SPRINT COMMUNICATIONS C/O PROPERTY TAX DEPARTME POO. BOX 85022
BELLEVUE, WA 98015-8522

SPRINT COMMUNICATIONS CO. ATTN: PROPERTY TAX DEPART PO BOX 85 S 2
BELLEVUE/ WK 98015-8522

SPRINT SP\&CTRUM LP CFO PRORERTY TAX DEPARTME PO BOX 8 SQ 22
BELLEVUF, WA 98015-8522

STATE OF NEW HAMPSHIRE JOHN O. MORTON BLDG.
P.O. BOX 483

CONCORD, NH 03301

TUCK REALTY CORPORATION
POO. BOX 190
EXETER, NH 03833

VERIZON

POO. BOX 2549
ADDISON, TX 75001

WATT, DANIEL E
102 MAIN STREET
RAYMOND, NH 03077

WELSH, PAUL W \& TERI
109 MAIN STREET
RAYMOND, NH 03077

WELCH,JOSEPH \& JOHN \& ARD BETSY PATTERSON \& ROBIN P 49 RAYMOND ROAD, ROUTE 156 NOTTINGHAM, NH 03290

\$ ZABEK, THEODORE. SARAH J. ZABEK \& THOMAS Z 30 KESSLER FARM ROAD APT. 543
NASHUA, NH 03063

Sones \& Pooch Cove Environmental

JONES\&BEACH
 85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885
 603.772.4746 - JonesandBeach.com

August 17, 2023
Raymond Planning Board
Attn. Diana Luszcz, Chair
4 Epping Street
Raymond, NH 03077

Re: Resubmission Letter
 White Rock Place
 109A Main Street, Raymond, NH
 Tax Map 23, Lot 25
 JBE Project No. 20564

Dear Ms. Luszcz,
On behalf of our client, Tuck Realty Corp., Jones \& Beach Engineers, Inc., respectfully resubmits plans and attachments for the above-referenced project. We have obtained notarized letters of authorization from the sellers of the properties and therefore we are now ready to move forward with this application.

The following items are provided in support of this Letter:

1. Original Site Plan Application for Reference.
2. Letters of Authorization.
3. Current Deeds.
4. Traffic Impact Study.
5. Unified Development Plan.
6. Fiscal Impact Study.
7. Drainage Analysis.
8. Waiver Request Letters.
9. Previous Response Letters for Reference.
10. State Permits.
11. Draft Conservation Easement Deed.
12. Six (6) Full Size Plan Sets (Including Architectural Plans).
13. Ten (10) Half Size Plan Sets (Including Architectural Plans).

If you have any questions or need any additional information, please feel free to contact our office. Thank you very much for your time.

Very truly yours,
JONES \& BEACH ENGINEERS, INC.

Daniel Meditz, EIT
Project Engineer
cc: Michael Garrepy, Tuck Realty Corp. (via email)
Kevin Baum, Esquire, Hoefle Pheonix Gormley \& Roberts (via email)

JONES\&BEACH
 85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885
 603.772 .4746 - JonesandBeach.com

November 4, 2021
Raymond Planning Board
Attn. Jonathan Wood, Chair
4 Epping Street
Raymond, NH 03077

RE: Site Plan Application \& Lot Line Adjustment White Rock Place 109A\&C Main Street, Raymond, NH
 Tax Map 23, Lots 25 \& 29
 JBE Project No. 20564

Dear Mr. Wood,
Jones \& Beach Engineers, Inc. respectfully submits a Site Plan Application for the abovereferenced parcel on behalf of our client, Tuck Realty Corp. The intent of this application is to follow up with design plans in order to advance our design review that we had months ago in the process. We have secured a better access point for the development, although still challenging. It's a wider entrance point and has adequate space for the grading that will be necessary. The application includes some lot line adjustments with Map 23, Lot 29, Wayne Welch's property. We will be utilizing part of his land for access, while providing him additional land, including White Rock behind his house along with the access Right of Way to his house.

The proposal still consists of 156 market rate apartments split up into three buildings all 4 stories built on a slab with elevators. There will be a mix of 1 and 2 bedroom units with a large amount of open space preserved. Each unit will have dedicated parking spaces and we are currently looking at 841 -bedroom units and 72 2-bedroom units. We are requesting a waiver from the parking requirements since we have so many 1 bedroom units and have nearly 300 parking spaces. The main driving access will be from Main Street and we are proposing recreation trail access to the downtown via the rail trail.

For the utilities, we are proposing Town water to the buildings for domestic and fire protection. The septic systems will be located around the site and will all have Septi-Tech pre-treatment systems installed. These systems breakdown the septic waste prior to going to the leachfields similar to a mini-wastewater treatment plant. They do require maintenance and are made and serviced by a company in southern Maine. The State requires we sign a service agreement prior to approving these advanced treatment systems. We would like to discuss the drainage and access design for this property in greater detail with the TRC and have a site walk to review these prior to final design.

The following items are provided in support of this Application:

1. Site Plan \& Lot Line Adjustment Application.
2. Waiver Requests.
3. Letters of Authorization.
4. Current Deeds.
5. Check for application fees.
6. Abutters List \& Mailing Labels (3 sets).
7. Tax Map
8. 11 " $\times 17$ " Architectural Plan.
9. Six (6) Full Size Plan Sets.
10. Ten (10) Half Size Plan Sets.

If you have any questions or need any additional information, please feel free to contact our office. Thank you very much for your time.

Michael Garrepy, Tuck Realty Corp. (application and plans via email)
Ross Tsantoulis, DuBois \& King (application and plans via email \& U.S. Mail)
\qquad

Site Plan Review Application Town of Raymond, NH

Project Name: White Rock Place
Location: 109 C Main Street, Raymond, NH
Project Description: To propose a multi-family residential site plan on Tax Map 23, Lot 25 and perform some lot line adjustments.
Zone: D\& B New Industrial/Commercial Square Footage: \qquad or Number of Residential Units: 156
Industrial \& Residential/Agricultural

Applicant/Agent Information:

Name: Turner Porter
Phone: 603-944-7530
Fax: \qquad
Company: Tuck Realty Corp.
Address: 149 Epping Road, Suite 2A, Exeter, NH 03833
By signing this application, you are agreeing to all rules and regulations of the Town of Raymond, and are agreeing to allow agents of the Town of Raymond to conduct inspection. of purr property during normal business hours to ensure compliance with all Raymond Zoning and Site Plan Review Regulations while your application sonde consideration and during any construction and operational phases after approval is granted.

Date:

Owner Information:

Wayne \& Cathleen Welch
Name: Joseph, John, Ardell \& Inez Welch, Betsy Patterson \& Robin Proulx
Phone: \qquad Fax: \qquad

Designers of Record: (Provide Name \& License Number for each)
Engineer: Mf chael Kerivan, Jones \& Beach Engineers, Inc. - \#9846
Surveyor: David Collier, Jones \& Beach Engineers, Inc. - \#892
Soil Scientist:
Landscape Architect: \qquad
Fire Protection Engineer: \qquad
Other (s): \qquad
FEES: See attached Fee Schedule

For Office Use Only:

Date Application Received: \qquad Total Fees Collected w/ Application:
Abutters List Received: \qquad Plans \& Checklist Received: \qquad

Appendix II

Site Plan Review Fees

Sample Chart Using 180 sf per space		
1	$\$ 514.80$	
2	$\$ 579.60$	
3	$\$$	644.40
4	$\$$	709.20
5	$\$$	774.00
6	$\$$	838.80
7	$\$$	903.60
8	$\$ 968.40$	
9	$\$ 1,183.20$	
10	$\$ 1,248.00$	
11	$\$ 1,312.80$	
12	$\$ 1,377.60$	
13	$\$ 1,442.40$	
14	$\$ 1,657.20$	
15	$\$ 1,722.00$	
16	$\$ 1,786.80$	
17	$\$ 1,851.60$	
18	$\$ 1,916.40$	
19	$\$ 2,131.20$	
20	$\$ 2,196.00$	
21	$\$ 2,260.80$	
22	$\$ 2,325.60$	
23	$\$ 2,390.40$	

Base Rate:	$\$ 300.00$
(Includes staff wages with a 23% roll-up rate)	$\$ 300.00$

Variable Costs (per newly created space): \$ 0.36

	Units - SF
POV Spaces:	$180 \times 285=51,300$
Handicap Accessible Spaces:	$320 \times 9=2,880$
Tractor Trailer	600

\# Spaces	Formula for Calculation of Fees	$\begin{aligned} & 54,180 \times \cdot 36= \\ & 19,504.80 \end{aligned}$
1-8	\$ 0.36 per sf +(1.5 \times \$ 300 base rate)	
9-13	\$ 0.36 per sf + (2.0 \times \$ 300 base rate)	
14-18	\$ 0.36 per sf + (2.5 \times \$ 300 base rate)	
19-23	\$ 0.36 per sf + (3.0 \times \$ 300 base rate)	
24-50	\$ 0.36 per sf + (3.5 \times \$ 300 base rate)	
51-75	\$ 0.36 per sf +(4.0) \$ 300 base rate)	
76-100	\$ 0.36 per sf +(4.5 \times \$ 300 base rate)	
101-150	\$ 0.36 per sf + (5.0 \times \$ 300 base rate)	$19,504.80+(5.5 \times \$ 300)=$
151-200	\$ 0.36 per $s f+(5.5 \times \$ 300$ base rate)	154.80

Escrow Deposits for Legal/Engineering/Other Peer Review Expenses Minimum Fee (Discretion of the Technical Review Committee):	
Disturbed Area 2 - Up to 5 Acres:	$\$ 1,250.00$
Up to 10 Acres	$\mathbf{2 , 5 0 0 . 0 0}$
Up to 15 Acres:	$\$ 3,250.00$
Up to 20 Acres:	$\$ 4,000.00$
Over 20 Acres, but less than 30 acres:	$\$ 4,500.00$
Over 30 Acres - To be determined by Town Engineer/Legal Counsel	$\$ 5,000.00$

${ }^{1}$ Once a balance is reduced to 50% of the original deposit, the applicant shall replenish it to 100%.
${ }^{2}$ Disturbed area is defined as: That portion of the site that is altered due to construction of streets, roadways, parking areas, utilities, buildings or other physical improvements, including earth excavation, removal or altercation.

Site Plan Review Checklist
 town OF RAYMOND, NH

PROJECT NAME White Rock Place

MAP\# \qquad LOT \# 25 \& APPLICATION DATE $11 / 4 / 21$ APPLICATION \# \qquad
A copy of all plans and technical reports must be sent to the Town engineer. Proof of submittal must be provided to the Community Development Department at the time of application. If proof of transmittal is not provided, the application may be delayed until the following month's Planning Board meeting. Address is: Dubois \& King, 18 Constitution Dr., Bedford NH 03110, ATTN: Jeff Adler.
SUBMITTED
YES NO
$\mathrm{x} \quad-$

1. Name of project; names and addresses of owners of record;
Tax map and lot number.
2. Name, license number and seal of surveyor or other persons, north arrow,
scale and date of plan; signature block.

WAIVED
YES NO
$\frac{x}{x}-$
$\frac{x}{x}-$
$\frac{x}{x}-$
3. Vicinity sketch and zoning district(s).
4. Abutters and uses of abutting land within 200 feet of the site.
5. Shape, size, height, location and use of existing and proposed structures located on the site and within 200 feet of the site.
6. Boundary lines, dimensions and bearings; lots area in acres And square feet and total disturbed area in square feet.
7. Location, name and widths of any existing and proposed roads on the property and within 200 feet of the site
8. Location of existing and proposed sidewalks and driveways, with indication of travel for both pedestrian and vehicular traffic.
9. Access to the site, sight distance at access point(s), curb cuts and any proposed changes to existing streets; copy of driveway permit.
10. Location and number of parking spaces; loading spaces.
11. Location, type and nature of all existing and proposed Landscaping and screening.
12. Location, type and nature of all existing and proposed exterior lighting.
\qquad 13. Natural features (streams, ponds, wetlands, etc.)
\qquad 14. Waste/dumpster locations and snow storage areas

Site Plan Review Checklist
 TOWN OF RAYMOND, NH

SUBMITTED			
YES	NO		
x		15.	Existing and proposed grades and contours, including base Flood elevation where appropriate.
$\underline{\mathrm{x}}$	_	16.	Size and location of all existing and proposed water mains, sewers, culverts, and distances to the existing fire hydrants, cisterns and/ or fire ponds.
	-	17.	Copy of certification from septic designer as to sufficiency of system.
$\underline{\mathrm{x}}$	-	18.	Location and type of proposed waste water disposal system; Outline of $4,000 \mathrm{sq}$. ft. area; test pits; record of percolation tests.
x		19.	Existing and proposed Storm water drainage system.
x	-	20.	Location of existing and proposed on-site well (showing required radius on the property.)
	-	21.	Soil survey data (see: requirements for soils and wetlands data)
		22.	Location of any existing or proposed easements, deed restrictions, covenants.
OTHER:			
-	-	1.	Any federal, state or local permits.
	-	2.	Building elevations and design
	-	3.	Sign location and design
-		4.	Copies of any proposed or existing easements, deed restrictions, covenants, and street deeds.
			Such additional studies as may be required.
x			Six (6) full-size copies of all plans and ten (10) copies of all plans in 11×17 format, and digital copy of plans. *
x			Three (3) copies of all studies*
FEES			
x	-	1. Ap	plication Fees
x		2. Ab	utters Notice Fees (to include three (3) labels per abutter)
x	-	3. En	gineering and Legal Review Escrow
x	-	4. Sit	Review-Administrative Fee

WAIVED
YES NO

Application for Lot Line Adjustment Town of Raymond, NH

Project Name: White Rock Place
Location: 109C Main Street, Raymond, NH
Project Description: To adjust some lot lines between Tax Map 23, Lots $25 \& 29$
Zone: $D \& B \quad$ Total Number of Lots: 2
industrial \& Residential/Agriculture
Applicant/Agent Information:
Name: Turner Porter
Phone: 603-944-7530 Fax: \qquad
Company: Tuck Realty Corp.
Address: 149 Epping Road, Suite 2A, Exeter, NH 03833

Phone: \qquad Fax: \qquad
Company: 109 A Main Street Rayphond, NH 03077 - Wayne \& Cathleen Welch
Address: 49/Raymond Road, Route 156, Nottingham, NH 03290-Welch, Paytefrson \& Proulx
Signed:
 Date: $11 / 1 / 2$
Designers of Record: (Provide Name \& License Number for each)
Engineer: Michael Kerivan, Jones \& Beach Engineers, Inc - \#9846
Surveyor: David Collier, Jones \& Beach Engineers, Inc. - \#892
Soil Scientist: \qquad
Landscape Architect: \qquad
Fire Protection Engineer: \qquad
Other (s); \qquad
FEES: \$75.00 Application Fee - $\$ 75.00$
For Office Use Only:
Date Application Received: \qquad Total Fees Collected w/ Application: \qquad
Abutters List Received: \qquad Plans \& Checklist Received: \qquad

Map \# 23
 \qquad Lot \# 25 \& 29
 Applicant Name white Rock place Date 11/4/21

 Lot Line Adjustment Checklist

 Lot Line Adjustment Checklist Town of Raymond, NH

 Town of Raymond, NH}

The items on this page are considered to be the minimum requirements for a lot line adjustment or technical subdivision, where no new lots are being created. The Planning Board reserves the right, however, to request additional information if, in its judgment, the data are necessary in order to make an informed decision.

SUBMITTED WAIVED

1. Name of subdivision; name and address of subdivider
2. Name, license number and seal of surveyor or other persons preparing the plan
3. Names and addresses of all abutters and all holders of conservation, preservation, or agricultural preservation easements (on the plat or on separate sheet)
4. North arrow, scale, and date of plan
5. Signature block for Planning Board endorsement
6. Locus plan, showing zoning designations
7. Boundary survey and location of permanent markers
8. Location of property lines, lot areas in square feet and acres; lots numbered according to Town tax map system
9. Location and amount of frontage on public right-of-way; names, classification of abutting streets
10. Location of building setback lines
11. Location of existing buildings and other structures
12. Location of existing driveways
13. Location and description of any existing or proposed easements or public dedication

Raymond NH Planning Board Waiver Request Form
 Applicable to Site Plan Review and Subdivision Regulations

Project Name \& Application Number:

Regulation, Article \& Section from which a waiver is being sought:
Site Plan Regulation Section 6.10.04 - Licensed Landscape Architect

Where the Planning Board finds that unnecessary hardship may result from strict compliance with these regulations with respect to a particular tract of land, the Board may modify or waive these regulations so that substantial justice may be done and the public interest is secured, provided that:

Please respond to the criteria below:
a. Explain how the granting of the waiver will not be detrimental to public safety, health, or welfare or injurious to other adjacent property;
b. Explain how granting this waiver shall not have the effect of nullifying the intent and purpose of these regulations, the Zoning Ordinance, Master Plan or Official Zoning Map;

```
We are requesting a waiver from having a Licensed Landscape Architect draft and stamp the plan
as we have hired LM Land Design, Lise McNaughton from Brentwood, NH to do the planting design
work. Lise is more than qualified to provide landscape plans as you can see by the variety of
plantings selected.
```

In granting waivers, the Planning Board may require such conditions as will, in the Board's judgment, secure substantially the objectives of the standards or requirements of these regulations.

A petition for waiver shall be submitted by the applicant at the time when the application is filed for consideration by the Planning Board. All petitions shall be made in writing using the Town's Waiver Request Form. The petition shall state fully the grounds for the waiver and all of the facts relied upon by the petitioner.

Any granted waivers must be noted on the final approved plan.

srv03\appdata\public\Community Development Dept\Forms
Updated September 21, 2017

Raymond NH Planning Board Waiver Request Form
Applicable to Site Plan Review and Subdivision Regulations

Project Name \& Application Number:

Regulation, Article \& Section from which a waiver is being sought:
6.06.01 - Parking Spaces

Where the Planning Board finds that unnecessary hardship may result from strict compliance with these regulations with respect to a particular tract of land, the Board may modify or waive these regulations so that substantial justice may be done and the public interest is secured, provided that:

Please respond to the criteria below:
a. Explain how the granting of the waiver will not be detrimental to public safety, health, or welfare or injurious to other adjacent property;

```
We are requesting 294 parking spaces which is l.88 spaces per unit when 3 spaces per unit is
required. We are asking for this waiver to be granted a providing 3 spaces per unit is
excessive for apartments. There are overlapping use of parking spaces when you have this
many units. People are coming and going and we have }841\mathrm{ bedroom units which some of them
will certainly be occupied by one person, with one vehicle.
```

b. Explain how granting this waiver shall not have the effect of nullifying the intent and purpose of these regulations, the Zoning Ordinance, Master Plan or Official Zoning Map;

In granting waivers, the Planning Board may require such conditions as will, in the Board's judgment, secure substantially the objectives of the standards or requirements of these regulations.

A petition for waiver shall be submitted by the applicant at the time when the application is filed for consideration by the Planning Board. All petitions shall be made in writing using the Town's Waiver Request Form. The petition shall state fully the grounds for the waiver and all of the facts relied upon by the petitioner.

Any granted waivers must be noted on the final approved plan.

srv03\appdata\public\Community Development Dept\Forms
Updated September 21, 2017

Letter of Authorization

Tuck Realty Corp., 149 Epping Road, Suite 2A, Exeter, NH, developer of property located in Raymond, NH, known as Tax Map 23, Lot 25, do hereby authorize Jones \& Beach Engineers, Inc., PO Box 219 , Stratham, NH, to act on my bchalf concerning the previously-mentioned property. The parcel is located on 109C Main Street in Raymond. NH .

I hereby appoint Jones \& Beach Engineers, Tac., as my agent to act on my behalf in the review process, to include any required signatures.

[^2]This conveyance 1 a subject to the 1949 taxes which the grantee agrees to assume and pay.

 helonging, to the snid grantec, his heirs and ansigns, to their Heatind behoot
 dawfuly seized in tec of the afore-described premises; that they nre free of all incinibitraters:

KNQW ALL MEN BY THESE PRESENTS, That I, Josephine welch, of Deexfield Road, Raymond, County of Rockingham and State of New Hampshire,

Mar 71041 AM' 84
for consideration paid, grant so Wayne F. Welch and Cathleen M. Welch, of
 rights of surviqorship.
with marrmaty nutrumbin a certain tract or parcel of land located in Raymond, County of Rockingham and State of New Hampshire, more particularly bounded and described as follows:

Beginning at an iron rod set in the westerly line of Main Street at the southeast corner of the premises herein conveyed and the northeast corner of land now or formerly of Bishop;

Thence $\mathrm{N} 80^{\circ} 31^{\prime} 30^{\prime \prime} \mathrm{W}$ along land of said Bishop a distance of 189.87 feet to a point;

Thence $517^{\circ} 08^{\circ} 00^{\prime \prime} \mathrm{W}$ continuing along land of said Bishop, a distance of 175.31 feet to an iron rod;

Thence S $71^{\circ} 27^{\circ} 00^{\prime \prime} \mathrm{W}$ along a right of way to other land of the grantor, a distance of 109.03 feet to an iron rod;

Thence $557^{\circ} 57^{\prime} 40^{\prime \prime} W$ continuing along said right of way, a dis tance of 140.24 feet to an iron rod;

Thence $538^{\circ} 13^{\circ} 20^{\prime \prime}$ W continuing further along said right of way, a distance of 130.87 feet to an iron rod;

Thence $\mathrm{N} 63^{\circ} 16^{\prime} 10^{\prime \prime} \mathrm{w}$ along other land of the grantor, a distance of 691.51 feet to a point;

Thence $N 14^{\circ} 41^{\prime} 20^{\prime \prime} \mathrm{E}$ along other land of the grantor, a distance of 340.20 feet to an iron rod:

Thence $N 72^{\circ} 55^{\prime} 10^{\prime \prime} \mathrm{E}$ continuing along other land of the granton, a distance of 955.14 feet to an iron rod;

Thence $S 4^{\circ} 00^{\prime} 40^{\prime \prime} \mathrm{E}$ along land of Neal F . Welch, a distance of 163.97 feet to an iron rod;

Thence $S 40^{\circ} 40^{\circ} 00^{\prime \prime} E$ continuing along land of said Neal F. Welch, a distance of 196.00 feet to an iron rod;

Thence $S 20^{\circ} 00^{\prime} 00^{\prime \prime} E$ continuing further along land of Neal F. Welch, a distance of 156.00 feet to a granite bound in the westerly line of said Main Street;

Thence $S 14^{\circ} 37^{\circ} 20^{\circ} \mathrm{W}$ a distance of 66.52 feet to a granite bound set in the westerly line of said Main Street;

Thence $517^{\circ} 11^{\prime} 50^{\prime \prime} \mathrm{W}$ continuing along the westerly line of said Main Street a distance of 51.61 feet to the point of beginning.

Meaning and intending to describe a parcel of land containing 14.82 acres, more or less, as shown on plan of lot to be conveyed by Josephine F. Welch to Wayne Welch, dated August 22, 1983, to be recorded herewith.

Mearinc and intending to convey a portion of the premises conveyed to Ai s. Welch hv deed of Abhie J. Lamprey, dated July 7. 1949, and recorded in Rockingham County Registry of Deeds, Volume 1559, Page 263.

Title of the grantor was derived through the Estate of Ai S. Welch, see Rockingham County Probate Records, Docket No. 52157.

Subject Properties:

Parcel Number:	023-000-025-000	Mailing Address:
CAMA Number:		
Property Address:	MAIN STREET	
		INEZ BETSY PATTERSON \& ROBIN
		49 RAYMOND ROAD, ROUTE 156
Parcel Number:	023-000-029-000	
CAMA Number:	023-000-029-000-000	Mailing Address:

Abutters:			
Parcel Number: CAMA Number: Property Address:	$\begin{aligned} & 022-000-045-000 \\ & \text { 022-000-045-000-000 } \\ & \text { INDUSTRIAL DRIVE } \end{aligned}$	Mailing Address:	WEST RIVER ROAD, L.L.C P.O. BOX 2750 SEABROOK, NH 03874
Parcel Number: CAMA Number: Property Address:	$\begin{aligned} & 023-000-014-000 \\ & 023-000-014-000-000 \\ & \text { MAIN STREET } \end{aligned}$	Mailing Address:	RAYMOND, TOWN OF 4 EPPING STREET RAYMOND, NH 03077
Parcel Number: CAMA Number: Property Address:	$\begin{aligned} & 023-000-019-000 \\ & 023-000-019-000-000 \\ & 123 \text { MAIN STREET } \end{aligned}$	Mailing Address:	BRUHMULLER, DANIEL 123 MAIN STREET RAYMOND, NH 03077
Parcel Number: CAMA Number: Property Address:	$\begin{aligned} & 023-000-020-000 \\ & 023-000-020-000-000 \\ & \text { MAIN STREET } \end{aligned}$	Mailing Address:	STATE OF NEW HAMPSHIRE JOHN O. MORTON BLDG. P.O. BOX 483 CONCORD, NH 03301
Parcel Number: CAMA Number: Property Address:	$\begin{aligned} & 023-000-022-000 \\ & 023-000-022-000-000 \\ & \text { BATCHELDER ROAD } \end{aligned}$	Mailing Address:	ZABEK, THEODORE N P O BOX 2504 SALEM, NH 03079
Parcel Number: CAMA Number: Property Address:	$\begin{aligned} & 023-000-023-000 \\ & 023-000-023-000-000 \\ & \text { INDUSTRIAL DRIVE } \end{aligned}$	Mailing Address:	WELCH, JOAN E 15 NOTTINGHAM ROAD RAYMOND, NH 03077
Parcel Number: CAMA Number: Property Address:	$\begin{aligned} & 023-000-024-000 \\ & \text { 023-000-024-000-000 } \\ & \text { ROUTE } 101 \end{aligned}$	Mailing Address:	WELCH, JOAN E 15 NOTTINGHAM ROAD RAYMOND, NH 03077
Parcel Number: CAMA Number: Property Address:	$\begin{aligned} & 023-000-026-000 \\ & 023-000-026-000-000 \\ & 111 \text { MAIN STREET } \end{aligned}$	Mailing Address:	LURIE, AUDREY J. 111 MAIN STREET RAYMOND, NH 03077

	0 foot Abutters Raymond, NH November 01, 2021
Parcel Number:	023-000-027-000
CAMA Number:	023-000-027-000-000
Property Address:	ss: 109 MAIN STREET
Parcel Number:	023-000-028-000
CAMA Number:	023-000-028-000-000
Property Address:	ss: 109 B MAIN STREET
Parcel Number:	023-000-030-000
CAMA Number:	023-000-030-000-000
Property Address:	ss: 105 MAIN STREET
Parcel Number:	023-000-035-000
CAMA Number:	023-000-035-000-000
Property Address:	ss: 110 MAIN STREET
Parcel Number:	023-000-036-000
CAMA Number:	023-000-036-000-000
Property Address:	ss: 112 MAIN STREET
Parcel Number:	023-000-037-000
CAMA Number:	023-000-037-000-000
Property Address:	ss: 114 MAIN STREET
Parcel Number:	023-000-038-000
CAMA Number:	023-000-038-000-000
Property Address:	ss: 116 MAIN STREET
Parcel Number:	023-000-039-000
CAMA Number:	023-000-039-000-000
Property Address:	ss: 126 MAIN STREET
Parcel Number:	028-003-001-000
CAMA Number:	028-003-001-000-000
Property Address:	ss: 103 MAIN STREET
Parcel Number:	028-003-002-000
CAMA Number:	028-003-002-000-000
Property Address:	ss: 101 MAIN STREET
Parcel Number:	028-003-003-000
CAMA Number:	028-003-003-000-000
Property Address:	ss: 99 MAIN STREET
Parcel Number:	028-003-005-000
CAMA Number:	028-003-005-000-000
Property Address:	ss: 97 MAIN STREET

Raymond, NH
November 01, 2021

Parcel Number:	$028-003-006-000$
CAMA Number:	$028-003-006-000-000$
Property Address:	95 MAIN STREET
Parcel Number:	$028-003-007-000$
CAMA Number:	$028-003-007-000-000$
Property Address:	9 MOULTON STREET
Parcel Number:	$028-003-007-001$
CAMA Number:	$028-003-007-001-000$
Property Address:	91 MAIN STREET
Parcel Number:	$028-003-011-000$
CAMA Number:	$028-003-011-000-000$
Property Address:	7 MOULTON STREET
Parcel Number:	$028-003-012-000$
CAMA Number:	$028-003-012-000-000$
Property Address:	5 MOULTON STREET
Parcel Number:	$028-003-013-000$
CAMA Number:	$028-003-013-000-000$
Property Address:	3 MOULTON STREET
Parcel Number:	$028-003-116-000$
CAMA Number:	$028-003-116-000-000$
Property Address:	102 MAIN STREET
Parcel Number:	$028-003-014-000$
CAMA Number:	$028-003-014-000-000$
Property Address:	1 MOULTON STREET
Parcel Number:	$028-003-015-000$
PaMA Number:	$028-003-115-000-000$
PamA Number:	$028-003-015-000-000$
Property Address:	6 ORCHARD STREET
Parcel Number:	$028-003-016-000$
CAMA Number:	$028-003-016-000-000$
Property Address:	$0 R C H A R D ~ S T R E E T$
Parcel Number:	$028-003-017-000$
CAMA Number:	$028-003-017-000-000$
Property Address:	11 ORCHARD STREET

Mailing Address:	GARNHAM, DENNIS JANET BUTLER 95 MAIN STREET RAYMOND, NH 03077
Mailing Address:	JOHNSON, CARLYLE R. MARICELA JOHNSON 9 MOULTON STREET RAYMOND, NH 03077
Mailing Address:	ARTHUR, LINDA \& JOHN 91 MAIN STREET RAYMOND, NH 03077
Mailing Address:	FROST, WAYNE G. \& IRENE 7 MOULTON STREET RAYMOND, NH 03077
Mailing Address:	POWER, JOHN W 5 MOULTON STREET RAYMOND, NH 03077
Mailing Address:	CONNOLLY, SEAN M. 3 MOULTON STREET RAYMOND, NH 03077
Mailing Address:	GILES, ERIN B. \& BRIAN D. 1 MOULTON STREET RAYMOND, NH 03077
Mailing Address:	COLE-CALNAN, NANCY 6 ORCHARD STREET RAYMOND, NH 03077
Mailing Address:	RAYMOND, TOWN OF 4 EPPING STREET RAYMOND, NH 03077
Mailing Address:	MICHAELS, KEITH J. 11 ORCHARD STREET RAYMOND, NH 03077
Mailing Address:	BERGERON, MICHAEL B MAUREEN R BERGERON 100 MAIN STREET RAYMOND, NH 03077
Mailing Address:	WATT, DANIEL E 102 MAIN STREET RAYMOND, NH 03077

Mailing Address:	MOULTON, EDWARD W JEAN MOULTON 106 MAIN STREET RAYMOND, NH 03077
Mailing Address:	HARD ROCK DEVELOPMENT, LLC 84 EXETER ROAD SOUTH HAMPTON, NH 03827
Mailing Address:	MOULTON, EDWARD W 106 MAIN STREET RAYMOND, NH 03077
Mailing Address:	$\begin{aligned} & \text { VERIZON } \\ & \text { P.O. BOX } 2549 \\ & \text { ADDISON, TX } 75001 \end{aligned}$
Mailing Address:	A T \&T COMPANY 1010 PINE, 9E-L-01 ST. LOUIS, MO 63101
Mailing Address:	METRO PCS 285 BILLERICA ROAD THIRD FLOOR CHELMSFORD, MA 01824
Mailing Address:	SPRINT COMMUNICATIONS C/O PROPERTY TAX DEPARTMENT P.O. BOX 12913 SHAWNEE MISSION, KS 66282
Mailing Address:	SPRINT SPECTRUM LP ATTN: PROPERTY TAX DEPARTMENT PO BOX 12913 SHAWNEE MISSION, KS 66282
Mailing Address:	SPRINT SPECTRUM LP C/O PROPERTY TAX DEPARTMENT POBOX 8430 KANSAS CITY, MO 64114-8430
Mailing Address:	A T \& T COMPANY 1010 PINE, 9E-L-01 ST. LOUIS, MO 63101

JONES \& BEACH ENGINEERS, ATTN. JOSEPH CORONATI, PO BOX 219, STRATHAM, NH 03885
TUCK REALTY CORP., 149 EPPING RD, SUITE 2A, EXETER, NH 03833
NHDOT, 7 HAZEN DR, CONCORD, NH 03302

AT\&TCOMPANY
1010 PINE, 9E-L-01
ST. LOUIS, MO 63101

A T \&T COMPANY 1010 PINE, 9E-L-01
ST. LOUIS, MO 63101

ARTHUR, LINDA \& JOHN 91 MAIN STREET RAYMOND, NH 03077

BERGERON, MICHAEL B MAUREEN R BERGERON 100 MAIN STREET RAYMOND, NH 03077

BREWITT, JOHN J.,JR. \& ER 110 MAIN STREET RAYMOND, NH 03077

BRUHMULLER, DANIEL 123 MAIN STREET RAYMOND, NH 03077

BUCKUS, BRETT M. \& JILLIA 109 MAIN STREET RAYMOND, NH 03077

COLE-CALNAN, NANCY
6 ORCHARD STREET
RAYMOND, NH 03077

CONNOLLY, SEAN M. 3 MOULTON STREET RAYMOND, NH 03077

FROST, WAYNE G. \& IRENE 7 MOULTON STREET
RAYMOND, NH 03077

GARNHAM, DENNIS
JANET BUTLER
95 MAIN STREET
RAYMOND, NH 03077

GILES, ERIN B. \& BRIAN D. 1 MOULTON STREET
RAYMOND, NH 03077

HARD ROCK DEVELOPMENT, LL 84 EXETER ROAD
SOUTH HAMPTON, NH 03827

JOHNSON, CARLYLE R.
MARICELA JOHNSON 9 MOULTON STREET
RAYMOND, NH 03077

KING, WILLIAM C JANICE L KING
101 MAIN STREET
RAYMOND, NH 03077

KITTREDGE, OCEANNE SARAH ADAM KITTREDGE 126 MAIN STREET RAYMOND, NH 03077

LACASSE, ALISON F. W. \& R INEZ WELCH
103 MAIN STREET
RAYMOND, NH 03077

LURIE, AUDREY J.
111 MAIN STREET
RAYMOND, NH 03077

MCCARTHY, TONA \& CYNTHIA CINDY A. TOWNSEND 112 MAIN STREET RAYMOND, NH 03077

MERKEL EMPIRE , LLC 17 PINEWOOD DRIVE STRATHAM, NH 03885

METRO PCS
285 BILLERICA ROAD THIRD FLOOR
CHELMSFORD, MA 01824

MICHAELS, KEITH J. 11 ORCHARD STREET RAYMOND, NH 03077

MOULTON, EDWARD W JEAN MOULTON 106 MAIN STREET RAYMOND, NH 03077

MOULTON, EDWARD W 106 MAIN STREET RAYMOND, NH 03077

PERREAULT, JOHN W 116 MAIN STREET RAYMOND, NH 03077

POWER, JOHN W 5 MOULTON STREET RAYMOND, NH 03077

PRATT, KEVIN M. KERRY J. PRATT 11 SMITH POND ROAD RAYMOND, NH 03077

RAYMOND, TOWN OF 4 EPPING STREET RAYMOND, NH 03077

RAYMOND, TOWN OF 4 EPPING STREET RAYMOND, NH 03077

RICE, CHARLES F.JR. REVOC CHARLES F. RICE, JR. / TR 97 MAIN STREET RAYMOND, NH 03077

RUELAS, JEREMY S \& SUSANN 114 MAIN STREET RAYMOND, NH 03077

SPRINT COMMUNICATIONS C/O PROPERTY TAX DEPARTME P.O. BOX 12913

SHAWNEE MISSION, KS 66282

SPRINT SPECTRUM LP CIO PROPERTY TAX DEPARTME P O BOX 8430
KANSAS CITY, MO 64114-8430

SPRINT SPECTRUM LP
ATTN: PROPERTY TAX DEPART PO BOX 12913
SHAWNEE MISSION, KS 66282

STATE OF NEW HAMPSHIRE JOHN O. MORTON BLDG.
P.O. BOX 483

CONCORD, NH 03301

VERIZON
P.O. BOX 2549

ADDISON, TX 75001

WATT, DANIEL E 102 MAIN STREET RAYMOND, NH 03077

WELCH, JOAN E 15 NOTTINGHAM ROAD RAYMOND, NH 03077

WELCH, JOAN E 15 NOTTINGHAM ROAD RAYMOND, NH 03077

WEST RIVER ROAD, L.L.C
P.O. BOX 2750

SEABROOK, NH 03874

ZABEK, THEODORE N
P O BOX 2504
SALEM, NH 03079

JONES \& BEACH ENGINERS
ATTN. JOSEPH CORONATI PO BOX 219
STRATHAM, NH 03885

TUCK REALTY CORP
149 EPPING RD, STE 2A
EXETER, NH 03833

NHDOT
7 HAZEN DR
CONCORD, NH 03302

SECOND FLOOR PLAN

Letter of Authorization

I, Joseph Welch, 49 Raymond Road, Route 156, Nottingham, NH 03290, owner of property located in Raymond, NH, known as Tax Map 23, Lot 25, do hereby authorize Jones \& Beach Engineers, Inc., PO Box 219, Stratham, NH, as well as Garrepy Planning Consultants, LLC and Hoefle, Phoenix, Gormley and Roberts to act on my behalf concerning the previously mentioned property. The parcel is located on 109C Main Street in Raymond, NH.

I hereby appoint Jones \& Beach Engineers, Inc., as my agent to act on my behalf in the review process, to include any required signatures.

Personally, appeared the above-named Joseph Welch, known to me or satisfactorily proven to be the person whose signature appears on this letter of authorization and acknowledged that the facts contained in the letter of authorization are true based upon their knowledge, information, and belief. Before me,

Elizabeth A Warrington
My commission expires Dec 18,2024 My Commission Expires Dec 18, 2024

Letter of Authorization

I, Ai Welch, 28 Main Street, Raymond, NH 03077, owner of property located in Raymond, NH, known as Tax Map 23, Lot 25, do hereby authorize Jones \& Beach Engineers, Inc., PO Box 219, Stratham, NH, as well as Garrepy Planning Consultants, LLC and Hoefle, Phoenix, Gormley and Roberts to act on my behalf concerning the previously mentioned property. The parcel is located on 109C Main Street in Raymond, NH .

I hereby appoint Jones \& Beach Engineers, Inc., as my agent to act on my behalf in the review process, to include any required signatures.

Personally, appeared the above-named Ai Welch, known to me or satisfactorily proven to be the person whose signature appears on this letter of authorization and acknowledged that the facts contained in the letter of authorization are true based upon their knowledge, information, and belief. Before me,

Letter of Authorization

I, Henry A. Peterson Jr., with a legal address of 84 Main Street and a mailing address of PO Box 376, Raymond, NH 03077, owner of property located in Raymond, NH, known as Tax Map 23, Lot 25, do hereby authorize Jones \& Beach Engineers, Inc., PO Box 219, Stratham, NH, as well as Garrepy Planning Consultants, LLC and Hoefle, Phoenix, Gormley and Roberts to act on my behalf concerning the previously mentioned property. The parcel is located on 109C Main Street in Raymond, NH.

I hereby appoint Jones \& Beach Engineers, Inc., as my agent to act on my behalf in the review process, to include any required signatures.

Personally, appeared the above-named Henry A. Peterson Jr., known to me or satisfactorily proven to be the person whose signature appears on this letter of authorization and acknowledged that the facts contained in the letter of authorization are true based upon their knowledge, information, and belief. Before me,

Letter of Authorization

I, Alison Robin Proulx, 99 Deerfield Road, Nottingham, NH 03290, owner of property located in Raymond, NH, known as Tax Map 23, Lot 25, do hereby authorize Jones \& Beach Engineers, Inc., PO Box 219, Stratham, NH, as well as Garrepy Planning Consultants, LLC and Hoefle, Phoenix, Gormley and Roberts to act on my behalf concerning the previously mentioned property. The parcel is located on 109C Main Street in Raymond, NH.

I hereby appoint Jones \& Beach Engineers, Inc., as my agent to act on my behalf in the review process, to include any required signatures.

Personally, appeared the above-named Alison Robin Proulx, known to me or satisfactorily proven to be the person whose signature appears on this letter of authorization and acknowledged that the facts contained in the letter of authorization are true based upon their knowledge, information, and belief. Before me,

My commission expires \qquad

Elizabeth A Warrington
Notary Public, State of New Hampshire
My Commission Expires Dec 18, 2024

Letter of Authorization

I, Inez Welch, 49 Raymond Road, Route 156, Nottingham, NH 03290, owner of property located in Raymond, NH, known as Tax Map 23, Lot 25, do hereby authorize Jones \& Beach Engineers, Inc., PO Box 219, Stratham, NH, as well as Garrepy Planning Consultants, LLC and Hoefle, Phoenix, Gormley and Roberts to act on my behalf concerning the previously mentioned property. The parcel is located on 109C Main Street in Raymond, NH.

I hereby appoint Jones \& Beach Engineers, Inc., as my agent to act on my behalf in the review process, to include any required signatures.

Personally, appeared the above-named Inez Welch, known to me or satisfactorily proven to be the person whose signature appears on this letter of authorization and acknowledged that the facts contained in the letter of authorization are true based upon their knowledge, information, and belief. Before me,

My commission expires $6 / 6 / 23$

Letter of Authorization

Turner Porter, Tuck Realty Corp., 149 Epping Road, Suite 2A, Exeter, NH, developer of property located in Raymond, NH, known as Tax Map 23, Lot 25, do hereby authorize Jones \& Beach Engineers, Inc., PO Box 219, Stratham, NH, as well as Garrepy Planning Consultants, LLC and Hoefle, Phoenix, Gormley and Roberts to act on my behalf concerning the previously mentioned property. The parcel is located on 109C Main Street in Raymond, NH.

I hereby appoint Jones \& Beach Engineers, Inc., as my agent to act on my behalf in the review process, to include any required signatures.

Witness

Turner Porter
Tuck Realty Corp.

Personally, appeared the above-named Turner Porter, known to me or satisfactorily proven to be the person whose signature appears on this letter of authorization and acknowledged that the facts contained in the letter of authorization are true based upon their knowledge, information, and belief. Before me,

Notary Public/Justice of the Peace
My commission expires $12 / 22(2023$

[^3]
1559

eriy by said highway to the bound begun at, estimated to contain about one hundred and forty. (140) acres.

Being a portion of the same oremises conveyed to me by Roger B. Maloon, et als by deed dated February 7; 1949, to be recorded in Rockingham Records.

This conveyance is subject to the 1949 taxes which the grantee agrees to
assume and pay.

On lyaur and ta fuld the aforesaid premises, with all the privileges and appurtenances thereto belonging, to the said grantee, his heirs and assigns, to their wise and behoof
forever. Aud I do covenant with the said granteo h1s heirs and assigns, that, I an
lawfully seized in fee of the afore-described premises; that they are free of all incinbrantes:
that I have good right to sell and convey the same to the said grantee
in manner aforesaid:
and that I and my heirs will warrant and defend the same premises to the said grantee, his. heirs and assigns, forever, against the lawful claims and demands of all persons

And I. Howard L. Lamprey, husband of the said grantor,
in consideration aforesaid, do hereby relinquish my
by the courtesy
right/otroomxr in the before mentioned premises:
And we, and each of us, hereby release our several rights of Homestead in said premises, under and by virtue of any haw of this State.

Th Mniturn Mlprenf we
have heremuto set our
hand Ind searmhis

state of Neva ifanubhire

instrument to be their free act and deed, before me- -

?
Cececctas

Received and recorded Feb.5, 12:05 P.M., 1951.
Rec'd \& re-recorded Sept. 9, 9:30 A.M., 1960.

KNQW ALL MEN BY THESE PRESENTS, That I, Josephine Welch, of Deexfield

 Road, Raymond, County of Rockingham and state of New Hampshire,for constderation padd, grant to Wayne F. Welch and Cathleen M. Welch, of
 rights of survivorship,
with marramty curumut a certain tract or parcel of land located in Raymond, County of Rockingham and State of New hampshire, more particularly bounded and described as follows:

Beginning at an iron rod set in the westerly line of Main Street at the southeast corner of the premises herein conveyed and the north east corner of land now or formerly of Bishop;

Thence $\mathrm{N} 80^{\circ} 31^{\prime} 30^{\prime \prime} \mathrm{W}$ along land of said Bishop a distance of 189.87 feet to a point;

Thence $S 17^{\circ} 08^{\prime} 00^{\prime \prime} \mathrm{W}$ continuing along land of said Bishop, a distance of 175.31 feet to an iron rod;

Thence S $71^{\circ} 27^{\prime} 00^{\prime \prime} \mathrm{W}$ along a right of way to other land of the grantor, a distance of 109.03 feet to an iron rod;

Thence $S 57^{\circ} 57^{\prime} 40^{\prime \prime} \mathrm{W}$ continuing along said right of way, a dis tance of 140.24 feet to an iron rod;

Thence S $38^{\circ} 13^{\prime} 20^{\prime \prime} \mathrm{W}$ continuing further along said right of way, a distance of 130.87 feet to an iron rod;

Thence $N 63^{\circ} 16^{\prime} 10^{\prime \prime} \mathrm{W}$ along other land of the grantor, a distance of 691.51 feet to a point;

Thence $N 14^{\circ} 41^{\prime} 20^{\prime \prime} \mathrm{E}$ along other land of the grantor, a distance of 340.20 feet to an iron rod;

Thence $\mathrm{N} 72^{\circ} 55^{\prime} 10^{\prime \prime} \mathrm{E}$ continuing along other land of the grantor a distance of 955.14 feet to an iron rod;

Thence S $4^{\circ} 00^{\prime} 40^{\prime \prime} \mathrm{E}$ along land of Neal F . Welch, a distance of 163.97 feet to an iron rod;

Thence $S 40^{\circ} 40^{\prime} 00^{\prime \prime} E$ continuing along land of said Neal F. Welch, a distance of 196.00 feet to an iron rod;

Thence $S 20^{\circ} 00^{\prime} 00^{\prime \prime} E$ continuing further along land of Neal F. Welch, a distance of 156.00 feet to a granite bound in the westerly line of said Main Street;

Thence $S 14^{\circ} 37^{\prime} 20^{\prime \prime} \mathrm{W}$ a distance of 66.52 feet to a granite bound set in the westerly line of said Main Street;

Thence S $17^{\circ} 11^{\prime} 50^{\prime \prime} \mathrm{W}$ continuing along the westerly line of said Main Street a distance of 51.61 feet to the point of beginning.

Meaning and intending to describe a parcel of land containing 14.82 acres, more or less, as shown on plan of lot to be conveyed by Josephine F. Welch to Wayne Welch, dated August 22, 1983, to be recorded herewith.

Meaninc and intending to convey a portion of the premises conveyed to Ai S. Welch bv deed of Abbie J. Lamprey, dated July 7. 1949, and recorded in Rockingham County Registry of Deeds, Volume 1559, Page 263.

Title of the grantor was derived through the Estate of Ai S. Welch, see Rockingham County Probate Records, Docket No. 52197.

After recording mail to:
Tuck Realty Corporation
P.O. Box 190

Exeter, NH 03833

E \# 22039063 09/09/2022 01:43:01 PM
Book 6437 Page 2569 Page 1 of 2
Register of Deeds, Rockingham County

LCHIP
ROA630410
25.00
878.00

TRANSFER TAX RO118246
14.00 SURCHARGE 2.00

WARRANTY DEED

KNOW ALL MEN BY THESE PRESENTS, that I, Joan E. Welch, (an unremarried widow), of 15 Nottingham Road, Raymond, Rockingham County, State of New Hampshire 03077,

FOR CONSIDERATION PAID hereby grants to Tuck Realty Corporation, a New Hampshire Corporation, with a mailing address of P.O. Box 190, Exeter, Rockingham County, State of New Hampshire 03833, with WARRANTY COVENANTS:

A certain tract or parcel of land situated in Raymond, County of Rockingham, State of New Hampshire, being the $7.8+$ acre portion of the Gregg lot shown on a plan entitled "Two Remaining Portions of the Gregg Lot (1346-496 less Route 101)", by David R. Noyes, Scale $1^{\prime}=100^{\prime}+$, dated June 1, 1984 and recorded in the Rockingham County Registry of Deeds as Plan No. D-13046, which parcel is more particularly bounded and described as follows:

Beginning at a point located on the northerly sideline of Route 101-Raymond By-Pass and on the easterly side of land now or formerly of Frederick Welch; thence North $313 / 4^{\circ}$ East, $569.00+$ feet to a granite bound and stones found; thence

1. Turning and running South $633 / 4^{\circ}$ East, $271.00+$ feet to a point; thence
2. South 62° East, $880.00+$ feet along a barbed wire fence to a point; thence
3. North 90° West, $84.00+$ along said Route 101 to a concrete bound; thence
4. North $881 / 2^{\circ}$ West, $750.00+$ feet along said Route 101 to a concrete bound; thence
5. North $861 / 2^{\circ}$ West, $488.00+$ feet along said Route 101 to the point of beginning.

Together with a 30 ' right-of-way as shown on a plan entitled 'Centerline of 30 ' Right-ofWay across land of Josephine Welch" by David R. Noyes. Scale 1' = 100', dated August 23, 1982 and recorded in the Rockingham Registry of Deeds as Plan No. D-11967.

This parcel is not a homestead property of the Grantor.
Meaning and intending to convey the same premises conveyed to Frederick S. Welch and Joan E. Welch by virtue of a Quitclaim Deed of Barbara L. Wilson dated July 2, 1987 and recorded in the Rockingham County Registry of Deeds at Book 2690, Page 1117 on July 6, 1987. Frederick S. Welch passed away March 1, 1990, see notice of probate recorded at the Rockingham County Registry of Deeds at Book 2865, Page 2694; Rockingham County Probate Court Docket \# 61625, leaving Joan S. Welch the surviving joint tenant.

The preparer of this deed makes no representation as to the status of the title to the property described herein. This deed was prepared from the information furnished and a title search was neither requested nor performed.

Signed on this $9^{\text {th }}$ day of September 2022

STATE OF RAC RNW/tGupshire COUNTY OF Rockrghaer

On this $9^{\text {t }}$ day of Septendaer, 2022, personally appeared the above-named Joan E. Welsh known to me or satisfactorily proven through proof of identification of a Driver's License, to be the individual who executed the foregoing instrument, and swore to and acknowledged the same to be her voluntary act and deed.

Before me,

Ref: 9643

August 16, 2023

Ms. Christina McCarthy
Raymond Community Development
Town of Raymond
4 Epping Street
Raymond, NH 03077

Re: Response to Engineering Review Services Comments
White Rock Place Multifamily Residential Development - 109 Main Street Raymond, New Hampshire

Dear Ms. McCarthy
Vanasse \& Associates, Inc. (VAI) is providing responses to the comments that were raised in the July 28, 2023 Engineering Review Services letter prepared by DuBois \& King, Inc. (D\&K) concerning their review of the May 3, 2023 Traffic Impact Study (the "May 2023 TIS") and the June 9, 2023 Response to Engineering Review Services Comments that were prepared by VAI in support of the proposed multifamily residential development to be known as White Rock Place and located at 109 Main Street in Raymond, New Hampshire (hereafter referred to as the "Project"). Listed below are the comments that were identified by D\&K in the subject letter followed by our response on behalf of the Project proponent.

Comment 1: With the updated Table 5, our comment would be whether the engineer considered any mitigation measures to improve overall traffic operations, especially at the Freetown Road at Main Street intersection, where the LOS for 2024 is predicted to go from LOS E and LOS D to LOS F and LOS E with the addition of the project. Understanding that the modeling may have some limitations when the delays get very high, due to the reduction in LOS to E and F, combined with the extremely high delays report for the Main Street EB LT approach, it is recommended that potential mitigation as it relates to traffic operations be considered. While understanding that there may be modeling limitations, a Synchro reported increase of 3-4 minutes of delay for this approach during the weekday morning peak hour is significant. The fact that it is showing as this high should at least be considered as a potential concern at this intersection for the Main Street EB LT approach.

Response: As identified in the May 2023 TIS, the Project is predicted to add 32 vehicle trips to the Freetown Road/Main Street intersection during the weekday morning peak-hour and 35 vehicle trips during the weekday evening peak-hour, with vehicle queues on the Main Street approach to the intersection predicted to increase by between one (1) and three (3) vehicles as a result of the Project. A preliminary review of the warrants specified in the Manual on Uniform Traffic Control Devices (MUTCD) ${ }^{1}$ for the installation of a traffic control signal at the Freetown Road/Main Street intersection indicates that the intersection does not appear to meet the necessary criteria for the installation of a traffic

[^4]Ms. Christina McCarthy
Raymond Community Development
August 16, 2023
Page 2 of 2
signal. In an effort to improve the traffic operations at the intersection, consideration should be given realigning the Main Street approach to Freetown Road to intersect Freetown Road at a perpendicular angle and that the left and right-turn lanes be extended along Main Street to increase the vehicle queue storage for left-turn movements.

Comment 2: We recommend that the response for Comment 7 [of VAI's June 2023 response letter] be incorporated into the Report.

Response: The May 2023 TIS has been updated to incorporate the information that was provided in VAI's June 9, 2023 responses letter and the response noted above.

We trust that this information is responsive to the comments that were identified in the July 28, 2023 letter prepared by D\&K. If you should have any questions or would like to discuss our responses in more detail, please feel free to contact me.

Sincerely,
VANASSE \& ASSOCIATES, INC.

(4ffrey S. Dirk, P.E., PTOE, FITE
Managing Partner
Professional Engineer in CT, MA, ME, NH, RI, and VA
JSD/dcl

MEMORANDUM

TO: Tuck Realty Corporation c/o Mr. Turner Porter PO Box 190
Exeter, NH 03833

DATE:
May 3, 2023
Updated August 17, 2023

FROM: Mr. Jeffrey S. Dirk, P.E.*, PTOE, FITE SD
Managing Partner and
Mr. Daniel C. LaCivita
Transportation Engineer
Vanasse \& Associates, Inc.
35 New England Business Center Drive Suite 140
Andover, MA 01810-1066
(978) 269-6830
jdirk@rdva.com
*Professional Engineer in CT, MA, ME, NH, RI and VA
RE: 9643

SUBJECT: Updated Traffic Impact Study
White Rock Place Multifamily Residential Development - 109 Main Street
Raymond, New Hampshire

Vanasse \& Associates, Inc. (VAI) has conducted a Traffic Impact Study (TIS) in order to determine the potential impacts on the transportation infrastructure associated with the proposed construction of a multifamily residential development to be known as White Rock Place and located at 109 Main Street in Raymond, New Hampshire (hereafter referred to as the "Project"). This study has been completed in accordance with the New Hampshire Department of Transportation (NHDOT) guidelines for the preparation of TISs as defined in the Driveway Permit Policy, and evaluates the following specific areas as they relate to the Project: i) access requirements; ii) potential off-site improvements; and iii) safety considerations; and identifies and analyzes existing traffic conditions and future traffic conditions, both with and without the Project. Based on this assessment, we have concluded the following with respect to the Project:

1. Using trip-generation statistics published by the Institute of Transportation Engineer (ITE), ${ }^{1}$ the Project is expected to generate approximately 708 vehicle trips on an average weekday (two-way, 24-hour volume), with approximately 57 vehicle trips expected during the weekday morning peak-hour and 61 vehicle trips expected during the weekday evening peak-hour;
2. The Project will not have a significant impact (increase) on motorist delays or vehicle queuing over Existing or anticipated future conditions without the Project (No-Build conditions), acknowledging that specific movements at the study area intersection are currently operating at or over capacity (i.e., level-of-service (LOS) "E" or "F") and the with the majority of the movements at the study area intersections shown to continue operate at LOS D or better, where and LOS of "D" or better is generally defined as "acceptable" traffic operations;

[^5]3. Exiting movements from the Project site driveway to Main Street are predicted to operate at LOS B or better with negligible vehicle queuing predicted, with all movements along Main Street approaching the driveway shown to operate at LOS A, also with negligible vehicle queuing; and
4. Lines of sight at the intersection of Main Street at the Project site driveway were found to exceed the recommended minimum distance for the intersection to operate in a safe manner based on the appropriate approach speed.

In consideration of the above, we have concluded that the Project can be accommodated within the confines of the existing transportation infrastructure in a safe and efficient manner with implementation of the recommendations defined herein.

The following details our assessment of the Project.

PROJECT DESCRIPTION

As proposed, the Project will entail the construction of a $156 \pm$-unit multifamily residential development to be known as White Rock Place and located at 109 Main Street in Raymond, New Hampshire. The Project site encompasses approximately $67.1 \pm$ acres of land that is bounded by areas of open and wooded space and residential properties to the north; NH Route 101 to the south; Main Street, residential properties and areas of open and wooded space to the east; and areas of open and wooded space to the west. The Project site currently contains areas of open and wooded space. Figure 1 depicts the Project site in relation to the existing roadway network.

Access to the Project site will be provided by way of a full-access driveway that will intersect the west side of Main Street approximately 40 feet south of the driveway to 103 Main Street, with secondary access for emergency vehicles only to be provided by way of a paved drive that will intersect the west side of Main Street between 95 Main Street and 97 Main Street. On-site parking will be provided for 256 vehicles to accommodate residents and visitors.

STUDY METHODOLOGY

This study was prepared in consultation with the Town of Raymond and NHDOT; was performed in accordance with the NHDOT guidelines for the preparation of TISs as defined in the Driveway Permit Policy and the standards of the Traffic Engineering and Transportation Planning Professions for the preparation of such reports; and was conducted in three distinct stages.

The first stage of the study involved an assessment of existing conditions in the study area and included an inventory of roadway geometrics, pedestrian and bicycle facilities, and public transportation services; observations of traffic flow; and the collection of daily and peak-period traffic counts.

In the second stage of the study, future conditions on the transportation system were projected and analyzed. Specific travel demand forecasts for the Project were assessed along with future demands on the transportation system that are expected due to growth independent of the Project. In accordance with NHDOT guidelines for the preparation of TISs, four future conditions were evaluated: 1) 2024 No-Build conditions without the Project; 2) 2024 Opening-Year Build conditions with the Project; 3) 2034 No-Build conditions without the Project; and 4) 2034 Build conditions (ten-year projection from opening-year) with the Project. The analyses conducted in stage two of the study identify existing or projected future roadway capacity and traffic safety issues.

The third stage of the study presents and evaluates measures to address roadway and intersection capacity issues and safety concerns, if any, identified in stages one and two of the study.

EXISTING CONDITIONS

A comprehensive field inventory of existing conditions within the study area was conducted in February and March 2023. The field investigation consisted of an inventory of existing roadway geometrics; pedestrian and bicycle facilities; public transportation services; traffic volumes; and operating characteristics; as well as posted speed limits and land use information within the study area. The study area that was assessed for the Project consisted of Main Street and the following specific intersections through which Project-related traffic will travel: Main Street at Epping Street and Old Manchester Road; Freetown Road (NH Routes 102 and 107) at Main Street; and Main Street at Wight Street.

The following describes the study area roadway and intersections.

Roadway

Main Street

> Two-lane, Tier 5, Class V local roadway under Town jurisdiction;
> Traverses the study area in a general northwest-southeast direction;
> Provides two 11- to 12 -foot-wide travel lanes separated by a double yellow centerline with 1-footwide marked shoulders provided in the vicinity of the Project site;
$>$ A sidewalk is not provided within the study area;
> Illumination is provided intermittently by way of streetlights mounted on wood poles;
> The posted speed limit in the vicinity of the Project site is 30 miles per hour (mph);
> Land use within the study area consists of the Project site, residential properties and areas of open and wooded space.

Intersections

Table 1 and Figure 2 summarize the existing lane use, traffic control, and pedestrian and bicycle accommodations at the study area intersection as observed in February 2023.

```
Legend:
(1) Unsignalized Intersection
\(=\) = Sidewalk
- Crosswalk
\(x x^{\prime}-\frac{\mathrm{S}}{\boldsymbol{\sigma}} \quad\) Lane Use and Travel Lane Width
```

Not To Scale
Figure 2
Vanasse \&
Associates inc
Existing Intersection Lane Use, Travel Lane Width, and Pedestrian Facilities

Table 1
STUDY AREA INTERSECTION DESCRIPTION

Intersection	Traffic Control Type	No. of Travel Lanes Provided	Shoulder Provided? (Yes/No/Width)	Pedestrian Accommodations? (Yes/No/Description)	Bicycle Accommodations? (Yes/No/Description)
Main St./ Epping St./Old Manchester Rd.	S	1 general-purpose travel lane; provided on all approaches; on-street parking is provided along the east side of Epping St. and the north side of Main St. east of Epping St.	Yes; 1 foot on the west side of Epping St. and Old Manchester Rd. and 4 feet on the south side of Main St.	Yes; sidewalks are provided along both sides of Main St. east of Epping St. for approximately 400 feet	No

${ }^{a}$ S = STOP-sign control.
${ }^{\mathrm{b}}$ Combined shoulder and travel lane width equal to or exceed 14 feet.

Existing Traffic Volumes

In order to determine existing traffic-volume demands and flow patterns within the study area, automatic traffic recorder (ATR) counts, turning movement counts (TMCs) and vehicle classification counts were completed in February and March 2023 while public schools were in regular session. The ATR counts were conducted on Main Street in the vicinity of the Project site on March $7^{\text {th }}$ through $8^{\text {th }}, 2023$ (Tuesday through Wednesday, inclusive), in order to record weekday traffic conditions over an extended period, with weekday morning (7:00 to 9:00 AM) and evening (4:00 to 6:00 PM) peak-period TMCs performed at the study area intersections (exclusive of the Main Street/Wight Street intersection) on March $7^{\text {th }}, 2023$ (Tuesday). These time periods were selected for analysis purposes as they are representative of the peak-traffic-volume hours for both the Project and the adjacent roadway network.

Weekday morning and evening peak-period TMCs were conducted at the intersection of Old Manchester Road and Wight Street on February $8^{\text {th }}, 2023$ (Wednesday) and were used develop the traffic volumes at the Wight Street/Main Street intersection. The volume of traffic that was observed to be traveling along Wight Street toward Main Street from the TMC data was distributed at the Main Street/Wight Street intersection based on a review of existing traffic patterns at the Main Street/Epping Street/Old Manchester Road intersection. Through volumes along Main Street were balanced between the Main Street/ Wight Street and the Main Street/Epping Street/Old Manchester Road intersections.

Traffic Volume Adjustments

In order to evaluate the potential for seasonal fluctuation of traffic volumes within the study area, 2019 peak-hour and average daily traffic count data were reviewed for NHDOT continuous count station No. 02071090 , which is located on NH Route 101 at the Raymond town line in Candia. Based on a review of this data, it was determined that traffic volumes for the months of February and March are approximately 37.0 and 31.0 percent below peak-month (August) conditions, respectively. As such, the February and March traffic volumes were adjusted upward by 37.0 percent and 31.0 percent, respectively, in order to be representative of peak-month conditions in accordance with NHDOT standards.

In order to account for the impact on the traffic volumes and trip patterns resulting from the COVID-19 pandemic, traffic volume data collected at NHDOT Continuous Count Station 02071090 in March 2023 was compared to data collected at the same count station in March 2019. Based on this pre- and post-COVID-19 traffic-volume comparison, it was determined that the March 2023 traffic volumes are approximately 5.3 percent below the conditions that existed prior to the COVID-19 pandemic. As such, the March traffic counts that were collected as a part of this assessment were adjusted upward by an additional 5.3 percent to be representative of conditions that existed prior to the COVID-19 pandemic. The February traffic counts were adjusted upward by the same amount to be consistent with the March volumes.

The 2023 Existing peak-month peak-hour traffic volumes are summarized in Table 2, with the weekday morning and evening peak-month peak-hour traffic volumes graphically depicted on Figures 3 and 4, respectively. Note that the peak-hour traffic volumes that are presented in Table 2 were obtained from the aforementioned figures.

Table 2
2023 EXISTING TRAFFIC VOLUMES

Location/Peak Hour	$\mathrm{AWT}^{\text {a }}$	$\mathrm{VPH}^{\text {b }}$	K Factor ${ }^{\text {c }}$	Directional Distribution ${ }^{\text {d }}$
Main Street, near the Project Site:	3,510	--	--	--
Weekday Morning (7:00-8:00 AM)	--	342	9.7	50.9\% SB
Weekday Evening (4:00-5:00 PM)	--	340	9.7	53.2\% SB

[^6]As can be seen in Table 2, Main Street in the vicinity of the Project site was found to accommodate approximately 3,510 vehicles on an average weekday (two-way, 24 -hour volume), with approximately 342 vehicles per hour (vph) during the weekday morning peak-hour and 340 vph during the weekday evening peak-hour.

Pedestrian and Bicycle Facilities

As detailed on Figure 2, sidewalks are provided along both sides of Main Street to the southeast of Epping Street for approximately 400 feet, with three (3) marked crosswalks provided for crossing Main Street between Church Street and Depot Street. Formal bicycle facilities are not provided within the study area; however, Freetown Road generally provides sufficient width to accommodate bicycle travel in a shared traveled-way configuration (i.e., bicyclists and motor vehicles sharing the traveled-way). ${ }^{2}$

Spot Speed Measurements

Vehicle travel speed measurements were performed on Main Street in the vicinity of the Project site in conjunction with the ATR counts, the results of which are summarized in Table 3.

Table 3
VEHICLE TRAVEL SPEED MEASUREMENTS

	Main Street	
	Northbound	Southbound
Mean Travel Speed (mph)	29	23
$85^{\text {th }}$ Percentile Speed (mph)	32	28
Posted Speed Limit (mph)	30	30

$\mathrm{mph}=$ miles per hour.

As can be seen in Table 3, the mean vehicle travel speed along Main Street in the vicinity of the Project site was found to be 29 mph in the northbound direction and 23 mph southbound. The measured $85^{\text {th }}$ percentile vehicle travel speed, or the speed at which 85 percent of the observed vehicles traveled at or below, was found to be 32 mph in the northbound direction and 28 mph southbound, which is two (2) mph above and below the posted speed limit (30 mph) in the vicinity of the Project site. The $85^{\text {th }}$ percentile speed is used as the basis of engineering design and in the evaluation of sight distances and is often used in establishing posted speed limits.

Public Transportation Services

Public transportation services are not currently provided within the Town of Raymond.

Motor Vehicle Crash Data

Motor vehicle crash data for the study area intersections has been requested from the Raymond Police Department in order to examine motor vehicle crash trends occurring within the study area. The data will be summarized in a supplement to this TIS once the data is received.

[^7]
FUTURE CONDITIONS

Traffic volumes in the study area were projected to the years 2024 and 2034, which reflects the anticipated opening-year of the Project and a ten-year planning horizon from opening-year, respectively, consistent with NHDOT TIS guidelines. The future condition traffic-volume projections incorporate identified specific development projects by others, as well as general background traffic growth as a result of development external to the study area and presently unforeseen projects. Anticipated Project-generated traffic volumes superimposed upon the 2024 and 2034 No-Build traffic volumes reflect the Build conditions with the Project.

Future Traffic Growth

Future traffic growth is a function of the expected land development in the immediate area and the surrounding region. Several methods can be used to estimate this growth. A procedure frequently employed estimates an annual percentage increase in traffic growth and applies that percentage to all traffic volumes under study. The drawback to such a procedure is that some turning volumes may actually grow at either a higher or a lower rate at particular intersections.

An alternative procedure identifies the location and type of planned development, estimates the traffic to be generated, and assigns it to the area roadway network. This procedure produces a more realistic estimate of growth for local traffic; however, potential population growth and development external to the study area would not be accounted for in the resulting traffic projections.

To provide a conservative analysis framework, both procedures were used, the salient components of which are described below.

Specific Development by Others

The Town of Raymond Department of Community Development and Planning was contacted in order to determine if there were any projects planned within the study that would have an impact on future traffic volumes along the study roadways and at the study area intersections. Based on this consultation, the following developments were identified for inclusion in this assessment:
> Proposed Warehouse Building, Industrial Drive, Raymond, New Hampshire. This project entails the construction of a $550,025 \pm$ sf warehouse building to be located off of Industrial Drive to the west of the Project site. Traffic volumes associated with this project were obtained from the traffic study prepared for the development ${ }^{3}$ and were incorporated into the future conditions traffic volumes.
$>$ Proposed Warehouse Development, Old Manchester Road and Scribner Road, Raymond, New Hampshire. This project entails the construction of two warehouse buildings totaling $300,000 \pm \mathrm{sf}$ to be located in the southwest quadrant of the Old Manchester/Scribner Road intersection to the west of the Project site. Traffic volumes associated with this project were estimated using tripgeneration statistics published by the Institute of Transportation Engineers (ITE) ${ }^{4}$ and were assigned onto the study area roadway network based on existing traffic patterns.

[^8]> Proposed Mega-X Fueling Facility, Old Manchester Road, Raymond, New Hampshire. This project entails the construction of a $6,500 \pm$ sf convenience store (containing a $1,200 \pm$ sf coffee shop with a drive-through window) with accompanying 18 -pump vehicle fueling facility to be located within the southwest quadrant of Old Manchester Road/Scribner Road intersection to the west of the Project site. Traffic volumes associated with this project were obtained from the traffic study prepared for the development ${ }^{5}$ and were incorporated into the future conditions traffic volumes.
> Proposed Multifamily Residential Development, 65 and 101 Batchelder Road, Raymond, New Hampshire. This project entails the construction of $300 \pm$ single-family homes to be located between Batchelder Road, Mark Lane and Wendover Lane to the south of the Project site. Traffic volumes associated with this project were estimated using trip-generation statistics published by the ITE and were assigned onto the study area roadway network based on existing traffic patterns.
> Proposed Commercial Development, Silver Fox Lane, Raymond, New Hampshire. This project entails the construction of a commercial development to be located off of Silver Fox Lane to the northeast of the Project site, which includes a Starbucks restaurant, Domino's restaurant, selfstorage facility, medical office space and general retail space. Traffic volumes associated with this project were obtained from the traffic study prepared for the development ${ }^{6}$ and were incorporated into the future conditions traffic volumes.

No other developments were identified at this time that are expected to result in an increase in traffic within the study area beyond the general background traffic growth rate (discussion follows).

General Background Traffic Growth

Traffic-volume data compiled by NHDOT from permanent count stations located in Raymond were reviewed in order to determine general traffic growth trends in the area. This data indicates that traffic volumes have fluctuated over the 10 -year period between 2009 and 2019, with the average traffic growth rate found to be 0.70 percent. As such, in order to provide a prudent planning condition, a 1.0 percent per year compounded annual background traffic growth rate was used in order to account for future traffic growth and presently unforeseen development within the study area.

Roadway Improvement Projects

The Town of Raymond and NHDOT were contacted in order to determine if there were any planned roadway improvement projects expected to be completed within the study area. Based on these discussions, no roadway improvement projects aside from routine maintenance activities were identified to be planned within the study area at this time.

[^9]
No-Build Traffic Volumes

The 2024 and 2034 No-Build peak-month peak-hour traffic volumes were developed by applying the 1.0 percent per year compounded annual background traffic growth rate to the 2023 Existing peak-month peak-hour traffic volumes and then adding the peak-hour traffic volumes associated with the identified specific development projects by others. The resulting 2024 No-Build weekday morning and evening peakmonth peak-hour traffic volumes are shown on Figures 5 and 6, with the corresponding 2034 No-Build peak-month peak-hour traffic volumes shown on Figures 7 and 8.

Project-Generated Traffic

Design year (2024 and 2034) Build traffic volumes for the study area roadways were determined by estimating Project-generated traffic volumes and assigning those volumes on the study roadways. The following sections describe the methodology used to develop the anticipated traffic characteristics of the Project.

As proposed, the Project will entail the construction of a $156 \pm$-unit multifamily residential development. In order to develop the traffic characteristics of the Project, trip-generation statistics published by the ITE ${ }^{7}$ for a similar land use as that proposed were used. ITE Land Use Code (LUC) 221, Multifamily Housing (Mid-Rise), was used to develop the traffic characteristics of the Project, the results of which are summarized in Table 4.

Table 4
TRIP-GENERATION SUMMARY

	Vehicle Trips 2		
	Time Period	Entering	Exiting
Tyerage Weekday:	354	354	708
Weekday Morning Peak-Hour:	13	44	57
Weekday Evening Peak-Hour:	37	24	61

${ }^{\text {a }}$ Based on ITE LUC 221, Multifamily Housing - (Mid-Rise) (156 units).

Project-Generated Traffic-Volume Summary

As can be seen in Table 4, using the aforementioned methodology, the Project is expected to generate approximately 708 vehicle trips on an average weekday (two-way, 24-hour volume), with approximately 57 vehicle trips (13 vehicles entering and 44 exiting) expected during the weekday morning peak-hour and 61 vehicle trips (37 vehicles entering and 24 exiting) expected during the weekday evening peak-hour.

Trip Distribution and Assignment

The directional distribution of generated trips to and from the Project site was determined based on a review of U.S. Census Journey-to-Work data for residents of the Town of Raymond and then refined based on a review of existing traffic patterns within the study area. The general trip distribution for the Project is

[^10]

Not To Scale \quad Figure 6

Associates inc

graphically depicted on Figure 9, with the additional traffic expected to be generated by the Project assigned onto the study area roadway network as shown on Figures 10 and 11.

Build Traffic Volumes

The 2024 Opening-Year Build and 2034 Build condition traffic volumes were developed by adding the peak-hour Project-generated traffic to the corresponding 2024 and 2034 No-Build peak-month peak-hour traffic volumes. The resulting 2024 Opening-Year Build condition weekday morning and evening peak-month peak-hour traffic volumes are graphically depicted on Figures 12 and 13, with the corresponding 2034 Build condition peak-month peak-hour traffic volumes depicted on Figures 14 and 15.

TRAFFIC OPERATIONS ANALYSIS

In order to assess the potential impact of the Project on the roadway network, a detailed traffic operations analysis (motorist delays, vehicle queuing, and level of service) was performed at the study area intersections. Capacity analyses provide an indication of how well transportation facilities serve the traffic demands placed upon them, with vehicle queue analyses providing a secondary measure of the operational characteristics of an intersection or section of roadway under study.

In brief, six levels of service are defined for each type of facility. They are given letter designations ranging from A to F, with LOS "A" representing the best operating conditions and LOS " F " representing congested or constrained operations. An LOS of "E" is representative of a transportation facility that is operating at its design capacity with an LOS of "D" generally defined as the limit of "acceptable" traffic operations. Since the level of service of a traffic facility is a function of the flows placed upon it, such a facility may operate at a wide range of levels of service depending on the time of day, day of week, or period of the year. The Synchro ${ }^{\circledR} 11$ intersection capacity analysis software, which is based on the analysis methodologies and procedures presented in the HCM $6^{\text {th }}$ Edition ${ }^{8}$ for unsignalized intersections was used to complete the level-of-service and vehicle queue analyses.

Analysis Results

Level-of-service and vehicle queue analyses were conducted for 2023 Existing, 2024 and 2034 No-Build, and 2024 Opening-Year Build and 2034 Build conditions for the intersections within the study area. The results of the intersection capacity and vehicle queue analyses are summarized in Table 5, with the detailed analysis results presented in the Appendix.

The following is a summary of the level-of-service and vehicle queue analyses for the intersections within the study area. For context, we note that an LOS of "D" or better is generally defined as "acceptable" operating conditions.

Main Street at Epping Street and Old Manchester Road

Under 2024 Opening-Year and 2034 Build peak-month conditions, no change in level of service is predicted to occur over 2024 or 2034 No-Build conditions, with Project-related impacts generally defined as a predicted increase in average motorist delay of up to 76.3 seconds that resulted in an increase in vehicle queuing of up to two (2) vehicles. Independent of the Project, the Epping Street approach is currently or is predicted to operate at or over capacity (i.e., LOS "E" or "F") during both peak hours, with overall

[^11]

Legend:	
$\mathbf{x X}$	Entering Trips
$(\mathbf{X X})$	Exiting Trips

Legend:	
$\mathbf{x x}$	Entering Trips
$(X X)$	Exiting Trips

Associates inc
intersection operating conditions shown to be over capacity during the weekday morning peak-hour under 2023 Existing conditions.

Freetown Road at Main Street

Under 2024 Opening-Year Build peak-month conditions, the addition of Project-related traffic was shown to result in an increase in overall average motorist delay of 16.1 seconds during the weekday morning peakhour and 8.4 seconds during the weekday evening peak-hour that caused a change in level of service from LOS E to LOS F and from LOS D to LOS E, respectively. Independent of the Project, left-turn movements from Main Street are currently operating over capacity during both peak hours and right-turn movements are predicted to operate at capacity during the weekday evening peak-hour. Project-related impacts on these movements were reported as follows:

- Main Street Eastbound Left-Turn: weekday morning peak-hour - increase in average motorist delay of 181.8 seconds that resulted in an increase in vehicle queuing of up to two (2) vehicles; weekday evening peak-hour - increase in average motorist delay of 135.9 seconds that resulted in an increase in vehicle queuing up to one (1) vehicle.
- Main Street Eastbound Right-Turn: weekday morning peak-hour - increase in average motorist delay of 0.2 seconds with no (0) increase in vehicle queuing; weekday evening peak-hour - increase in average motorist delay of 1.7 seconds with no (0) increase in vehicle queuing.

Under 2034 Build peak-month conditions, right-turn movements from Main Street were shown to experience an increase in average motorist delay of 0.2 seconds that resulted in a change in level of service from LOS B to LOS C. Similar to 2024 No-Build conditions and independent of the Project, left-turn movements from Main Street are predicted to operate over capacity under 2034 No-Build peak-month conditions during both peak hours and right-turn movements are predicted to operate over capacity during the weekday evening peak-hour. Project-related impacts on these movements were reported as follows:

- Main Street Eastbound Left-Turn: weekday morning peak-hour - increase in average motorist delay of 260.8 seconds that resulted in an increase in vehicle queuing of up to three (3) vehicles; weekday evening peak-hour - increase in average motorist delay of 234.7 seconds that resulted in an increase in vehicle queuing up to one (1) vehicle.
- Main Street Eastbound Right-Turn: weekday morning peak-hour - increase in average motorist delay of 0.2 seconds with no (0) increase in vehicle queuing; weekday evening peak-hour - increase in average motorist delay of 4.0 seconds with an increase in vehicle queuing of up to one (1) vehicle.

The discrepancy between the magnitude of the delay increases for those movements that were identified to be operating at or over capacity and the reported vehicle queue increases illustrates the limitations of the analysis model to produce meaningful delay values for over saturated conditions.

Main Street at Wight Street

Under 2024 Opening-Year and 2034 Build peak-month conditions, no change in level of service is predicted to occur over 2024 or 2034 No-Build conditions, with Project-related impacts generally defined as a predicted increase in average motorist delay of up to 2.9 seconds that resulted in an increase in vehicle queuing of up to one (1) vehicle. All movements at the intersection are predicted to operate at LOS D or better with the addition of Project-related traffic under all analysis conditions.

Table 5
UNSIGNALIZED INTERSECTION LEVEL-OF-SERVICE AND VEHICLE QUEUE SUMMARY

Unsignalized Intersection/Peak Hour/Movement	2023 Existing				2024 No-Build				2024 Opening-Year Build				2034 No-Build				2034 Build			
	Demand ${ }^{\text {a }}$	Delay ${ }^{\text {b }}$	LOS $^{\text {c }}$	$\begin{gathered} \text { Queued d } \\ 95^{4}{ }^{\text {a }} \end{gathered}$	Demand	Delay	$\underline{L O S}$	$\begin{gathered} \text { Queue } \\ \hline 95^{\mathrm{b}} \end{gathered}$	Demand	Delay	$\underline{L O S}$	$\begin{gathered} \text { Queue } \\ \hline 95 \mathrm{th} \end{gathered}$	Demand	Delay	$\underline{L O S}$	$\begin{gathered} \text { Queue } \\ \hline 95 \mathrm{th} \end{gathered}$	Demand	Delay	LOS	$\begin{gathered} \text { Queue } \\ \hline 95 \mathrm{hb} \\ \hline \end{gathered}$
Main Street at Epping Street and Old Manchester Road Weekday Morning:																				
Main Street EB LT/TH/RT	340	2.2	A	1	351	2.1	A	1	352	2.1	A	1	387	2.2	A	1	388	2.2	A	1
Main Street WB LT/TH/RT	353	0.9	A	0	384	1.0	A	0	403	1.3	A	0	422	1.0	A	0	441	1.2	A	0
Epping Street SB LT/TH/RT	191	197.4	F	19	217	345.6	F	28	218	407.0	F	30	236	541.3	F	37	237	617.6	F	39
Weekday Evening:																				
Main Street EB LT/TH/RT	214	1.0	A	0	224	1.0	A	0	225	1.0	A	0	246	1.0	A	0	247	1.0	A	0
Main Street WB LT/TH/RT	371	0.6	A	0	418	0.6	A	0	428	0.7	A	0	457	0.6	A	0	467	0.7	A	0
Epping Street SB LT/TH/RT	213	26.0	D	4	238	36.6	E	6	240	41.0	E	7	260	58.9	F	9	263	68.4	F	10
Overall	--	7.8	A	--	--	10.9	в	--	--	12.1	в	--	--	17.2	C	--	--	19.8	c	--
Freetown Road at Main Street																				
Weekday Morning:																				
Main Street Eb LT	88	544.0	F	10	92	833.1	F	12	108	1,014.9	F	14	101	1,476.8	F	14	117	1,737.6	F	17
Main Street EB RT	119	13.0	B	1	122	13.7	B	1	131	13.9	B	1	134	14.9	B	2	143	15.1	C	2
Freetown Road NB LT	145	9.3	A	1	153	9.6	A	1	155	9.6	A	1	169	10.0	B		171	10.0	${ }^{\text {B }}$	1
Freetown Road NB TH	989	0.0	A	0	1,058	0.0	A	0	1,057	0.0	A	0	1,162	0.0	A	0	1,162	0.0	A	0
Freetown Road SB TH	410	0.0	A	0	449	0.0	A	0	449	0.0	A	0	492	0.0	A	0	492	0.0	A	0
Freetown Road SB RT	69	0.0	A	0	73	0.0	A	0	78	0.0	A	0	80	0.0	A	0	85	0.0	A	0
Overall	--	28.0	D	--	--	41.1	E	--	--	57.2	F	--	--	71.7	F	--	--	95.8	F	--
Weekday Evening:																				
Main Street EB LT	77	362.7	F	8	82	614.9	F	10	91	750.8	F	11	90	1,137.3	F	12	99	1,372.0	F	13
Main Street EB RT	149	31.5	D	3	153	40.0	E	4	158	41.7	E	4	169	65.6	F	6	174	69.6	F	7
Freetown Road NB LT	114	11.9	в	1	118	12.7	в	1	125	12.9	в	1	130	14.0	в	1	137	14.3	в	1
Freetown Road NB TH	630	0.0	A	0	687	0.0	A	0	687	0.0	A	0	753	0.0	A	0	753	0.0	A	0
Freetown Road SB TH	960	0.0	A	0	1,038	0.0	A	0	1,038	0.0	A	0	1,139	0.0	A	0	1,139	0.0	A	0
Freetown Road SB RT	102	0.0	A	0	104	0.0	A	0	118	0.0	A	0	115	0.0	A	0	129	0.0	A	0
Overall	--	17.7	c	--	--	28.2	D	--	--	36.6	E	--	-	51.0	F	--	-	65.4	F	-
Main Street at the Project Site Driveway Weekday Morning:																				
Project Site Driveway EB LT/TH	--	--	--	--	--	--	--	--	44	10.6	B	0	--	--	--	--	44	10.8	B	0
Main Street NB LT/RT	--	--	--	--	--	--	--	--	184	0.3	A	0	--	--	--	--	202	0.2	A	0
Main Street SB TH/RT	--	--	--	--	--	--	--	--	187	0.0	A	0	--	--	--	--	205	0.0	A	0
Overall	--	--	--	--	--	--	--	--	--	1.2	A	--	--	--	--	--	--	1.1	A	--
Weekday Evening:																				
Project Site Driveway EB LT/TH	--	--	--	--	--	--	--	--	24	10.7	в	0	--	--	--	--	24	11.0	в	0
Main Street NB LT/RT	--	--	--	--	--	--	--	--	184	0.9	A	0	--	--	--	--	201	0.8	A	0
Main Street SB TH/RT	--	--	--	--	--	--	--	--	206	0.0	A	0	--	-	--	--	225	0.0	A	0
Overall	--	--	--	--	--	--	--	--	--	1.0	A	--	--	--	--	--	--	0.9	A	--
Main Street at Wight StreetWeekdav Morning:																				
Wight Street EB LT/RT	221	15.6	c	3	247	17.2	c	3	251	18.1	c	4	271	20.4	c	5	275	21.8	c	5
Main Street NB LT/TH	165	0.0	A	0	177	0.0	A	0	196	0.0	A	0	194	0.0	A	0	213	0.0	A	0
Main Street SB TH/RT	174	0.0	A	0	176	0.0	A	0	178	0.0	A	0	194	0.0	A	0	196	0.0	A	0
Overall	--	6.8	A	--	-	7.8	A	--	--	8.0	A	--	--	9.2	A	--	--	9.7	A	--
Weekday Evening:																				
Wight Street EB LT/RT	245	17.2	c	3	294	20.8	c	5	306	22.5	c	5	320	26.9	D	7	332	29.8	D	8
Main Street NB LT/TH	163	0.0	A	0	168	0.0	A	0	178	0.0	A	0	185	0.0	A	0	195	0.0	A	0
Main Street SB TH/RT	183	0.0	A	0	185	0.0	${ }^{\text {A }}$	0	189	0.0	A	0	204	0.0	A	0	208	0.0	A	0
Overall	--	7.6	A	--	--	10.1	B	--	--	10.9	B	--	--	12.9	в	--	--	14.3	B	--

Average cont
Level of service.
dQueue length in vehicle
$\mathrm{NB}=$ northbound; $\mathrm{SB}=$ southbound $; \mathrm{EB}=$ eastbound; $\mathrm{WB}=$ westbound; $\mathrm{LT}=$ leff-turning movements; $\mathrm{TH}=$ through movements; $\mathrm{RT}=$ right-turning movement

SIGHT DISTANCE ASSESSMENT

Sight distance measurements were performed at the intersection of Main Street at the Project site driveway in accordance with American Association of State Highway and Transportation Officials (AASHTO) ${ }^{9}$ requirements. Both stopping sight distance (SSD) and intersection sight distance (ISD) measurements were performed. In brief, SSD is the distance required by a vehicle traveling at the design speed of a roadway, on wet pavement, to stop prior to striking an object in its travel path. ISD or corner sight distance (CSD) is the sight distance required by a driver entering or crossing an intersecting roadway to perceive an oncoming vehicle and safely complete a turning or crossing maneuver with on-coming traffic. In accordance with AASHTO standards, if the measured ISD is at least equal to the required SSD value for the appropriate design speed, the intersection can operate in a safe manner. Table 6 presents the measured SSD and ISD at the subject intersection.

Table 6
SIGHT DISTANCE MEASUREMENTS ${ }^{\text {a }}$

Intersection/Sight Distance Measurement	Feet		
	Required Minimum (SSD)	Desirable (ISD) ${ }^{\mathrm{b}}$	Measured
Main Street at the Project Site Driveway			
Stopping Sight Distance:			
Main Street approaching from the north	250	--	292
Main Street approaching from the south	250	--	412
Intersection Sight Distance:			
Looking to the north from the Project site driveway	250	335	256
Looking to the south from the Project site driveway	250	390	420

${ }^{2}$ Recommended minimum values obtained from A Policy on Geometric Design of Highways and Streets, $7^{\text {th }}$
Edition; American Association of State Highway and Transportation Officials (AASHTO); 2018; and based
on an approach speed of 35 mph along Main Street.
${ }^{\text {b/b }}$ Values shown are the intersection sight distance for a vehicle turning right or left exiting a roadway under
STOP control such that motorists approaching the intersection on the major street should not need to adjust
their travel speed to less than 70 percent of their initial approach speed.

As can be seen in Table 6, the available lines of sight to and from the Project site driveway intersection with Main Street were found to exceed the recommended minimum sight distance to function in a safe manner (SSD) based on a 35 mph approach speed along Main Street, which is above both the measured $85^{\text {th }}$ percentile vehicle travel speed ($32 / 28 \mathrm{mph}$) and the posted speed limit (30 mph) in the vicinity of the Project site.

[^12]
SUMMARY

VAI has completed a detailed assessment of the potential impacts on the transportation infrastructure associated with the proposed construction of a multifamily residential development to be known as White Rock Place and located at 109 Main Street in Raymond, New Hampshire. This study has been completed in accordance with NHDOT standards for the preparation of a TIS and includes an evaluation of the following specific areas as they relate to the Project: i) access requirements; ii) potential off-site improvements; and iii) safety considerations; under existing and future conditions, both with and without the Project. Based on this assessment, we have concluded the following with respect to the Project:

1. Using trip-generation statistics published by the ITE, ${ }^{10}$ the Project is expected to generate approximately 708 vehicle trips on an average weekday (two-way, 24 -hour volume), with approximately 57 vehicle trips expected during the weekday morning peak-hour and 61 vehicle trips expected during the weekday evening peak-hour;
2. The Project will not have a significant impact (increase) on motorist delays or vehicle queuing over Existing or anticipated future conditions without the Project (No-Build conditions), acknowledging that specific movements at the study area intersection are currently operating at or over capacity (i.e., LOS "E" or "F") and the with the majority of the movements at the study area intersections shown to continue operate at a level-of-service (LOS) D or better, where and LOS of "D" or better is generally defined as "acceptable" traffic operations;
3. Exiting movements from the Project site driveway to Main Street are predicted to operate at LOS B or better with negligible vehicle queuing predicted, with all movements along Main Street approaching the driveway shown to operate at LOS A, also with negligible vehicle queuing; and
4. Lines of sight at the intersection of Main Street at the Project site driveway were found to exceed the recommended minimum distance for the intersection to operate in a safe manner based on the appropriate approach speed.

In consideration of the above, we have concluded that the Project can be accommodated within the confines of the existing transportation infrastructure in a safe and efficient manner with the implementation of the recommendations that follow.

RECOMMENDATIONS

Project Access

Access to the Project site will be provided by way of a full-access driveway that will intersect the west side of Main Street approximately 40 feet south of the driveway to 103 Main Street, with secondary access for emergency vehicles only to be provided by way of a paved drive that will intersect the west side of Main Street between 95 Main Street and 97 Main Street. The following recommendations are offered with respect to the design and operation of the Project site access and internal circulation, many of which are reflected on the Site Plan:
$>$ The Project site driveway should be a minimum of 24 feet in width and designed to accommodate the turning and maneuvering requirements of the largest anticipated responding emergency vehicle.

[^13]> The emergency vehicle access road will be a minimum of 20 feet in width and paved, and constructed to support travel by the largest anticipated responding emergency vehicle under all weather conditions. A gate will be provided to restrict use of the roadway by non-emergency vehicles.
> Where perpendicular parking is proposed, the drive aisle behind the parking should be a minimum of 23 feet in order to facilitate parking maneuvers.
> Vehicles exiting the Project site to Main Street should be placed under STOP-sign control with a marked STOP-line provided.
$>$ All signs and pavement markings to be installed as a part of the Project will conform to the applicable standards of the Manual on Uniform Traffic Control Devices (MUTCD). ${ }^{11}$
> Americans with Disabilities Act (ADA) compliant wheelchair ramps should be provided at all pedestrian crossings to be constructed or modified in conjunction with the Project.
> Signs and landscaping to be installed as a part of the Project within the intersection sight triangle areas will be designed and maintained so as not to restrict lines of sight.
$>$ Snow accumulation (windrows) within sight triangle areas of the Project site driveway will be promptly removed where such accumulations would impede sight lines.

Off-Site

Main Street at Epping Street and Old Manchester Road

The addition of Project-related traffic to the Main Street/Epping Street/Old Manchester Road intersection was not shown to result in a change in level-of-service for any movement over No-Build conditions. Vehicle queues at the intersection were shown to increase by up to two (2) vehicles as a result of the addition of Project-related traffic. That being said, and independent of the Project, left-turn movements from Epping Street are currently or are predicted to operate over capacity (i.e., LOS "F"). Acknowledging these conditions and given the limited impact of the Project at the intersection, no improvements are necessary to address the incremental impact of the Project.

Freetown Road at Main Street

The addition of Project-related traffic to the Freetown Road/Main Street intersection was shown to result in an increase in average motorist delay of 0.2 seconds that resulted in a change in level-of-service from LOS B to LOS C during the weekday morning peak-hour for right-turn movements from Main Street, with vehicle queues at the intersection shown to increase by up to three (3) vehicles. That being said, and independent of the Project, it was noted that all movements from the Main Street approach are currently or are predicted to operate at or over capacity (i.e., LOS " E " or " F "). A preliminary review of the warrants specified in the MUTCD ${ }^{12}$ for the installation of a traffic control signal at the Freetown Road/Main Street intersection indicates that the intersection does not appear to meet the necessary criteria for the installation of a traffic signal. In an effort to improve the traffic operations at the intersection, consideration should be given realigning the Main Street approach to Freetown Road to intersect Freetown Road at a perpendicular

[^14]angle and that the left and right-turn lanes be extended along Main Street to increase the vehicle queue storage for left-turn movements.

With implementation of the aforementioned recommendations, safe and efficient access will be provided to the Project site and the Project can be accommodated within the confines of the existing and improved transportation system.
cc: File

ATTACHMENTS

PROJECT SITE PLAN
AUTOMATIC TRAFFIC RECORDER COUNT DATA TURNING MOVEMENT COUNT DATA
SEASONAL ADJUSTMENT DATA
COVID ADJUSTMENT DATA
VEHICLE TRAVEL SPEED DATA
GENERAL BACKGROUND TRAFFIC GROWTH
BACKGROUND DEVELOPMENT NETWORKS
TRIP-GENERATION CALCULATIONS
TRIP-DISTRIBUTION DATA
CAPACITY ANALYSIS WORKSHEETS

Accurate Counts

978-664-2565

Location : Main Street
96430001
Location : at \#110 Main Street

City/State: Raymond, NH										
3/7/2023	EB		Hour Totals		WB		Hour Totals		Combined Totals	
Time	Morning	Afternoon	Morning	Afternon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
12:00	1	20			1	10				
12:15	0	21			0	20				
12:30	1	16			2	16				
12:45	1	14	3	71	0	19	3	65	6	136
1:00	0	17			2	20				
1:15	2	12			1	12				
1:30	0	23			0	16				
1:45	2	22	4	74	0	27	3	75	7	149
2:00	1	13			1	23				
2:15	0	24			0	25				
2:30	1	18			0	22				
2:45	1	27	3	82	1	20	2	90	5	172
3:00	1	25			1	38				
3:15	0	29			1	28				
3:30	0	26			1	32				
3:45	4	18	5	98	1	39	4	137	9	235
4:00	3	26			0	28				
4:15	6	32			0	38				
4:30	10	31			1	23				
4:45	9	26	28	115	1	42	2	131	30	246
5:00	8	25			0	22				
5:15	7	27			6	32				
5:30	17	25			6	30				
5:45	17	18	49	95	7	32	19	116	68	211
6:00	19	12			5	15				
6:15	19	22			6	19				
6:30	22	14			15	20				
6:45	22	15	82	63	14	19	40	73	122	136
7:00	29	8			19	18				
7:15	30	5			32	14				
7:30	33	10			39	11				
7:45	34	11	126	34	32	9	122	52	248	86
8:00	22	13			17	10				
8:15	22	8			13	14				
8:30	22	8			25	4				
8:45	30	7	96	36	19	7	74	35	170	71
9:00	17	6			17	4				
9:15	11	8			11	5				
9:30	18	5			18	3				
9:45	23	3	69	22	19	7	65	19	134	41
10:00	17	1			14	3				
10:15	15	4			28	2				
10:30	11	3			16	1				
10:45	12	1	55	9	17	0	75	6	130	15
11:00	10	0			14	4				
11:15	15	4			10	2				
11:30	15	1			11	2				
11:45	16	0	56	5	22	3	57	11	113	16
Total	576	704			466	810			1042	1514
Percent	45.0\%	55.0\%			36.5\%	63.5\%			40.8\%	59.2\%

Location : Main Street
Location : at \#110 Main Street

City/State: Raymond, NH										
3/8/2023	EB		Hour Totals		WB		Hour Totals		Combined Totals	
Time	Morning	Afternoon	Morning	Afternon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
12:00	0	20			1	20				
12:15	1	14			1	9				
12:30	0	28			2	11				
12:45	1	12	2	74	1	22	5	62	7	136
1:00	1	16			2	17				
1:15	0	12			1	18				
1:30	0	18			2	19				
1:45	1	15	2	61	3	24	8	78	10	139
2:00	2	11			4	21				
2:15	1	24			3	21				
2:30	0	37			1	31				
2:45	2	28	5	100	1	41	9	114	14	214
3:00	1	24			2	22				
3:15	0	21			1	26				
3:30	2	33			1	29				
3:45	2	21	5	99	0	30	4	107	9	206
4:00	3	18			2	33				
4:15	3	21			0	30				
4:30	8	27			2	38				
4:45	11	19	25	85	0	30	4	131	29	216
5:00	8	22			2	31				
5:15	9	20			4	38				
5:30	14	28			4	39				
5:45	11	28	42	98	7	32	17	140	59	238
6:00	21	14			1	28				
6:15	16	17			3	18				
6:30	28	16			17	17				
6:45	29	9	94	56	25	16	46	79	140	135
7:00	29	15			24	19				
7:15	26	10			18	11				
7:30	33	11			29	9				
7:45	28	7	116	43	25	11	96	50	212	93
8:00	22	8			14	9				
8:15	14	12			20	11				
8:30	25	7			23	14				
8:45	17	6	78	33	17	6	74	40	152	73
9:00	16	5			13	6				
9:15	17	6			15	5				
9:30	12	6			4	8				
9:45	15	1	60	18	18	3	50	22	110	40
10:00	2	8			14	4				
10:15	20	0			13	1				
10:30	16	5			17	1				
10:45	14	3	52	16	19	1	63	7	115	23
11:00	17	3			19	2				
11:15	20	0			18	2				
11:30	13	0			18	3				
11:45	22	0	72	3	21	3	76	10	148	13
Total	553	686				840			1005	1526
Percent	44.6\%	55.4\%			35.0%	65.0\%			39.7\%	60.3\%
Grand Total	1129	1390			918	1650			2047	3040
Percent	44.8\%	55.2\%			35.7\%	64.3\%			40.2\%	59.8\%
ADT		ADT: 2,544		ADT: 2,544						

3/6/2023	Monday			Tuesday		Wednesday		Thursday			Friday			Saturday			Sunday			Week Average	
Time	EB		WB	EB	WB	EB	WB	EB		WB	EB	WB									
12:00 AM		*	*	3	3	2	5		*	*		*				*		*	*	2	4
1:00		*	*	4	3	2	8		*	*		*			*	*		*	*	3	6
2:00		*	*	3	2	5	9		*	*		*			*	*		*	*	4	6
3:00		*	*	5	4	5	4		*	*		*			*	*		*	*	5	4
4:00		*	*	28	2	25	4		*	*		*			*	*		*	*	26	3
5:00		*	*	49	19	42	17		*	*		*			*	*		*	*	46	18
6:00		*	*	82	40	94	46		*	*		*			*	*		*	*	88	43
7:00		*	*	126	122	116	96		*	*		*			*	*		*	*	121	109
8:00		*	*	96	74	78	74		*	*		*			*	*		*	*	87	74
9:00		*	*	69	65	60	50		*	*		*			*	*		*	*	64	58
10:00		*	*	55	75	52	63		*	*		*			*	*		*	*	54	69
11:00		*	*	56	57	72	76		*	*		*			*	*		*	*	64	66
12:00 PM		*	*	71	65	74	62		*	*		*			*	*		*	*	72	64
1:00		*	*	74	75	61	78		*	*		*			*	*		*	*	68	76
2:00		*	*	82	90	100	114		*	*		*			*	*		*	*	91	102
3:00		*	*	98	137	99	107		*	*		*			*	*		*	*	98	122
4:00		*	*	115	131	85	131		*	*		*			*	*		*	*	100	131
5:00		*	*	95	116	98	140		*	*		*			*	*		*	*	96	128
6:00		*	*	63	73	56	79		*	*		*			*	*		*	*	60	76
7:00		*	*	34	52	43	50		*	*		*				*		*	*	38	51
8:00		*	*	36	35	33	40		*	*		*				*		*	*	34	38
9:00		*	*	22	19	18	22		*	*		*			*	*		*	*	20	20
10:00		*	*	9	6	16	7		*	*		*			*	*		*	*	12	6
11:00		*	*	5	11	3	2		*	*		*			*	*		*	*	4	6
Total		0	0	1280	1276	1239	1284		0	0		0			0	0		0	0	1257	1280
Day		0		2556		2523		0			0			0			0			2537	
AM Peak				7:00	7:00	7:00	7:00													7:00	7:00
Volume				126	122	116	96													121	109
PM Peak				4:00	3:00	2:00	5:00													4:00	4:00
Volume				115	137	100	140													100	131
Comb Total	0			2556		2523		0			0			0			0			2537	
ADT	ADT: 2,544			AADT: 2,544																	

Accurate Counts

978-664-2565
N/S Street : Main Street E/W Street : Epping St / Old Manchester Rd City/State : Raymond, NH
Weather : Cloudy
File Name : 96430001
Site Code : 96430001
Start Date: 3/7/2023
Page No : 1

Groups Printed- Cars - Trucks

	Main St From North			Epping St From East			Main St From South			Old Manchester Rd From West			
Start Time	Left	Thru	Right	Int. Total									
07:00 AM	8	27	18	2	7	2	4	28	13	0	0	0	109
07:15 AM	16	31	23	1	11	7	13	44	22	0	0	0	168
07:30 AM	27	29	14	4	25	9	2	27	36	0	0	0	173
07:45 AM	12	26	15	6	45	20	9	21	36	0	0	0	190
Total	63	113	70	13	88	38	28	120	107	0	0	0	640
08:00 AM	5	21	14	5	13	2	13	11	12	0	0	0	96
08:15 AM	4	20	20	5	21	3	6	11	9	0	0	0	99
08:30 AM	3	18	21	7	20	5	9	39	20	0	0	0	142
08:45 AM	5	26	22	3	12	2	8	25	22	0	0	0	125
Total	17	85	77	20	66	12	36	86	63	0	0	0	462
Grand Total	80	198	147	33	154	50	64	206	170	0	0	0	1102
Apprch \%	18.8	46.6	34.6	13.9	65	21.1	14.5	46.8	38.6	0	0	0	
Total \%	7.3	18	13.3	3	14	4.5	5.8	18.7	15.4	0	0	0	
Cars	76	191	140	33	145	48	63	192	162	0	0	0	1050
\% Cars	95	96.5	95.2	100	94.2	96	98.4	93.2	95.3	0	0	0	95.3
Trucks	4	7	7	0	9	2	1	14	8	0	0	0	52
\% Trucks	5	3.5	4.8	0	5.8	4	1.6	6.8	4.7	0	0	0	4.7

	Main St From North				Epping St From East				Main St From South				Old Manchester Rd From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total

Peak Hour for Entire Intersection Begins at 07:00 AM

07:00 AM	8	27	18	53	2	7	2	11	4	28	13	45	0	0	0	0	109
07:15 AM	16	31	23	70	1	11	7	19	13	44	22	79	0	0	0	0	168
07:30 AM	27	29	14	70	4	25	9	38	2	27	36	65	0	0	0	0	173
07:45 AM	12	26	15	53	6	45	20	71	9	21	36	66	0	0	0	0	190
Total Volume	63	113	70	246	13	88	38	139	28	120	107	255	0	0	0	0	640
\% App. Total	25.6	45.9	28.5		9.4	63.3	27.3		11	47.1	42		0	0	0		
PHF	. 583	. 911	. 761	. 879	. 542	. 489	. 475	. 489	. 538	. 682	. 743	. 807	. 000	. 000	. 000	. 000	. 842
Cars	60	112	67	239	13	83	37	133	28	116	102	246	0	0	0	0	618
\% Cars	95.2	99.1	95.7	97.2	100	94.3	97.4	95.7	100	96.7	95.3	96.5	0	0	0	0	96.6
Trucks	3	1	3	7	0	5	1	6	0	4	5	9	0	0	0	0	22
\% Trucks	4.8	0.9	4.3	2.8	0	5.7	2.6	4.3	0	3.3	4.7	3.5	0	0	0	0	3.4

Accurate Counts

978-664-2565

N/S Street : Main Street E/W Street : Epping St / Old Manchester Rd City/State : Raymond, NH
Weather : Cloudy

File Name: 96430001 Site Code : 96430001
Start Date: 3/7/2023
Page No : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	07:00 AM				07:30 AM				07:00 AM				07:00 AM			
+0 mins.	8	27	18	53	4	25	9	38	4	28	13	45	0	0	0	0
+15 mins.	16	31	23	70	6	45	20	71	13	44	22	79	0	0	0	0
+30 mins.	27	29	14	70	5	13	2	20	2	27	36	65	0	0	0	0
+45 mins.	12	26	15	53	5	21	3	29	9	21	36	66	0	0	0	0
Total Volume	63	113	70	246	20	104	34	158	28	120	107	255	0	0	0	0
\% App. Total	25.6	45.9	28.5		12.7	65.8	21.5		11	47.1	42		0	0	0	
PHF	. 583	. 911	761	. 879	. 833	. 578	. 425	. 556	. 538	. 682	. 743	. 807	. 000	. 000	. 000	. 000
Cars	60	112	67	239	20	98	32	150	28	116	102	246	0	0	0	0
\% Cars	95.2	99.1	95.7	97.2	100	94.2	94.1	94.9	100	96.7	95.3	96.5	0	0	0	0
Trucks	3	1	3	7	0	6	2	8	0	4	5	9	0	0	0	0
\% Trucks	4.8	0.9	4.3	2.8	0	5.8	5.9	5.1	0	3.3	4.7	3.5	0	0	0	0

Accurate Counts

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430001
Site Code : 96430001
Start Date : 3/7/2023
Page No : 3

Accurate Counts

978-664-2565

```
N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy
File Name : 96430001
Site Code : 96430001
Start Date: 3/7/2023
Page No : 4
```

Groups Printed- Cars

	Main St From North			Epping St From East			Main St From South			Old Manchester Rd From West			
Start Time	Left	Thru	Right	Int. Total									
07:00 AM	8	26	15	2	6	2	4	27	12	0	0	0	102
07:15 AM	16	31	23	1	11	7	13	42	21	0	0	0	165
07:30 AM	24	29	14	4	25	9	2	27	34	0	0	0	168
07:45 AM	12	26	15	6	41	19	9	20	35	0	0	0	183
Total	60	112	67	13	83	37	28	116	102	0	0	0	618
08:00 AM	5	20	14	5	13	2	12	9	11	0	0	0	91
08:15 AM	4	18	18	5	19	2	6	10	9	0	0	0	91
08:30 AM	3	18	20	7	19	5	9	35	20	0	0	0	136
08:45 AM	4	23	21	3	11	2	8	22	20	0	0	0	114
Total	16	79	73	20	62	11	35	76	60	0	0	0	432
Grand Total	76	191	140	33	145	48	63	192	162	0	0	0	1050
Apprch \%	18.7	46.9	34.4	14.6	64.2	21.2	15.1	46	38.8	0	0	0	
Total \%	7.2	18.2	13.3	3.1	13.8	4.6	6	18.3	15.4	0	0	0	

	Main St From North				Epping St From East				Main St From South				Old Manchester Rd From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 07:00 AM																	
07:00 AM	8	26	15	49	2	6	2	10	4	27	12	43	0	0	0	0	102
07:15 AM	16	31	23	70	1	11	7	19	13	42	21	76	0	0	0	0	165
07:30 AM	24	29	14	67	4	25	9	38	2	27	34	63	0	0	0	0	168
07:45 AM	12	26	15	53	6	41	19	66	9	20	35	64	0	0	0	0	183
Total Volume	60	112	67	239	13	83	37	133	28	116	102	246	0	0	0	0	618
\% App. Total	25.1	46.9	28		9.8	62.4	27.8		11.4	47.2	41.5		0	0	0		
PHF	. 625	. 903	. 728	. 854	. 542	. 506	. 487	504	. 538	. 690	729	. 809	. 000	. 000	. 000	. 000	844

Accurate Counts

978-664-2565

N/S Street : Main Street E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430001
Site Code : 96430001
Start Date: 3/7/2023
Page No : 5

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	07:00 AM				07:30 AM				07:00 AM				07:00 AM			
+0 mins.	8	26	15	49	4	25	9	38	4	27	12	43	0	0	0	0
+15 mins.	16	31	23	70	6	41	19	66	13	42	21	76	0	0	0	0
+30 mins.	24	29	14	67	5	13	2	20	2	27	34	63	0	0	0	0
+45 mins.	12	26	15	53	5	19	2	26	9	20	35	64	0	0	0	0
Total Volume	60	112	67	239	20	98	32	150	28	116	102	246	0	0	0	0
\% App. Total	25.1	46.9	28		13.3	65.3	21.3		11.4	47.2	41.5		0	0	0	
PHF	. 625	. 903	. 728	. 854	. 833	. 598	. 421	. 568	. 538	. 690	. 729	. 809	. 000	. 000	000	. 000

Accurate Counts

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430001
Site Code : 96430001
Start Date : 3/7/2023
Page No : 6

Accurate Counts

978-664-2565

```
N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy
File Name : 96430001
Site Code : 96430001
Start Date : 3/7/2023
Page No : 7
```

Groups Printed- Trucks

	Main St From North			Epping St From East			Main St From South			Old Manchester Rd From West			
Start Time	Left	Thru	Right	Int. Total									
07:00 AM	0	1	3	0	1	0	0	1	1	0	0	0	7
07:15 AM	0	0	0	0	0	0	0	2	1	0	0	0	3
07:30 AM	3	0	0	0	0	0	0	0	2	0	0	0	5
07:45 AM	0	0	0	0	4	1	0	1	1	0	0	0	7
Total	3	1	3	0	5	1	0	4	5	0	0	0	22
08:00 AM	0	1	0	0	0	0	1	2	1	0	0	0	5
08:15 AM	0	2	2	0	2	1	0	1	0	0	0	0	8
08:30 AM	0	0	1	0	1	0	0	4	0	0	0	0	6
08:45 AM	1	3	1	0	1	0	0	3	2	0	0	0	11
Total	1	6	4	0	4	1	1	10	3	0	0	0	30
Grand Total	4	7	7	0	9	2	1	14	8	0	0	0	52
Apprch \%	22.2	38.9	38.9	0	81.8	18.2	4.3	60.9	34.8	0	0	0	
Total \%	7.7	13.5	13.5	0	17.3	3.8	1.9	26.9	15.4	0	0	0	

	Main St From North				Epping St From East				Main St From South				Old Manchester Rd From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 08:00 AM																	
08:00 AM	0	1	0	1	0	0	0	0	1	2	1	4	0	0	0	0	5
08:15 AM	0	2	2	4	0	2	1	3	0	1	0	1	0	0	0	0	8
08:30 AM	0	0	1	1	0	1	0	1	0	4	0	4	0	0	0	0	6
08:45 AM	1	3	1	5	0	1	0	1	0	3	2	5	0	0	0	0	11
Total Volume	1	6	4	11	0	4	1	5	1	10	3	14	0	0	0	0	30
\% App. Total	9.1	54.5	36.4		0	80	20		7.1	71.4	21.4		0	0	0		
PHF	. 250	. 500	. 500	. 550	. 000	. 500	. 250	. 417	. 250	. 625	. 375	. 700	. 000	. 000	. 000	. 000	. 682

Accurate Counts

978-664-2565

N/S Street : Main Street E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430001
Site Code : 96430001
Start Date: 3/7/2023
Page No : 8

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

Accurate Counts

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430001
Site Code : 96430001
Start Date : 3/7/2023
Page No : 9

Accurate Counts

978-664-2565

N/S Street : Main Street
 E/W Street : Epping St / Old Manchester Rd
 City/State : Raymond, NH

Weather : Cloudy
File Name : 96430001
Site Code : 96430001
Start Date : 3/7/2023
Page No : 10
Groups Printed- Bikes Peds

	Main St From North				Epping St From East				Main St From South				Old Manchester Rd From West						
Start Time	Left	Thru	Right	Peds	Exclu. Total	Inclu. Total	Int. Total												
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1

| $08: 00 ~ A M ~$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ---: | :--- |
| $08: 15 \mathrm{AM}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $08: 30$ AM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $08: 45 \mathrm{AM}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Grand Total	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1
Apprch \%	0	0	0		0	0	0		0	0	0		0	0	0				
Total \%																	100	0	

	Main St From North				Epping St From East				Main St From South				Old Manchester Rd From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 07:00 AM																	
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% App. Total	0	0	0		0	0	0		0	0	0		0	0	0		
PHF	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000

Accurate Counts

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430001
Site Code : 96430001
Start Date: 3/7/2023
Page No : 11

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

+0 mins.	$07: 00$ AM	0	0	0	0	$07: 00$ AM	0	0	0	0	$07: 00$ AM	0	0	0	0
+15 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+30 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+45 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% App. Total	0	0	0		0	0	0		0	0	0				
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	0	0

Accurate Counts

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430001
Site Code : 96430001
Start Date : 3/7/2023
Page No : 12

Accurate Counts

978-664-2565
N/S Street : Main Street E/W Street : Epping St / Old Manchester Rd City/State : Raymond, NH
Weather : Cloudy
File Name : 96430001
Site Code : 96430001
Start Date: 3/7/2023
Page No : 1

Groups Printed- Cars - Trucks

	Main St From North			Epping St From East			Main St From South			Old Manchester Rd From West			
Start Time	Left	Thru	Right	Int. Total									
04:00 PM	7	21	13	11	25	10	4	38	33	0	0	0	162
04:15 PM	4	33	7	5	22	14	8	44	18	0	0	0	155
04:30 PM	2	29	10	6	20	6	3	37	20	0	0	0	133
04:45 PM	5	18	6	10	22	3	5	43	16	0	0	0	128
Total	18	101	36	32	89	33	20	162	87	0	0	0	578
05:00 PM	6	18	9	3	21	10	6	31	17	0	0	0	121
05:15 PM	6	19	10	6	20	10	3	36	13	0	0	0	123
05:30 PM	7	22	6	6	21	7	13	29	11	0	0	0	122
05:45 PM	7	10	10	8	10	5	7	47	14	0	0	0	118
Total	26	69	35	23	72	32	29	143	55	0	0	0	484
Grand Total	44	170	71	55	161	65	49	305	142	0	0	0	1062
Apprch \%	15.4	59.6	24.9	19.6	57.3	23.1	9.9	61.5	28.6	0	0	0	
Total \%	4.1	16	6.7	5.2	15.2	6.1	4.6	28.7	13.4	0	0	0	
Cars	43	170	71	55	161	65	49	302	142	0	0	0	1058
\% Cars	97.7	100	100	100	100	100	100	99	100	0	0	0	99.6
Trucks	1	0	0	0	0	0	0	3	0	0	0	0	4
\% Trucks	2.3	0	0	0	0	0	0	1	0	0	0	0	0.4

	Main St From North				Epping St From East				Main St From South				Old Manchester Rd From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																	
Peak Hour for E	ire Int	sectio	Begins	at 04:00													
04:00 PM	7	21	13	41	11	25	10	46	4	38	33	75	0	0	0	0	162
04:15 PM	4	33	7	44	5	22	14	41	8	44	18	70	0	0	0	0	155
04:30 PM	2	29	10	41	6	20	6	32	3	37	20	60	0	0	0	0	133
04:45 PM	5	18	6	29	10	22	3	35	5	43	16	64	0	0	0	0	128
Total Volume	18	101	36	155	32	89	33	154	20	162	87	269	0	0	0	0	578
\% App. Total	11.6	65.2	23.2		20.8	57.8	21.4		7.4	60.2	32.3		0	0	0		
PHF	. 643	. 765	. 692	. 881	. 727	. 890	. 589	. 837	. 625	. 920	. 659	. 897	. 000	. 000	. 000	. 000	892
Cars	17	101	36	154	32	89	33	154	20	161	87	268	0	0	0	0	576
\% Cars	94.4	100	100	99.4	100	100	100	100	100	99.4	100	99.6	0	0	0	0	99.7
Trucks	1	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	2
\% Trucks	5.6	0	0	0.6	0	0	0	0	0	0.6	0	0.4	0	0	0	0	0.3

Accurate Counts

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy

File Name: 96430001 Site Code : 96430001
Start Date: 3/7/2023
Page No : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	04:00 PM															
+0 mins.	7	21	13	41	11	25	10	46	4	38	33	75	0	0	0	0
+15 mins.	4	33	7	44	5	22	14	41	8	44	18	70	0	0	0	0
+30 mins.	2	29	10	41	6	20	6	32	3	37	20	60	0	0	0	0
+45 mins.	5	18	6	29	10	22	3	35	5	43	16	64	0	0	0	0
Total Volume	18	101	36	155	32	89	33	154	20	162	87	269	0	0	0	0
\% App. Total	11.6	65.2	23.2		20.8	57.8	21.4		7.4	60.2	32.3		0	0	0	
PHF	. 643	. 765	. 692	. 881	. 727	. 890	. 589	. 837	. 625	. 920	. 659	. 897	. 000	. 000	. 000	. 000
Cars	17	101	36	154	32	89	33	154	20	161	87	268	0	0	0	0
\% Cars	94.4	100	100	99.4	100	100	100	100	100	99.4	100	99.6	0	0	0	0
Trucks	1	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0
\% Trucks	5.6	0	0	0.6	0	0	0	0	0	0.6	0	0.4	0	0	0	0

Accurate Counts

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430001
Site Code : 96430001
Start Date : 3/7/2023
Page No : 3

Accurate Counts

978-664-2565

```
N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy
File Name : 96430001
Site Code : 96430001
Start Date: 3/7/2023
Page No : 4
```

Groups Printed- Cars

	Main St From North			Epping St From East			Main St From South			Old Manchester Rd From West			
Start Time	Left	Thru	Right	Int. Total									
04:00 PM	6	21	13	11	25	10	4	37	33	0	0	0	160
04:15 PM	4	33	7	5	22	14	8	44	18	0	0	0	155
04:30 PM	2	29	10	6	20	6	3	37	20	0	0	0	133
04:45 PM	5	18	6	10	22	3	5	43	16	0	0	0	128
Total	17	101	36	32	89	33	20	161	87	0	0	0	576
05:00 PM	6	18	9	3	21	10	6	29	17	0	0	0	119
05:15 PM	6	19	10	6	20	10	3	36	13	0	0	0	123
05:30 PM	7	22	6	6	21	7	13	29	11	0	0	0	122
05:45 PM	7	10	10	8	10	5	7	47	14	0	0	0	118
Total	26	69	35	23	72	32	29	141	55	0	0	0	482
Grand Total	43	170	71	55	161	65	49	302	142	0	0	0	1058
Apprch \%	15.1	59.9	25	19.6	57.3	23.1	9.9	61.3	28.8	0	0	0	
Total \%	4.1	16.1	6.7	5.2	15.2	6.1	4.6	28.5	13.4	0	0	0	

	Main St From North				Epping St From East				Main St From South				Old Manchester Rd From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 04:00 PM																	
04:00 PM	6	21	13	40	11	25	10	46	4	37	33	74	0	0	0	0	160
04:15 PM	4	33	7	44	5	22	14	41	8	44	18	70	0	0	0	0	155
04:30 PM	2	29	10	41	6	20	6	32	3	37	20	60	0	0	0	0	133
04:45 PM	5	18	6	29	10	22	3	35	5	43	16	64	0	0	0	0	128
Total Volume	17	101	36	154	32	89	33	154	20	161	87	268	0	0	0	0	576
\% App. Total	11	65.6	23.4		20.8	57.8	21.4		7.5	60.1	32.5		0	0	0		
PHF	. 708	765	. 692	. 875	. 727	. 890	. 589	837	. 625	915	. 659	. 905	. 000	000	000	. 000	900

Accurate Counts

978-664-2565

N/S Street : Main Street E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430001
Site Code : 96430001
Start Date: 3/7/2023
Page No : 5

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	04:00 PM															
+0 mins.	6	21	13	40	11	25	10	46	4	37	33	74	0	0	0	0
+15 mins.	4	33	7	44	5	22	14	41	8	44	18	70	0	0	0	0
+30 mins.	2	29	10	41	6	20	6	32	3	37	20	60	0	0	0	0
+45 mins.	5	18	6	29	10	22	3	35	5	43	16	64	0	0	0	0
Total Volume	17	101	36	154	32	89	33	154	20	161	87	268	0	0	0	0
\% App. Total	11	65.6	23.4		20.8	57.8	21.4		7.5	60.1	32.5		0	0	0	
PHF	. 708	. 765	. 692	. 875	. 727	. 890	. 589	. 837	. 625	. 915	. 659	. 905	. 000	. 000	. 000	. 000

Accurate Counts

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430001
Site Code : 96430001
Start Date : 3/7/2023
Page No : 6

Accurate Counts

978-664-2565

N/S Street : Main Street	File Name $: 96430001$
E/W Street : Epping St / Old Manchester Rd	Site Code : 96430001
City/State $:$ Raymond, NH	Start Date $: 3 / 7 / 2023$
Weather $:$ Cloudy	Page No $: 7$

Groups Printed- Trucks

	Main St From North			Epping St From East			Main St From South			Old Manchester Rd From West			
Start Time	Left	Thru	Right	Int. Total									
04:00 PM	1	0	0	0	0	0	0	1	0	0	0	0	2
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	1	0	0	0	0	0	0	1	0	0	0	0	2
05:00 PM	0	0	0	0	0	0	0	2	0	0	0	0	2
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	2	0	0	0	0	2
Grand Total	1	0	0	0	0	0	0	3	0	0	0	0	4
Apprch \%	100	0	0	0	0	0	0	100	0	0	0	0	
Total \%	25	0	0	0	0	0	0	75	0	0	0	0	

	Main St From North				Epping St From East				Main St From South				Old Manchester Rd From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 04:00 PM																	
04:00 PM	1	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	2
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	1	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	2
\% App. Total	100	0	0		0	0	0		0	100	0		0	0	0		
PHF	. 250	. 000	. 000	. 250	. 000	. 000	. 000	. 000	. 000	. 250	. 000	. 250	. 000	. 000	. 000	. 000	. 250

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy

File Name: 96430001
Site Code : 96430001
Start Date: 3/7/2023
Page No : 8

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	04:00 PM				04:00 PM				04:15 PM				04:00 PM			
+0 mins.	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
+15 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+30 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+45 mins.	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0
Total Volume	1	0	0	1	0	0	0	0	0	2	0	2	0	0	0	0
\% App. Total	100	0	0		0	0	0		0	100	0		0	0	0	
PHF	. 250	. 000	. 000	. 250	. 000	. 000	. 000	. 000	. 000	. 250	. 000	. 250	. 000	. 000	. 000	. 000

Accurate Counts

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430001
Site Code : 96430001
Start Date : 3/7/2023
Page No : 9

Accurate Counts

978-664-2565

N/S Street : Main Street
 E/W Street : Epping St / Old Manchester Rd
 City/State : Raymond, NH

Weather : Cloudy
File Name : 96430001
Site Code : 96430001
Start Date: 3/7/2023
Page No : 10
Groups Printed- Bikes Peds

	Main St From North				Epping St From East				Main St From South				Old Manchester Rd From West				Exclu. Total	Inclu. Total	Int. Total
Start Time	Left	Thru	Right	Peds															
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch \%	0	0	0		0	0	0		0	0	0		0	0	0				
Total \%																	0	0	

	Main St From North				Epping St From East				Main St From South				Old Manchester Rd From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 04:00 PM																	
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% App. Total	0	0	0		0	0	0		0	0	0		0	0	0		
PHF	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	000

Accurate Counts

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430001
Site Code : 96430001
Start Date: 3/7/2023
Page No : 11

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	04:00 PM															
+0 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+15 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+30 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+45 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% App. Total	0	0	0		0	0	0		0	0	0		0	0	0	
PHF	. 000	000	000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000

Accurate Counts

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430001
Site Code : 96430001
Start Date : 3/7/2023
Page No : 12

Accurate Counts

978-664-2565

N/S Street : Freetown Road	File Name $: 96430002$
E/W Street : Main Street	Site Code $: 96430002$
City/State $:$ Raymond, NH	Start Date $: 3 / 7 / 2023$
Weather $:$ Cloudy	Page No $: 1$

Groups Printed- Cars - Trucks							Int. Total
	Freetown Rd From North		Freetown Rd From South		Main St From West		
Start Time	Thru	Right	Left	Thru	Left	Right	
07:00 AM	54	10	13	200	13	16	306
07:15 AM	84	11	27	160	11	23	316
07:30 AM	77	10	36	207	21	22	373
07:45 AM	82	19	29	150	19	25	324
Total	297	50	105	717	64	86	1319
08:00 AM	61	10	14	145	9	15	254
08:15 AM	68	12	16	113	12	19	240
08:30 AM	71	9	16	120	16	22	254
08:45 AM	78	13	18	89	20	19	237
Total	278	44	64	467	57	75	985
Grand Total	575	94	169	1184	121	161	2304
Apprch \%	85.9	14.1	12.5	87.5	42.9	57.1	
Total \%	25	4.1	7.3	51.4	5.3	7	
Cars	545	91	166	1163	121	157	2243
\% Cars	94.8	96.8	98.2	98.2	100	97.5	97.4
Trucks	30	3	3	21	0	4	61
\% Trucks	5.2	3.2	1.8	1.8	0	2.5	2.6

	Freetown Rd From North			Freetown Rd From South			Main St From West			
Start Time	Thru	Right	App. Total	Left	Thru	App. Total	Left	Right	App. Total	Int. Total

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 07:00 AM

Accurate Counts

978-664-2565

N/S Street : Freetown Road E/W Street : Main Street
City/State : Raymond, NH
Weather : Cloudy

File Name: 96430002 Site Code : 96430002
Start Date: 3/7/2023
Page No : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	07:15 AM			07:00 AM			07:00 AM		
+0 mins.	84	11	95	13	200	213	13	16	29
+15 mins.	77	10	87	27	160	187	11	23	34
+30 mins.	82	19	101	36	207	243	21	22	43
+45 mins.	61	10	71	29	150	179	19	25	44
Total Volume	304	50	354	105	717	822	64	86	150
\% App. Total	85.9	14.1		12.8	87.2		42.7	57.3	
PHF	. 905	. 658	. 876	. 729	. 866	846	. 762	. 860	852
Cars	285	49	334	102	705	807	64	85	149
\% Cars	93.8	98	94.4	97.1	98.3	98.2	100	98.8	99.3
Trucks	19	1	20	3	12	15	0	1	1
\% Trucks	6.2	2	5.6	2.9	1.7	1.8	0	1.2	0.7

Accurate Counts

978-664-2565

N/S Street : Freetown Road E/W Street : Main Street
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430002
Site Code : 96430002
Start Date : 3/7/2023
Page No : 3

Accurate Counts

978-664-2565

```
N/S Street : Freetown Road
E/W Street : Main Street
City/State : Raymond, NH
Weather : Cloudy
File Name: 96430002
Site Code : 96430002
Start Date: 3/7/2023
Page No : 4
```

	Freetown Rd From North		Freetown Rd From South		Main St From West		
Start Time	Thru	Right	Left	Thru	Left	Right	Int. Total
07:00 AM	53	8	12	197	13	15	298
07:15 AM	77	11	26	157	11	23	305
07:30 AM	75	10	36	203	21	22	367
07:45 AM	76	19	28	148	19	25	315
Total	281	48	102	705	64	85	1285
08:00 AM	57	9	14	140	9	14	243
08:15 AM	67	12	16	109	12	18	234
08:30 AM	65	9	16	120	16	22	248
08:45 AM	75	13	18	89	20	18	233
Total	264	43	64	458	57	72	958
Grand Total	545	91	166	1163	121	157	2243
Apprch \%	85.7	14.3	12.5	87.5	43.5	56.5	
Total \%	24.3	4.1	7.4	51.9	5.4	7	

	Freetown Rd From North			Freetown Rd From South			Main St From West			
Start Time	Thru	Right	App. Total	Left	Thru	App. Total	Left	Right	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1										
Peak Hour for Entire Inte	n Beg	07:00								
07:00 AM	53	8	61	12	197	209	13	15	28	298
07:15 AM	77	11	88	26	157	183	11	23	34	305
07:30 AM	75	10	85	36	203	239	21	22	43	367
07:45 AM	76	19	95	28	148	176	19	25	44	315
Total Volume	281	48	329	102	705	807	64	85	149	1285
\% App. Total	85.4	14.6		12.6	87.4		43	57		
PHF	. 912	. 632	. 866	. 708	. 868	. 844	. 762	850	847	. 875

Accurate Counts

978-664-2565

```
N/S Street : Freetown Road
E/W Street : Main Street
City/State : Raymond, NH
Weather : Cloudy
```

File Name : 96430002
Site Code : 96430002
Start Date : 3/7/2023
Page No : 5

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	07:15 AM			07:00 AM			07:00 AM		
+0 mins.	77	11	88	12	197	209	13	15	28
+15 mins.	75	10	85	26	157	183	11	23	34
+30 mins.	76	19	95	36	203	239	21	22	43
+45 mins.	57	9	66	28	148	176	19	25	44
Total Volume	285	49	334	102	705	807	64	85	149
\% App. Total	85.3	14.7		12.6	87.4		43	57	
PHF	. 925	. 645	. 879	. 708	. 868	. 844	762	. 850	. 847

Accurate Counts

978-664-2565

N/S Street : Freetown Road E/W Street : Main Street City/State : Raymond, NH
Weather : Cloudy

File Name : 96430002
Site Code : 96430002
Start Date : 3/7/2023
Page No : 6

Accurate Counts

978-664-2565

```
N/S Street : Freetown Road
E/W Street : Main Street
City/State : Raymond, NH
Weather : Cloudy
File Name: 96430002
Site Code : 96430002
Start Date: 3/7/2023
Page No : 7
```


	Freetown Rd From North			Freetown Rd From South			Main St From West			
Start Time	Thru	Right	App. Total	Left	Thru	App. Total	Left	Right	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1										
Peak Hour for Entire Inte	n Beg	07:15								
07:15 AM	7	0	7	1	3	4	0	0	0	11
07:30 AM	2	0	2	0	4	4	0	0	0	6
07:45 AM	6	0	6	1	2	3	0	0	0	9
08:00 AM	4	1	5	0	5	5	0	1	1	11
Total Volume	19	1	20	2	14	16	0	1	1	37
\% App. Total	95	5		12.5	87.5		0	100		
PHF	. 679	. 250	. 714	. 500	. 700	. 800	. 000	. 250	. 250	. 841

Accurate Counts

978-664-2565

```
N/S Street : Freetown Road
E/W Street : Main Street
City/State : Raymond, NH
Weather : Cloudy
```

File Name : 96430002
Site Code : 96430002
Start Date : 3/7/2023
Page No : 8

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	07:15 AM			07:15 AM			08:00 AM		
+0 mins.	7	0	7	1	3	4	0	1	1
+15 mins.	2	0	2	0	4	4	0	1	1
+30 mins.	6	0	6	1	2	3	0	0	0
+45 mins.	4	1	5	0	5	5	0	1	1
Total Volume	19	1	20	2	14	16	0	3	3
\% App. Total	95	5		12.5	87.5		0	100	
PHF	. 679	. 250	. 714	. 500	. 700	. 800	. 000	. 750	. 750

Accurate Counts

978-664-2565

N/S Street : Freetown Road E/W Street : Main Street City/State : Raymond, NH
Weather : Cloudy

File Name : 96430002
Site Code : 96430002
Start Date : 3/7/2023
Page No : 9

Accurate Counts

978-664-2565

```
N/S Street : Freetown Road
E/W Street : Main Street
City/State : Raymond, NH
Weather : Cloudy
File Name: 96430002
Site Code : 96430002
Start Date: 3/7/2023
Page No : 10
```

Groups Printed- Bikes Peds

	Freetown Rd From North			Freetown Rd From South			$\begin{gathered} \text { Main St } \\ \text { From West } \end{gathered}$					
Start Time	Thru	Right	Peds	Left	Thru	Peds	Left	Right	Peds	Exclu. Total	Inclu. Total	Int. Total
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	1	0	0	0	0	0	1	1
07:45 AM	0	1	0	0	0	0	0	0	0	0	1	1
Total	0	1	0	0	1	0	0	0	0	0	2	2
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	0
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	1	0	0	1	0	0	0	0	0	2	2
Apprch \%	0	100		0	100		0	0				
Total \%	0	50		0	50		0	0		0	100	

	Freetown Rd From North			Freetown Rd From South			Main St From West			
Start Time	Thru	Right	App. Total	Left	Thru	App. Total	Left	Right	App. Total	Int. Total

Peak Hour for Entire Intersection Begins at 07:00 AM

07:00 AM	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	1	1	0	0	0	1
07:45 AM	0	1	1	0	0	0	0	0	0	1
Total Volume	0	1	1	0	1	1	0	0	0	2
\% App. Total	0	100		0	100		0	0		
PHF	. 000	. 250	. 250	. 000	. 250	. 250	. 000	. 000	. 000	. 500

Accurate Counts

978-664-2565

N/S Street : Freetown Road	File Name : 96430002
E/W Street : Main Street	Site Code $: 96430002$
City/State : Raymond, NH	Start Date $: 3 / 7 / 2023$
Weather $:$ Cloudy	Page No

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

+0 mins.	$07: 00$ AM		$07: 00$ AM	0	0	0	0
+15 mins.	0	0	0	0	0	0	0
+30 mins.	0	0	0	0	0	0	0
+45 mins.	0	0	1	0	0	1	0
Total Volume	0	1	1	0	0	0	0
\% App. Total	0	100	1	0	1	0	0
PHF	.000	.250	.250	.000	.250	0	0

Accurate Counts

978-664-2565

N/S Street : Freetown Road E/W Street : Main Street City/State : Raymond, NH
Weather : Cloudy

File Name : 96430002
Site Code : 96430002
Start Date : 3/7/2023
Page No : 12

Accurate Counts

978-664-2565

N/S Street : Freetown Road	File Name $: 96430002$
E/W Street : Main Street	Site Code $: 96430002$
City/State $:$ Raymond, NH	Start Date $: 3 / 7 / 2023$
Weather $:$ Cloudy	Page No $: 1$

Groups Printed- Cars - Trucks							Int. Total
	Freetown Rd From North		Freetown Rd From South		Main St From West		
Start Time	Thru	Right	Left	Thru	Left	Right	
04:00 PM	175	20	20	100	9	28	352
04:15 PM	181	20	24	115	21	22	383
04:30 PM	179	9	19	118	13	33	371
04:45 PM	161	25	20	124	13	25	368
Total	696	74	83	457	56	108	1474
05:00 PM	167	14	16	110	11	25	343
05:15 PM	157	10	20	102	11	19	319
05:30 PM	168	18	22	88	10	22	328
05:45 PM	157	15	25	95	6	17	315
Total	649	57	83	395	38	83	1305
Grand Total	1345	131	166	852	94	191	2779
Apprch \%	91.1	8.9	16.3	83.7	33	67	
Total \%	48.4	4.7	6	30.7	3.4	6.9	
Cars	1342	131	166	845	94	191	2769
\% Cars	99.8	100	100	99.2	100	100	99.6
Trucks	3	0	0	7	0	0	10
\% Trucks	0.2	0	0	0.8	0	0	0.4

	Freetown Rd From North			Freetown Rd From South			Main St From West			
Start Time	Thru	Right	App. Total	Left	Thru	App. Total	Left	Right	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1										
Peak Hour for Entire Inte	n Beg	04:00								
04:00 PM	175	20	195	20	100	120	9	28	37	352
04:15 PM	181	20	201	24	115	139	21	22	43	383
04:30 PM	179	9	188	19	118	137	13	33	46	371
04:45 PM	161	25	186	20	124	144	13	25	38	368
Total Volume	696	74	770	83	457	540	56	108	164	1474
\% App. Total	90.4	9.6		15.4	84.6		34.1	65.9		
PHF	. 961	740	. 958	. 865	. 921	. 938	. 667	. 818	. 891	962
Cars	693	74	767	83	451	534	56	108	164	1465
\% Cars	99.6	100	99.6	100	98.7	98.9	100	100	100	99.4
Trucks	3	0	3	0	6	6	0	0	0	9
\% Trucks	0.4	0	0.4	0	1.3	1.1	0	0	0	0.6

Accurate Counts

978-664-2565

N/S Street : Freetown Road

 E/W Street : Main StreetCity/State : Raymond, NH
Weather : Cloudy

File Name: 96430002 Site Code : 96430002
Start Date : 3/7/2023
Page No : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	04:00 PM			04:15 PM			04:00 PM		
+0 mins.	175	20	195	24	115	139	9	28	37
+15 mins.	181	20	201	19	118	137	21	22	43
+30 mins.	179	9	188	20	124	144	13	33	46
+45 mins.	161	25	186	16	110	126	13	25	38
Total Volume	696	74	770	79	467	546	56	108	164
\% App. Total	90.4	9.6		14.5	85.5		34.1	65.9	
PHF	. 961	. 740	. 958	. 823	. 942	. 948	. 667	818	. 891
Cars	693	74	767	79	463	542	56	108	164
\% Cars	99.6	100	99.6	100	99.1	99.3	100	100	100
Trucks	3	0	3	0	4	4	0	0	0
\% Trucks	0.4	0	0.4	0	0.9	0.7	0	0	0

Accurate Counts

978-664-2565

N/S Street : Freetown Road E/W Street : Main Street
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430002
Site Code : 96430002
Start Date : 3/7/2023
Page No : 3

Accurate Counts

978-664-2565

```
N/S Street : Freetown Road
E/W Street : Main Street
City/State : Raymond, NH
Weather : Cloudy
File Name: 96430002
Site Code : 96430002
Start Date: 3/7/2023
Page No : 4
```

	Freetown Rd From North		Freetown Rd From South		Main St From West		
Start Time	Thru	Right	Left	Thru	Left	Right	Int. Total
04:00 PM	174	20	20	98	9	28	349
04:15 PM	181	20	24	114	21	22	382
04:30 PM	178	9	19	116	13	33	368
04:45 PM	160	25	20	123	13	25	366
Total	693	74	83	451	56	108	1465
05:00 PM	167	14	16	110	11	25	343
05:15 PM	157	10	20	101	11	19	318
05:30 PM	168	18	22	88	10	22	328
05:45 PM	157	15	25	95	6	17	315
Total	649	57	83	394	38	83	1304
Grand Total	1342	131	166	845	94	191	2769
Apprch \%	91.1	8.9	16.4	83.6	33	67	
Total \%	48.5	4.7	6	30.5	3.4	6.9	

	Freetown Rd From North			Freetown Rd From South			Main St From West			
Start Time	Thru	Right	App. Total	Left	Thru	App. Total	Left	Right	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1										
Peak Hour for Entire Inte	n Beg	04:00								
04:00 PM	174	20	194	20	98	118	9	28	37	349
04:15 PM	181	20	201	24	114	138	21	22	43	382
04:30 PM	178	9	187	19	116	135	13	33	46	368
04:45 PM	160	25	185	20	123	143	13	25	38	366
Total Volume	693	74	767	83	451	534	56	108	164	1465
\% App. Total	90.4	9.6		15.5	84.5		34.1	65.9		
PHF	. 957	. 740	. 954	. 865	. 917	934	. 667	. 818	891	. 959

Accurate Counts

978-664-2565

N/S Street : Freetown Road	File Name :96430002
E/W Street : Main Street	Site Code $: 96430002$
City/State : Raymond, NH	Start Date $: 3 / 7 / 2023$
Weather $:$ Cloudy	Page No

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	04:00 PM			04:15 PM			04:00 PM		
+0 mins.	174	20	194	24	114	138	9	28	37
+15 mins.	181	20	201	19	116	135	21	22	43
+30 mins.	178	9	187	20	123	143	13	33	46
+45 mins.	160	25	185	16	110	126	13	25	38
Total Volume	693	74	767	79	463	542	56	108	164
\% App. Total	90.4	9.6		14.6	85.4		34.1	65.9	
PHF	. 957	. 740	. 954	. 823	. 941	. 948	. 667	. 818	. 891

Accurate Counts

978-664-2565

N/S Street : Freetown Road E/W Street : Main Street
City/State : Raymond, NH
Weather : Cloudy

File Name : 96430002
Site Code : 96430002
Start Date : 3/7/2023
Page No : 6

Accurate Counts

978-664-2565

```
N/S Street : Freetown Road
E/W Street : Main Street
City/State : Raymond, NH
Weather : Cloudy
File Name: 96430002
Site Code : 96430002
Start Date: 3/7/2023
Page No : 7
```


	Freetown Rd From North			Freetown Rd From South			Main St From West			
Start Time	Thru	Right	App. Total	Left	Thru	App. Total	Left	Right	App. Total	Int. Total

Peak Hour for Entire Intersection Begins at 04:00 PM

04:00 PM	1	0	1	0	2	2	0	0	0	3
04:15 PM	0	0	0	0	1	1	0	0	0	1
04:30 PM	1	0	1	0	2	2	0	0	0	3
04:45 PM	1	0	1	0	1	1	0	0	0	2
Total Volume	3	0	3	0	6	6	0	0	0	9
\% App. Total	100	0		0	100		0	0		
PHF	. 750	. 000	. 750	. 000	. 750	. 750	. 000	. 000	. 000	. 750

Accurate Counts

978-664-2565

```
N/S Street : Freetown Road
E/W Street : Main Street
City/State : Raymond, NH
Weather : Cloudy
```

File Name : 96430002
Site Code : 96430002
Start Date : 3/7/2023
Page No : 8

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	04:00 PM			04:00 PM			04:00 PM		
+0 mins.	1	0	1	0	2	2	0	0	0
+15 mins.	0	0	0	0	1	1	0	0	0
+30 mins.	1	0	1	0	2	2	0	0	0
+45 mins.	1	0	1	0	1	1	0	0	0
Total Volume	3	0	3	0	6	6	0	0	0
\% App. Total	100	0		0	100		0	0	
PHF	. 750	. 000	. 750	. 000	. 750	. 750	. 000	. 000	. 000

Accurate Counts

978-664-2565

N/S Street : Freetown Road E/W Street : Main Street City/State : Raymond, NH
Weather : Cloudy

File Name : 96430002
Site Code : 96430002
Start Date : 3/7/2023
Page No : 9

Accurate Counts

978-664-2565

```
N/S Street : Freetown Road
E/W Street : Main Street
City/State : Raymond, NH
Weather : Cloudy
File Name: 96430002
Site Code : 96430002
Start Date: 3/7/2023
Page No : 10
```

Groups Printed- Bikes Peds

	Freetown Rd From North			Freetown Rd From South			Main St From West					
Start Time	Thru	Right	Peds	Left	Thru	Peds	Left	Right	Peds	Exclu. Total	Inclu. Total	Int. Total
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0
05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0
Apprch \%	0	0		0	0		0	0		0	0	

	Freetown Rd From North			Freetown Rd From South			Main St From West			
Start Time	Thru	Right	App. Total	Left	Thru	App. Total	Left	Right	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1										
Peak Hour for Entire Inte	n Beg	04:00								
04:00 PM	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0
\% App. Total	0	0		0	0		0	0		
PHF	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	000	. 000

Accurate Counts

978-664-2565

N/S Street : Freetown Road	File Name $: 96430002$
E/W Street : Main Street	Site Code
City/State : Raymond, NH	Start Date $: 3 / 7 / 2023$
Weather $:$ Cloudy	Page No

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

+0 mins.	$04: 00$ PM		$04: 00$ PM	0	0	0	0
+15 mins.	0	0	0	0	0	0	0
+30 mins.	0	0	0	0	0	0	0
+45 mins.	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0
\% App. Total	0	0	0	0	0	0	0
PHF	.000	.000	.000	.000	.000	0	0

Accurate Counts

978-664-2565

N/S Street : Freetown Road E/W Street : Main Street City/State : Raymond, NH
Weather : Cloudy

File Name : 96430002
Site Code : 96430002
Start Date : 3/7/2023
Page No : 12

Accurate Counts

978-664-2565

N/S Street : Wight Street E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date: 2/8/2023
Page No : 1

Groups Printed- Cars - Trucks							Int. Total
	Old Manchester Rd From East		Wight St From South		Old Manchester Rd From West		
Start Time	Left	Thru	Left	Right	Thru	Right	
07:00 AM	0	31	0	0	0	36	67
07:15 AM	0	38	0	0	0	56	94
07:30 AM	0	44	0	0	0	33	77
07:45 AM	0	59	0	0	0	36	95
Total	0	172	0	0	0	161	333
08:00 AM	2	40	0	0	0	16	58
08:15 AM	0	45	0	0	0	22	67
08:30 AM	1	46	0	0	0	51	98
08:45 AM	1	39	0	0	0	35	75
Total	4	170	0	0	0	124	298
Grand Total	4	342	0	0	0	285	631
Apprch \%	1.2	98.8	0	0	0	100	
Total \%	0.6	54.2	0	0	0	45.2	
Cars	4	331	0	0	0	276	611
\% Cars	100	96.8	0	0	0	96.8	96.8
Trucks	0	11	0	0	0	9	20
\% Trucks	0	3.2	0	0	0	3.2	3.2

	Old Manchester Rd From East			Wight St From South			Old Manchester Rd From West			
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 der										
Peak Hour for Entire Inte	Beg	07:00								
07:00 AM	0	31	31	0	0	0	0	36	36	67
07:15 AM	0	38	38	0	0	0	0	56	56	94
07:30 AM	0	44	44	0	0	0	0	33	33	77
07:45 AM	0	59	59	0	0	0	0	36	36	95
Total Volume	0	172	172	0	0	0	0	161	161	333
\% App. Total	0	100		0	0		0	100		
PHF	. 000	729	.729	. 000	. 000	. 000	. 000	719	719	. 876
Cars	0	166	166	0	0	0	0	159	159	325
\% Cars	0	96.5	96.5	0	0	0	0	98.8	98.8	97.6
Trucks	0	6	6	0	0	0	0	2	2	8
\% Trucks	0	3.5	3.5	0	0	0	0	1.2	1.2	2.4

Accurate Counts

978-664-2565

N/S Street : Wight Street E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date: 2/8/2023
Page No : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	07:45 AM			07:00 AM			07:00 AM		
+0 mins.	0	59	59	0	0	0	0	36	36
+15 mins.	2	40	42	0	0	0	0	56	56
+30 mins.	0	45	45	0	0	0	0	33	33
+45 mins.	1	46	47	0	0	0	0	36	36
Total Volume	3	190	193	0	0	0	0	161	161
\% App. Total	1.6	98.4		0	0		0	100	
PHF	. 375	. 805	. 818	. 000	. 000	. 000	000	. 719	719
Cars	3	182	185	0	0	0	0	159	159
\% Cars	100	95.8	95.9	0	0	0	0	98.8	98.8
Trucks	0	8	8	0	0	0	0	2	2
\% Trucks	0	4.2	4.1	0	0	0	0	1.2	1.2

978-664-2565

N/S Street : Wight Street E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date : 2/8/2023
Page No : 3

Accurate Counts

978-664-2565

```
N/S Street : Wight Street
E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear
File Name : 94190001
Site Code : 94190001
Start Date: 2/8/2023
Page No : 4
```

	Old Manc From		Wig From		Old Manc From		Int. Total
Start Time	Left	Thru	Left	Right	Thru	Right	
07:00 AM	0	29	0	0	0	36	65
07:15 AM	0	37	0	0	0	56	93
07:30 AM	0	44	0	0	0	31	75
07:45 AM	0	56	0	0	0	36	92
Total	0	166	0	0	0	159	325
08:00 AM	2	39	0	0	0	16	57
08:15 AM	0	41	0	0	0	22	63
08:30 AM	1	46	0	0	0	44	91
08:45 AM	1	39	0	0	0	35	75
Total	4	165	0	0	0	117	286
Grand Total	4	331	0	0	0	276	611
Apprch \%	1.2	98.8	0	0	0	100	
Total \%	0.7	54.2	0	0	0	45.2	

	Old Manchester Rd From East			Wight StFrom South			Old Manchester Rd From West			
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1										
Peak Hour for Entire Inte	Beg	07:00								
07:00 AM	0	29	29	0	0	0	0	36	36	65
07:15 AM	0	37	37	0	0	0	0	56	56	93
07:30 AM	0	44	44	0	0	0	0	31	31	75
07:45 AM	0	56	56	0	0	0	0	36	36	92
Total Volume	0	166	166	0	0	0	0	159	159	325
\% App. Total	0	100		0	0		0	100		
PHF	. 000	. 741	. 741	. 000	. 000	. 000	. 000	. 710	710	. 874

Accurate Counts

978-664-2565

```
N/S Street : Wight Street
E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear
File Name : 94190001 E/W Street : Old Manchester Road


Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:
\begin{tabular}{r|rrr|rrr|}
\hline \multicolumn{8}{|c|}{} & \(07: 00\) AM & & \(07: 00\) AM & & 36 \\
46 & 0 & 0 & 0 & 0 & 36 & 56 \\
41 & 0 & 0 & 0 & 0 & 56 & 31 \\
47 & 0 & 0 & 0 & 0 & 31 & 36 \\
\hline 185 & 0 & 0 & 0 & 0 & 36 & 159 \\
& 0 & 0 & 0 & 0 & 159 & 100 \\
\hline .826 & .000 & .000 & .000 & .000 & .710 & .710 \\
\hline
\end{tabular}

978-664-2565

N/S Street : Wight Street E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date : 2/8/2023
Page No : 6


\section*{Accurate Counts}

978-664-2565
```

N/S Street : Wight Street
E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear
File Name : 94190001
Site Code : 94190001
Start Date: 2/8/2023
Page No : 7

```

Groups Printed- Trucks
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Old Manc From & & Wigh From & & Old Manc From & & \multirow[b]{2}{*}{Int Total} \\
\hline Start Time & Left & Thru & Left & Right & Thru & Right & \\
\hline 07:00 AM & 0 & 2 & 0 & 0 & 0 & 0 & 2 \\
\hline 07:15 AM & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline 07:30 AM & 0 & 0 & 0 & 0 & 0 & 2 & 2 \\
\hline 07:45 AM & 0 & 3 & 0 & 0 & 0 & 0 & 3 \\
\hline Total & 0 & 6 & 0 & 0 & 0 & 2 & 8 \\
\hline 08:00 AM & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline 08:15 AM & 0 & 4 & 0 & 0 & 0 & 0 & 4 \\
\hline 08:30 AM & 0 & 0 & 0 & 0 & 0 & 7 & 7 \\
\hline 08:45 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total & 0 & 5 & 0 & 0 & 0 & 7 & 12 \\
\hline Grand Total & 0 & 11 & 0 & 0 & 0 & 9 & 20 \\
\hline Apprch \% & 0 & 100 & 0 & 0 & 0 & 100 & \\
\hline Total \% & 0 & 55 & 0 & 0 & 0 & 45 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Old Manchester Rd From East} & \multicolumn{3}{|c|}{Wight St From South} & \multicolumn{3}{|c|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & App. Total & Left & Right & App. Total & Thru & Right & App. Total & Int. Total \\
\hline
\end{tabular}

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 07:45 AM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline ak Hour for Entire Inte & Beg & :45 & & & & & & & & \\
\hline 07:45 AM & 0 & 3 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
\hline 08:00 AM & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 08:15 AM & 0 & 4 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \\
\hline 08:30 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 7 & 7 \\
\hline Total Volume & 0 & 8 & 8 & 0 & 0 & 0 & 0 & 7 & 7 & 15 \\
\hline \% App. Total & 0 & 100 & & 0 & 0 & & 0 & 100 & & \\
\hline PHF & . 000 & . 500 & . 500 & . 000 & . 000 & . 000 & . 000 & . 250 & . 250 & . 536 \\
\hline
\end{tabular}

N/S Street : Wight Street E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date : 2/8/2023
Page No : 8


Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:
\begin{tabular}{r|r|r|rr|rrr} 
\\
+0 mins. & \(07: 30\) AM & & \(07: 00\) AM & 0 & 0 & 0 & 0 \\
+15 mins. & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
+30 mins. & 0 & 3 & 3 & 0 & 0 & 0 & 0 \\
+45 mins. & 0 & 1 & 4 & 1 & 0 & 0 & 0 \\
\hline Total Volume & 0 & 8 & 4 & 0 & 0 & 0 & 0 \\
\% App. Total & 0 & 100 & 8 & 0 & 0 & 0 & 0 \\
\hline PHF & .000 & .500 & .500 & .000 & .000 & 0 & 0 \\
\hline
\end{tabular}

978-664-2565

N/S Street : Wight Street E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date : 2/8/2023
Page No : 9


\section*{Accurate Counts}

978-664-2565
```

N/S Street : Wight Street
E/W Street : Old Manchester Road
City/State : Raymond, NH

```
Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date : 2/8/2023
Page No : 10

\section*{Groups Printed- Bikes Peds}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Old Manchester Rd From East} & \multicolumn{3}{|c|}{Wight St From South} & \multicolumn{3}{|l|}{Old Manchester Rd From West} & & & \\
\hline Start Time & Left & Thru & Peds & Left & Right & Peds & Thru & Right & Peds & Exclu. Total & Inclu. Total & Int. Total \\
\hline 07:00 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 07:15 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 07:30 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 07:45 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 08:00 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 08:15 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 08:30 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 08:45 AM & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline Total & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline Grand Total & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline Apprch \% Total \% & 0 & 0 & & 0 & 0 & & 0 & 0 & & 100 & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Old Manchester Rd From East} & \multicolumn{3}{|c|}{Wight St From South} & \multicolumn{3}{|c|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & App. Total & Left & Right & App. Total & Thru & Right & App. Total & Int. Total \\
\hline
\end{tabular}

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 07:00 AM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Peak Hour for Entire Inte & & 7:00 & & & & & & & & \\
\hline 07:00 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 07:15 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 07:30 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 07:45 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total Volume & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \% App. Total & 0 & 0 & & 0 & 0 & & 0 & 0 & & \\
\hline PHF & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 \\
\hline
\end{tabular}

\section*{Accurate Counts}

978-664-2565
```

N/S Street : Wight Street
E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear
File Name : 94190001 E/W Street : Old Manchester Road

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	07:00 AM			07:00 AM			07:00 AM		
+0 mins.	0	0	0	0	0	0	0	0	0
+15 mins.	0	0	0	0	0	0	0	0	0
+30 mins.	0	0	0	0	0	0	0	0	0
+45 mins.	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0
\% App. Total	0	0		0	0		0	0	
PHF	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000

978-664-2565

N/S Street : Wight Street E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date : 2/8/2023
Page No : 12

Accurate Counts

978-664-2565

N/S Street : Wight Street E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date: 2/8/2023
Page No : 1

Groups Printed- Cars - Trucks							Int. Total
	Old Manchester Rd From East		Wight St From South		Old Manchester Rd From West		
Start Time	Left	Thru	Left	Right	Thru	Right	
04:00 PM	3	40	0	0	0	35	78
04:15 PM	2	30	0	0	0	41	73
04:30 PM	2	55	0	0	0	40	97
04:45 PM	0	31	0	0	0	49	80
Total	7	156	0	0	0	165	328
05:00 PM	2	39	0	0	0	51	92
05:15 PM	2	38	0	0	0	38	78
05:30 PM	2	33	0	0	0	39	74
05:45 PM	6	37	0	0	0	42	85
Total	12	147	0	0	0	170	329
Grand Total	19	303	0	0	0	335	657
Apprch \%	5.9	94.1	0	0	0	100	
Total \%	2.9	46.1	0	0	0	51	
Cars	19	302	0	0	0	333	654
\% Cars	100	99.7	0	0	0	99.4	99.5
Trucks	0	1	0	0	0	2	3
\% Trucks	0	0.3	0	0	0	0.6	0.5

	Old Manchester Rd From East			Wight St From South			Old Manchester Rd From West			
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1										
Peak Hour for Entire Inte	Beg	04:30								
04:30 PM	2	55	57	0	0	0	0	40	40	97
04:45 PM	0	31	31	0	0	0	0	49	49	80
05:00 PM	2	39	41	0	0	0	0	51	51	92
05:15 PM	2	38	40	0	0	0	0	38	38	78
Total Volume	6	163	169	0	0	0	0	178	178	347
\% App. Total	3.6	96.4		0	0		0	100		
PHF	. 750	. 741	. 741	. 000	. 000	. 000	. 000	. 873	. 873	. 894
Cars	6	163	169	0	0	0	0	178	178	347
\% Cars	100	100	100	0	0	0	0	100	100	100
Trucks	0	0	0	0	0	0	0	0	0	0
\% Trucks	0	0	0	0	0	0	0	0	0	0

Accurate Counts

978-664-2565

N/S Street : Wight Street E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear

File Name: 94190001
Site Code : 94190001
Start Date : 2/8/2023
Page No : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	04:30 PM			04:00 PM			04:15 PM		
+0 mins.	2	55	57	0	0	0	0	41	41
+15 mins.	0	31	31	0	0	0	0	40	40
+30 mins.	2	39	41	0	0	0	0	49	49
+45 mins.	2	38	40	0	0	0	0	51	51
Total Volume	6	163	169	0	0	0	0	181	181
\% App. Total	3.6	96.4		0	0		0	100	
PHF	. 750	. 741	. 741	. 000	. 000	. 000	. 000	. 887	. 887
Cars	6	163	169	0	0	0	0	181	181
\% Cars	100	100	100	0	0	0	0	100	100
Trucks	0	0	0	0	0	0	0	0	0
\% Trucks	0	0	0	0	0	0	0	0	0

978-664-2565

N/S Street : Wight Street E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date : 2/8/2023
Page No : 3

Accurate Counts

978-664-2565

```
N/S Street : Wight Street
E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear
File Name : 94190001
Site Code : 94190001
Start Date: 2/8/2023
Page No : 4
```

	Old Manc From		Wigh From		Old Manc From		Int Total
Start Time	Left	Thru	Left	Right	Thru	Right	
04:00 PM	3	39	0	0	0	33	75
04:15 PM	2	30	0	0	0	41	73
04:30 PM	2	55	0	0	0	40	97
04:45 PM	0	31	0	0	0	49	80
Total	7	155	0	0	0	163	325
05:00 PM	2	39	0	0	0	51	92
05:15 PM	2	38	0	0	0	38	78
05:30 PM	2	33	0	0	0	39	74
05:45 PM	6	37	0	0	0	42	85
Total	12	147	0	0	0	170	329
Grand Total	19	302	0	0	0	333	654
Apprch \%	5.9	94.1	0	0	0	100	
Total \%	2.9	46.2	0	0	0	50.9	

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 04:30 PM

eak Hour for Entire Inte	Beg	4:30								
04:30 PM	2	55	57	0	0	0	0	40	40	97
04:45 PM	0	31	31	0	0	0	0	49	49	80
05:00 PM	2	39	41	0	0	0	0	51	51	92
05:15 PM	2	38	40	0	0	0	0	38	38	78
Total Volume	6	163	169	0	0	0	0	178	178	347
\% App. Total	3.6	96.4		0	0		0	100		
PHF	. 750	. 741	. 741	. 000	. 000	. 000	. 000	. 873	. 873	. 894

Accurate Counts

978-664-2565

N/S Street : Wight Street E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date : 2/8/2023
Page No : 5

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	04:30 PM			04:00 PM			04:15 PM		
+0 mins.	2	55	57	0	0	0	0	41	41
+15 mins.	0	31	31	0	0	0	0	40	40
+30 mins.	2	39	41	0	0	0	0	49	49
+45 mins.	2	38	40	0	0	0	0	51	51
Total Volume	6	163	169	0	0	0	0	181	181
\% App. Total	3.6	96.4		0	0		0	100	
PHF	. 750	. 741	. 741	. 000	. 000	. 000	. 000	. 887	. 887

978-664-2565

N/S Street : Wight Street E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date : 2/8/2023
Page No : 6

Accurate Counts

978-664-2565

```
N/S Street : Wight Street
E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear
File Name : 94190001
Site Code : 94190001
Start Date: 2/8/2023
Page No : 7
```

Groups Printed- Trucks

	Old Manchester Rd From East			Wight St From South			Old Manchester Rd From West			
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 04:00 PM

Peak Hour for Entire In		4:00								
04:00 PM	0	1	1	0	0	0	0	2	2	3
04:15 PM	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0
Total Volume	0	,	1	0	0	0	0	2	2	3
\% App. Total	0	100		0	0		0	100		
PHF	. 000	. 250	. 250	. 000	. 000	. 000	. 000	. 250	. 250	. 250

N/S Street : Wight Street E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date : 2/8/2023
Page No : 8

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	04:00 PM			04:00 PM			04:00 PM		
+0 mins.	0	1	1	0	0	0	0	2	2
+15 mins.	0	0	0	0	0	0	0	0	0
+30 mins.	0	0	0	0	0	0	0	0	0
+45 mins.	0	0	0	0	0	0	0	0	0
Total Volume	0	1	1	0	0	0	0	2	2
\% App. Total	0	100		0	0		0	100	
PHF	. 000	. 250	. 250	. 000	. 000	. 000	. 000	. 250	. 250

978-664-2565

N/S Street : Wight Street E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date : 2/8/2023
Page No : 9

Accurate Counts

978-664-2565

```
N/S Street : Wight Street
E/W Street : Old Manchester Road
City/State : Raymond, NH
```

Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date : 2/8/2023
Page No : 10

Groups Printed- Bikes Peds

	Old Manchester Rd From East			Wight St From South			Old Manchester Rd From West					
Start Time	Left	Thru	Peds	Left	Right	Peds	Thru	Right	Peds	Exclu. Total	Inclu. Total	Int. Total
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0
05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0
Apprch \% Total \%	0	0		0	0		0	0		0	0	

	Old Manchester Rd From East			Wight St From South			Old Manchester Rd From West			
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 04:00 PM

04:00 PM	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0
\% App. Total	0	0		0	0		0	0		
PHF	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000

Accurate Counts

978-664-2565

```
N/S Street : Wight Street
E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear
File Name : 94190001 E/W Street : Old Manchester Road


Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:
\begin{tabular}{r|rr|r|r|rrr} 
\\
+0 mins. & 04:00 PM & 0 & 0 & 0 & \(04: 00\) PM & 0 & 0 \\
+15 mins. & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
+30 mins. & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
+45 mins. & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total Volume & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\% App. Total & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline PHF & .000 & .000 & .000 & .00 & .00 & 0 & 0 \\
\hline
\end{tabular}

978-664-2565

N/S Street : Wight Street E/W Street : Old Manchester Road
City/State : Raymond, NH
Weather : Clear

File Name : 94190001
Site Code : 94190001
Start Date : 2/8/2023
Page No : 12

\title{
Accurate Counts
}

978-664-2565
N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear
File Name: 94190002
Site Code : 94190002
Start Date: 2/8/2023
Page No : 1

Groups Printed- Cars - Trucks
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { Main St } \\
& \text { From North }
\end{aligned}
\]} & \multicolumn{3}{|c|}{Epping St From East} & \multicolumn{3}{|c|}{Main St From South} & \multicolumn{3}{|l|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & Right & Int. Total \\
\hline 07:00 AM & 9 & 27 & 19 & 1 & 6 & 4 & 6 & 33 & 10 & 0 & 0 & 0 & 115 \\
\hline 07:15 AM & 14 & 31 & 31 & 1 & 4 & 2 & 4 & 51 & 23 & 0 & 0 & 0 & 161 \\
\hline 07:30 AM & 18 & 19 & 17 & 6 & 21 & 15 & 5 & 14 & 31 & 0 & 0 & 0 & 146 \\
\hline 07:45 AM & 11 & 25 & 19 & 6 & 30 & 11 & 9 & 19 & 34 & 0 & 0 & 0 & 164 \\
\hline Total & 52 & 102 & 86 & 14 & 61 & 32 & 24 & 117 & 98 & 0 & 0 & 0 & 586 \\
\hline 08:00 AM & 5 & 20 & 18 & 3 & 15 & 3 & 9 & 17 & 7 & 0 & 0 & 0 & 97 \\
\hline 08:15 AM & 6 & 30 & 16 & 4 & 20 & 3 & 9 & 19 & 13 & 0 & 0 & 0 & 120 \\
\hline 08:30 AM & 5 & 17 & 19 & 4 & 15 & 2 & 13 & 40 & 25 & 0 & 0 & 0 & 140 \\
\hline 08:45 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total & 16 & 67 & 53 & 11 & 50 & 8 & 31 & 76 & 45 & 0 & 0 & 0 & 357 \\
\hline Grand Total & 68 & 169 & 139 & 25 & 111 & 40 & 55 & 193 & 143 & 0 & 0 & 0 & 943 \\
\hline Apprch \% & 18.1 & 44.9 & 37 & 14.2 & 63.1 & 22.7 & 14.1 & 49.4 & 36.6 & 0 & 0 & 0 & \\
\hline Total \% & 7.2 & 17.9 & 14.7 & 2.7 & 11.8 & 4.2 & 5.8 & 20.5 & 15.2 & 0 & 0 & 0 & \\
\hline Cars & 66 & 164 & 131 & 24 & 107 & 40 & 55 & 181 & 140 & 0 & 0 & 0 & 908 \\
\hline \% Cars & 97.1 & 97 & 94.2 & 96 & 96.4 & 100 & 100 & 93.8 & 97.9 & 0 & 0 & 0 & 96.3 \\
\hline Trucks & 2 & 5 & 8 & 1 & 4 & 0 & 0 & 12 & 3 & 0 & 0 & 0 & 35 \\
\hline \% Trucks & 2.9 & 3 & 5.8 & 4 & 3.6 & 0 & 0 & 6.2 & 2.1 & 0 & 0 & 0 & 3.7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Main St From North} & \multicolumn{4}{|c|}{Epping St From East} & \multicolumn{4}{|c|}{Main St From South} & \multicolumn{4}{|c|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Int. Total \\
\hline \multicolumn{18}{|l|}{Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1} \\
\hline Peak Hour for E & ire Int & sectio & Begins & at 07:00 & & & & & & & & & & & & & \\
\hline 07:00 AM & 9 & 27 & 19 & 55 & 1 & 6 & 4 & 11 & 6 & 33 & 10 & 49 & 0 & 0 & 0 & 0 & 115 \\
\hline 07:15 AM & 14 & 31 & 31 & 76 & 1 & 4 & 2 & 7 & 4 & 51 & 23 & 78 & 0 & 0 & 0 & 0 & 161 \\
\hline 07:30 AM & 18 & 19 & 17 & 54 & 6 & 21 & 15 & 42 & 5 & 14 & 31 & 50 & 0 & 0 & 0 & 0 & 146 \\
\hline 07:45 AM & 11 & 25 & 19 & 55 & 6 & 30 & 11 & 47 & 9 & 19 & 34 & 62 & 0 & 0 & 0 & 0 & 164 \\
\hline Total Volume & 52 & 102 & 86 & 240 & 14 & 61 & 32 & 107 & 24 & 117 & 98 & 239 & 0 & 0 & 0 & 0 & 586 \\
\hline \% App. Total & 21.7 & 42.5 & 35.8 & & 13.1 & 57 & 29.9 & & 10 & 49 & 41 & & 0 & 0 & 0 & & \\
\hline PHF & . 722 & . 823 & . 694 & . 789 & . 583 & . 508 & . 533 & . 569 & . 667 & . 574 & . 721 & . 766 & . 000 & . 000 & . 000 & . 000 & . 893 \\
\hline Cars & 50 & 99 & 82 & 231 & 13 & 59 & 32 & 104 & 24 & 115 & 96 & 235 & 0 & 0 & 0 & 0 & 570 \\
\hline \% Cars & 96.2 & 97.1 & 95.3 & 96.3 & 92.9 & 96.7 & 100 & 97.2 & 100 & 98.3 & 98.0 & 98.3 & 0 & 0 & 0 & 0 & 97.3 \\
\hline Trucks & 2 & 3 & 4 & 9 & 1 & 2 & 0 & 3 & 0 & 2 & 2 & 4 & 0 & 0 & 0 & 0 & 16 \\
\hline \% Trucks & 3.8 & 2.9 & 4.7 & 3.8 & 7.1 & 3.3 & 0 & 2.8 & 0 & 1.7 & 2.0 & 1.7 & 0 & 0 & 0 & 0 & 2.7 \\
\hline
\end{tabular}

\section*{Accurate Counts}

978-664-2565

N/S Street: Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name: 94190002
Site Code : 94190002
Start Date: 2/8/2023
Page No : 2


Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{07:00 AM} & \multicolumn{4}{|l|}{07:30 AM} & \multicolumn{4}{|l|}{07:00 AM} & \multicolumn{4}{|l|}{07:00 AM} \\
\hline +0 mins. & 9 & 27 & 19 & 55 & 6 & 21 & 15 & 42 & 6 & 33 & 10 & 49 & 0 & 0 & 0 & 0 \\
\hline +15 mins. & 14 & 31 & 31 & 76 & 6 & 30 & 11 & 47 & 4 & 51 & 23 & 78 & 0 & 0 & 0 & 0 \\
\hline +30 mins. & 18 & 19 & 17 & 54 & 3 & 15 & 3 & 21 & 5 & 14 & 31 & 50 & 0 & 0 & 0 & 0 \\
\hline +45 mins. & 11 & 25 & 19 & 55 & 4 & 20 & 3 & 27 & 9 & 19 & 34 & 62 & 0 & 0 & 0 & 0 \\
\hline Total Volume & 52 & 102 & 86 & 240 & 19 & 86 & 32 & 137 & 24 & 117 & 98 & 239 & 0 & 0 & 0 & 0 \\
\hline \% App. Total & 21.7 & 42.5 & 35.8 & & 13.9 & 62.8 & 23.4 & & 10 & 49 & 41 & & 0 & 0 & 0 & \\
\hline PHF & . 722 & . 823 & . 694 & . 789 & . 792 & . 717 & . 533 & . 729 & . 667 & . 574 & . 721 & . 766 & . 000 & . 000 & . 000 & . 000 \\
\hline Cars & 50 & 99 & 82 & 231 & 18 & 82 & 32 & 132 & 24 & 115 & 96 & 235 & 0 & 0 & 0 & 0 \\
\hline \% Cars & 96.2 & 97.1 & 95.3 & 96.2 & 94.7 & 95.3 & 100 & 96.4 & 100 & 98.3 & 98 & 98.3 & 0 & 0 & 0 & 0 \\
\hline Trucks & 2 & 3 & 4 & 9 & 1 & 4 & 0 & 5 & 0 & 2 & 2 & 4 & 0 & 0 & 0 & 0 \\
\hline \% Trucks & 3.8 & 2.9 & 4.7 & 3.8 & 5.3 & 4.7 & 0 & 3.6 & 0 & 1.7 & 2 & 1.7 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Accurate Counts}

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name : 94190002
Site Code : 94190002
Start Date : 2/8/2023
Page No : 3


\title{
Accurate Counts
}

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name : 94190002
Site Code : 94190002
Start Date : 2/8/2023
Page No : 4

Groups Printed- Cars
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Main St From North} & \multicolumn{3}{|c|}{Epping St From East} & \multicolumn{3}{|c|}{Main St From South} & \multicolumn{3}{|l|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & Right & Int. Total \\
\hline 07:00 AM & 9 & 26 & 17 & 1 & 6 & 4 & 6 & 32 & 10 & 0 & 0 & 0 & 111 \\
\hline 07:15 AM & 14 & 31 & 30 & 1 & 4 & 2 & 4 & 50 & 23 & 0 & 0 & 0 & 159 \\
\hline 07:30 AM & 16 & 18 & 16 & 5 & 21 & 15 & 5 & 14 & 29 & 0 & 0 & 0 & 139 \\
\hline 07:45 AM & 11 & 24 & 19 & 6 & 28 & 11 & 9 & 19 & 34 & 0 & 0 & 0 & 161 \\
\hline Total & 50 & 99 & 82 & 13 & 59 & 32 & 24 & 115 & 96 & 0 & 0 & 0 & 570 \\
\hline 08:00 AM & 5 & 20 & 16 & 3 & 15 & 3 & 9 & 15 & 7 & 0 & 0 & 0 & 93 \\
\hline 08:15 AM & 6 & 28 & 14 & 4 & 18 & 3 & 9 & 17 & 13 & 0 & 0 & 0 & 112 \\
\hline 08:30 AM & 5 & 17 & 19 & 4 & 15 & 2 & 13 & 34 & 24 & 0 & 0 & 0 & 133 \\
\hline 08:45 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total & 16 & 65 & 49 & 11 & 48 & 8 & 31 & 66 & 44 & 0 & 0 & 0 & 338 \\
\hline Grand Total & 66 & 164 & 131 & 24 & 107 & 40 & 55 & 181 & 140 & 0 & 0 & 0 & 908 \\
\hline Apprch \% & 18.3 & 45.4 & 36.3 & 14 & 62.6 & 23.4 & 14.6 & 48.1 & 37.2 & 0 & 0 & 0 & \\
\hline Total \% & 7.3 & 18.1 & 14.4 & 2.6 & 11.8 & 4.4 & 6.1 & 19.9 & 15.4 & 0 & 0 & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Main St From North} & \multicolumn{4}{|c|}{Epping St From East} & \multicolumn{4}{|c|}{Main St From South} & \multicolumn{4}{|c|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Int. Total \\
\hline \multicolumn{18}{|l|}{\multirow[t]{2}{*}{Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 07:00 AM}} \\
\hline & & & & & & & & & & & & & & & & & \\
\hline 07:00 AM & 9 & 26 & 17 & 52 & 1 & 6 & 4 & 11 & 6 & 32 & 10 & 48 & 0 & 0 & 0 & 0 & 111 \\
\hline 07:15 AM & 14 & 31 & 30 & 75 & 1 & 4 & 2 & 7 & 4 & 50 & 23 & 77 & 0 & 0 & 0 & 0 & 159 \\
\hline 07:30 AM & 16 & 18 & 16 & 50 & 5 & 21 & 15 & 41 & 5 & 14 & 29 & 48 & 0 & 0 & 0 & 0 & 139 \\
\hline 07:45 AM & 11 & 24 & 19 & 54 & 6 & 28 & 11 & 45 & 9 & 19 & 34 & 62 & 0 & 0 & 0 & 0 & 161 \\
\hline Total Volume & 50 & 99 & 82 & 231 & 13 & 59 & 32 & 104 & 24 & 115 & 96 & 235 & 0 & 0 & 0 & 0 & 570 \\
\hline \% App. Total & 21.6 & 42.9 & 35.5 & & 12.5 & 56.7 & 30.8 & & 10.2 & 48.9 & 40.9 & & 0 & 0 & 0 & & \\
\hline PHF & . 781 & . 798 & . 683 & . 770 & . 542 & . 527 & . 533 & . 578 & . 667 & . 575 & . 706 & . 763 & . 000 & . 000 & . 000 & . 000 & . 885 \\
\hline
\end{tabular}

\section*{Accurate Counts}

978-664-2565

N/S Street : Main Street E/W Street : Epping St / Old Manchester Rd City/State : Raymond, NH
Weather : Clear

File Name: 94190002
Site Code : 94190002
Start Date: 2/8/2023
Page No : 5


Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{07:00 AM} & \multicolumn{4}{|l|}{07:30 AM} & \multicolumn{4}{|l|}{07:00 AM} & \multicolumn{4}{|l|}{07:00 AM} \\
\hline +0 mins. & 9 & 26 & 17 & 52 & 5 & 21 & 15 & 41 & 6 & 32 & 10 & 48 & 0 & 0 & 0 & 0 \\
\hline +15 mins. & 14 & 31 & 30 & 75 & 6 & 28 & 11 & 45 & 4 & 50 & 23 & 77 & 0 & 0 & 0 & 0 \\
\hline +30 mins. & 16 & 18 & 16 & 50 & 3 & 15 & 3 & 21 & 5 & 14 & 29 & 48 & 0 & 0 & 0 & 0 \\
\hline +45 mins. & 11 & 24 & 19 & 54 & 4 & 18 & 3 & 25 & 9 & 19 & 34 & 62 & 0 & 0 & 0 & 0 \\
\hline Total Volume & 50 & 99 & 82 & 231 & 18 & 82 & 32 & 132 & 24 & 115 & 96 & 235 & 0 & 0 & 0 & 0 \\
\hline \% App. Total & 21.6 & 42.9 & 35.5 & & 13.6 & 62.1 & 24.2 & & 10.2 & 48.9 & 40.9 & & 0 & 0 & 0 & \\
\hline PHF & 781 & . 798 & . 683 & . 770 & 750 & . 732 & . 533 & . 733 & . 667 & . 575 & . 706 & 763 & . 000 & 000 & 000 & . 000 \\
\hline
\end{tabular}

\section*{Accurate Counts}

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name : 94190002
Site Code : 94190002
Start Date : 2/8/2023
Page No : 6


\section*{Accurate Counts}

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name: 94190002
Site Code : 94190002
Start Date: 2/8/2023
Page No : 7

Groups Printed- Trucks
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Main St From North} & \multicolumn{3}{|c|}{Epping St From East} & \multicolumn{3}{|c|}{Main St From South} & \multicolumn{3}{|l|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & Right & Int. Total \\
\hline 07:00 AM & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 4 \\
\hline 07:15 AM & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 2 \\
\hline 07:30 AM & 2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 7 \\
\hline 07:45 AM & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
\hline Total & 2 & 3 & 4 & 1 & 2 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 16 \\
\hline 08:00 AM & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 4 \\
\hline 08:15 AM & 0 & 2 & 2 & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 8 \\
\hline 08:30 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6 & 1 & 0 & 0 & 0 & 7 \\
\hline 08:45 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total & 0 & 2 & 4 & 0 & 2 & 0 & 0 & 10 & 1 & 0 & 0 & 0 & 19 \\
\hline Grand Total & 2 & 5 & 8 & 1 & 4 & 0 & 0 & 12 & 3 & 0 & 0 & 0 & 35 \\
\hline Apprch \% & 13.3 & 33.3 & 53.3 & 20 & 80 & 0 & 0 & 80 & 20 & 0 & 0 & 0 & \\
\hline Total \% & 5.7 & 14.3 & 22.9 & 2.9 & 11.4 & 0 & 0 & 34.3 & 8.6 & 0 & 0 & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Main St From North} & \multicolumn{4}{|c|}{Epping St From East} & \multicolumn{4}{|c|}{Main St From South} & \multicolumn{4}{|c|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Int. Total \\
\hline
\end{tabular} Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 07:30 AM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & & & \\
\hline 07:30 AM
\(07: 45\) AM & 2 & 1 & 1 & 4 & 1 & 0 & 0 & 1 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 7 \\
\hline 07:45 AM & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
\hline 08:00 AM & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 4 \\
\hline 08:15 AM & 0 & 2 & 2 & 4 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 8 \\
\hline Total Volume & 2 & 4 & 5 & 11 & 1 & 4 & 0 & 5 & 0 & 4 & 2 & 6 & 0 & 0 & 0 & 0 & 22 \\
\hline \% App. Total & 18.2 & 36.4 & 45.5 & & 20 & 80 & 0 & & 0 & 66.7 & 33.3 & & 0 & 0 & 0 & & \\
\hline PHF & . 250 & . 500 & . 625 & . 688 & . 250 & . 500 & . 000 & . 625 & . 000 & . 500 & . 250 & . 750 & . 000 & 000 & . 000 & . 000 & . 688 \\
\hline
\end{tabular}

\section*{Accurate Counts}

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name: 94190002
Site Code : 94190002
Start Date: 2/8/2023
Page No : 8


Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{07:30 AM} & \multicolumn{4}{|l|}{07:30 AM} & \multicolumn{4}{|l|}{07:45 AM} & \multicolumn{4}{|l|}{07:00 AM} \\
\hline +0 mins. & 2 & 1 & 1 & 4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline +15 mins. & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 \\
\hline +30 mins. & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 \\
\hline +45 mins. & 0 & 2 & 2 & 4 & 0 & 2 & 0 & 2 & 0 & 6 & 1 & 7 & 0 & 0 & 0 & \\
\hline Total Volume & 2 & 4 & 5 & 11 & 1 & 4 & 0 & 5 & 0 & 10 & 1 & 11 & 0 & 0 & 0 & 0 \\
\hline \% App. Total & 18.2 & 36.4 & 45.5 & & 20 & 80 & 0 & & 0 & 90.9 & 9.1 & & 0 & 0 & 0 & \\
\hline PHF & . 250 & . 500 & . 625 & . 688 & 250 & 500 & 000 & . 625 & . 000 & . 417 & 250 & . 393 & . 000 & 000 & . 000 & . 000 \\
\hline
\end{tabular}

\title{
Accurate Counts
}

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name : 94190002
Site Code : 94190002
Start Date : 2/8/2023
Page No : 9


\section*{Accurate Counts}

978-664-2565
N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear
File Name: 94190002
Site Code : 94190002
Start Date: 2/8/2023
Page No : 10
Groups Printed- Bikes Peds
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Main St From North} & \multicolumn{4}{|c|}{Epping St From East} & \multicolumn{4}{|c|}{Main St From South} & \multicolumn{4}{|l|}{Old Manchester Rd From West} & & & \\
\hline Start Time & Left & Thru & Right & Peds & Exclu. Total & Inclu. Total & Int. Total \\
\hline 07:00 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 07:15 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 07:30 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 07:45 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{r|llll|llll|llll|lllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(08: 15 \mathrm{AM}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 3 & 0 & 0 \\
\(08: 30 \mathrm{AM}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(08: 45 \mathrm{AM}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 3 & 0 & 3
\end{tabular}
\(\left.\begin{array}{r|llll|llll|llll|llll}\text { Grand Total } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0\end{array}\right) 3\)\begin{tabular}{l}
0 \\
Apprch \% \\
Total \%
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Main St From North} & \multicolumn{4}{|c|}{Epping St From East} & \multicolumn{4}{|c|}{Main St From South} & \multicolumn{4}{|c|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Int. Total \\
\hline \multicolumn{18}{|l|}{\multirow[t]{2}{*}{Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 07:00 AM}} \\
\hline & & & & & & & & & & & & & & & & & \\
\hline 07:00 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 07:15 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 07:30 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 07:45 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total Volume & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \% App. Total & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & \\
\hline PHF & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 \\
\hline
\end{tabular}

\section*{Accurate Counts}

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name: 94190002
Site Code : 94190002
Start Date: 2/8/2023
Page No : 11


Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:
\begin{tabular}{r|rrr|r|rrr|rrrrrrrr} 
\\
+0 mins. & \(07: 00\) AM & 0 & 0 & 0 & 0 & \(07: 00\) AM & 0 & 0 & 0 & 0 & \(07: 00\) AM & 0 & 0 & 0 & 0 \\
+15 mins. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
+30 mins. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
+45 mins. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total Volume & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\% App. Total & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 \\
\hline PHF & .000 & .000 & .000 & .000 & .000 & .000 & .000 & .000 & .000 & .000 & .000 & .000 & .000 & 0 & 0 \\
\hline
\end{tabular}

\section*{Accurate Counts}

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name : 94190002
Site Code : 94190002
Start Date : 2/8/2023
Page No : 12


\section*{Accurate Counts}

978-664-2565
N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear
File Name: 94190002
Site Code : 94190002
Start Date : 2/8/2023
Page No : 1

Groups Printed- Cars - Trucks
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Main St From North} & \multicolumn{3}{|c|}{Epping St From East} & \multicolumn{3}{|c|}{Main St From South} & \multicolumn{3}{|l|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & Right & Int. Total \\
\hline 04:00 PM & 3 & 17 & 12 & 5 & 24 & 6 & 9 & 33 & 16 & 0 & 0 & 0 & 125 \\
\hline 04:15 PM & 4 & 19 & 11 & 4 & 16 & 5 & 3 & 31 & 20 & 0 & 0 & 0 & 113 \\
\hline 04:30 PM & 8 & 33 & 21 & 5 & 35 & 8 & 4 & 38 & 25 & 0 & 0 & 0 & 177 \\
\hline 04:45 PM & 12 & 17 & 8 & 13 & 16 & 15 & 5 & 45 & 29 & 0 & 0 & 0 & 160 \\
\hline Total & 27 & 86 & 52 & 27 & 91 & 34 & 21 & 147 & 90 & 0 & 0 & 0 & 575 \\
\hline 05:00 PM & 8 & 18 & 9 & 8 & 23 & 14 & 9 & 36 & 24 & 0 & 0 & 0 & 149 \\
\hline 05:15 PM & 4 & 22 & 12 & 6 & 21 & 8 & 10 & 37 & 19 & 0 & 0 & 0 & 139 \\
\hline 05:30 PM & 6 & 19 & 10 & 14 & 19 & 14 & 5 & 30 & 23 & 0 & 0 & 0 & 140 \\
\hline 05:45 PM & 4 & 17 & 10 & 10 & 23 & 10 & 8 & 46 & 18 & 0 & 0 & 0 & 146 \\
\hline Total & 22 & 76 & 41 & 38 & 86 & 46 & 32 & 149 & 84 & 0 & 0 & 0 & 574 \\
\hline Grand Total & 49 & 162 & 93 & 65 & 177 & 80 & 53 & 296 & 174 & 0 & 0 & 0 & 1149 \\
\hline Apprch \% & 16.1 & 53.3 & 30.6 & 20.2 & 55 & 24.8 & 10.1 & 56.6 & 33.3 & 0 & 0 & 0 & \\
\hline Total \% & 4.3 & 14.1 & 8.1 & 5.7 & 15.4 & 7 & 4.6 & 25.8 & 15.1 & 0 & 0 & 0 & \\
\hline Cars & 49 & 161 & 92 & 65 & 176 & 80 & 53 & 293 & 174 & 0 & 0 & 0 & 1143 \\
\hline \% Cars & 100 & 99.4 & 98.9 & 100 & 99.4 & 100 & 100 & 99 & 100 & 0 & 0 & 0 & 99.5 \\
\hline Trucks & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 6 \\
\hline \% Trucks & 0 & 0.6 & 1.1 & 0 & 0.6 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Main St From North} & \multicolumn{4}{|c|}{Epping St From East} & \multicolumn{4}{|c|}{Main St From South} & \multicolumn{4}{|c|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Int. Total \\
\hline \multicolumn{18}{|l|}{Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1} \\
\hline Peak Hour for E & ire Int & sectio & Begins & at 04:30 & & & & & & & & & & & & & \\
\hline 04:30 PM & 8 & 33 & 21 & 62 & 5 & 35 & 8 & 48 & 4 & 38 & 25 & 67 & 0 & 0 & 0 & 0 & 177 \\
\hline 04:45 PM & 12 & 17 & 8 & 37 & 13 & 16 & 15 & 44 & 5 & 45 & 29 & 79 & 0 & 0 & 0 & 0 & 160 \\
\hline 05:00 PM & 8 & 18 & 9 & 35 & 8 & 23 & 14 & 45 & 9 & 36 & 24 & 69 & 0 & 0 & 0 & 0 & 149 \\
\hline 05:15 PM & 4 & 22 & 12 & 38 & 6 & 21 & 8 & 35 & 10 & 37 & 19 & 66 & 0 & 0 & 0 & 0 & 139 \\
\hline Total Volume & 32 & 90 & 50 & 172 & 32 & 95 & 45 & 172 & 28 & 156 & 97 & 281 & 0 & 0 & 0 & 0 & 625 \\
\hline \% App. Total & 18.6 & 52.3 & 29.1 & & 18.6 & 55.2 & 26.2 & & 10 & 55.5 & 34.5 & & 0 & 0 & 0 & & \\
\hline PHF & . 667 & . 682 & . 595 & . 694 & . 615 & . 679 & . 750 & 896 & . 700 & . 867 & . 836 & . 889 & . 000 & . 000 & . 000 & . 000 & 883 \\
\hline Cars & 32 & 89 & 50 & 171 & 32 & 95 & 45 & 172 & 28 & 156 & 97 & 281 & 0 & 0 & 0 & 0 & 624 \\
\hline \% Cars & 100 & 98.9 & 100 & 99.4 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 0 & 0 & 0 & 0 & 99.8 \\
\hline Trucks & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline \% Trucks & 0 & 1.1 & 0 & 0.6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.2 \\
\hline
\end{tabular}

\section*{Accurate Counts}

978-664-2565

N/S Street: Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name: 94190002
Site Code : 94190002
Start Date: 2/8/2023
Page No : 2


Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{04:30 PM} & \multicolumn{4}{|l|}{04:30 PM} & \multicolumn{4}{|l|}{04:30 PM} & \multicolumn{4}{|l|}{04:00 PM} \\
\hline +0 mins. & 8 & 33 & 21 & 62 & 5 & 35 & 8 & 48 & 4 & 38 & 25 & 67 & 0 & 0 & 0 & 0 \\
\hline +15 mins. & 12 & 17 & 8 & 37 & 13 & 16 & 15 & 44 & 5 & 45 & 29 & 79 & 0 & 0 & 0 & 0 \\
\hline +30 mins. & 8 & 18 & 9 & 35 & 8 & 23 & 14 & 45 & 9 & 36 & 24 & 69 & 0 & 0 & 0 & 0 \\
\hline +45 mins. & 4 & 22 & 12 & 38 & 6 & 21 & 8 & 35 & 10 & 37 & 19 & 66 & 0 & 0 & 0 & 0 \\
\hline Total Volume & 32 & 90 & 50 & 172 & 32 & 95 & 45 & 172 & 28 & 156 & 97 & 281 & 0 & 0 & 0 & 0 \\
\hline \% App. Total & 18.6 & 52.3 & 29.1 & & 18.6 & 55.2 & 26.2 & & 10 & 55.5 & 34.5 & & 0 & 0 & 0 & \\
\hline PHF & . 667 & . 682 & . 595 & . 694 & . 615 & . 679 & . 750 & . 896 & . 700 & . 867 & . 836 & . 889 & . 000 & . 000 & . 000 & . 000 \\
\hline Cars & 32 & 89 & 50 & 171 & 32 & 95 & 45 & 172 & 28 & 156 & 97 & 281 & 0 & 0 & 0 & 0 \\
\hline \% Cars & 100 & 98.9 & 100 & 99.4 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 0 & 0 & 0 & 0 \\
\hline Trucks & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \% Trucks & 0 & 1.1 & 0 & 0.6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Accurate Counts}

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name : 94190002
Site Code : 94190002
Start Date : 2/8/2023
Page No : 3


\title{
Accurate Counts
}

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name: 94190002
Site Code : 94190002
Start Date: 2/8/2023
Page No : 4

Groups Printed- Cars
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Main St From North} & \multicolumn{3}{|c|}{Epping St From East} & \multicolumn{3}{|c|}{Main St From South} & \multicolumn{3}{|l|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & Right & Int. Total \\
\hline 04:00 PM & 3 & 17 & 11 & 5 & 23 & 6 & 9 & 31 & 16 & 0 & 0 & 0 & 121 \\
\hline 04:15 PM & 4 & 19 & 11 & 4 & 16 & 5 & 3 & 31 & 20 & 0 & 0 & 0 & 113 \\
\hline 04:30 PM & 8 & 32 & 21 & 5 & 35 & 8 & 4 & 38 & 25 & 0 & 0 & 0 & 176 \\
\hline 04:45 PM & 12 & 17 & 8 & 13 & 16 & 15 & 5 & 45 & 29 & 0 & 0 & 0 & 160 \\
\hline Total & 27 & 85 & 51 & 27 & 90 & 34 & 21 & 145 & 90 & 0 & 0 & 0 & 570 \\
\hline 05:00 PM & 8 & 18 & 9 & 8 & 23 & 14 & 9 & 36 & 24 & 0 & 0 & 0 & 149 \\
\hline 05:15 PM & 4 & 22 & 12 & 6 & 21 & 8 & 10 & 37 & 19 & 0 & 0 & 0 & 139 \\
\hline 05:30 PM & 6 & 19 & 10 & 14 & 19 & 14 & 5 & 30 & 23 & 0 & 0 & 0 & 140 \\
\hline 05:45 PM & 4 & 17 & 10 & 10 & 23 & 10 & 8 & 45 & 18 & 0 & 0 & 0 & 145 \\
\hline Total & 22 & 76 & 41 & 38 & 86 & 46 & 32 & 148 & 84 & 0 & 0 & 0 & 573 \\
\hline Grand Total & 49 & 161 & 92 & 65 & 176 & 80 & 53 & 293 & 174 & 0 & 0 & 0 & 1143 \\
\hline Apprch \% & 16.2 & 53.3 & 30.5 & 20.2 & 54.8 & 24.9 & 10.2 & 56.3 & 33.5 & 0 & 0 & 0 & \\
\hline Total \% & 4.3 & 14.1 & 8 & 5.7 & 15.4 & 7 & 4.6 & 25.6 & 15.2 & 0 & 0 & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Main St From North} & \multicolumn{4}{|c|}{Epping St From East} & \multicolumn{4}{|c|}{Main St From South} & \multicolumn{4}{|c|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Int. Total \\
\hline \multicolumn{18}{|l|}{\multirow[t]{2}{*}{Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 04:30 PM}} \\
\hline & & & & & & & & & & & & & & & & & \\
\hline 04:30 PM & 8 & 32 & 21 & 61 & 5 & 35 & 8 & 48 & 4 & 38 & 25 & 67 & 0 & 0 & 0 & 0 & 176 \\
\hline 04:45 PM & 12 & 17 & 8 & 37 & 13 & 16 & 15 & 44 & 5 & 45 & 29 & 79 & 0 & 0 & 0 & 0 & 160 \\
\hline 05:00 PM & 8 & 18 & 9 & 35 & 8 & 23 & 14 & 45 & 9 & 36 & 24 & 69 & 0 & 0 & 0 & 0 & 149 \\
\hline 05:15 PM & 4 & 22 & 12 & 38 & 6 & 21 & 8 & 35 & 10 & 37 & 19 & 66 & 0 & 0 & 0 & 0 & 139 \\
\hline Total Volume & 32 & 89 & 50 & 171 & 32 & 95 & 45 & 172 & 28 & 156 & 97 & 281 & 0 & 0 & 0 & 0 & 624 \\
\hline \% App. Total & 18.7 & 52 & 29.2 & & 18.6 & 55.2 & 26.2 & & 10 & 55.5 & 34.5 & & 0 & 0 & 0 & & \\
\hline PHF & . 667 & . 695 & . 595 & . 701 & . 615 & . 679 & . 750 & . 896 & . 700 & . 867 & . 836 & . 889 & . 000 & . 000 & . 000 & . 000 & 886 \\
\hline
\end{tabular}

\section*{Accurate Counts}

978-664-2565

N/S Street : Main Street E/W Street : Epping St / Old Manchester Rd City/State : Raymond, NH
Weather : Clear

File Name: 94190002
Site Code : 94190002
Start Date: 2/8/2023
Page No : 5


Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{04:30 PM} & \multicolumn{4}{|l|}{04:30 PM} & \multicolumn{4}{|l|}{04:30 PM} & \multicolumn{4}{|l|}{04:00 PM} \\
\hline +0 mins. & 8 & 32 & 21 & 61 & 5 & 35 & 8 & 48 & 4 & 38 & 25 & 67 & 0 & 0 & 0 & 0 \\
\hline +15 mins. & 12 & 17 & 8 & 37 & 13 & 16 & 15 & 44 & 5 & 45 & 29 & 79 & 0 & 0 & 0 & 0 \\
\hline +30 mins. & 8 & 18 & 9 & 35 & 8 & 23 & 14 & 45 & 9 & 36 & 24 & 69 & 0 & 0 & 0 & 0 \\
\hline +45 mins. & 4 & 22 & 12 & 38 & 6 & 21 & 8 & 35 & 10 & 37 & 19 & 66 & 0 & 0 & 0 & 0 \\
\hline Total Volume & 32 & 89 & 50 & 171 & 32 & 95 & 45 & 172 & 28 & 156 & 97 & 281 & 0 & 0 & 0 & 0 \\
\hline \% App. Total & 18.7 & 52 & 29.2 & & 18.6 & 55.2 & 26.2 & & 10 & 55.5 & 34.5 & & 0 & 0 & 0 & \\
\hline PHF & . 667 & . 695 & . 595 & . 701 & . 615 & . 679 & . 750 & . 896 & . 700 & . 867 & . 836 & . 889 & . 000 & . 000 & . 000 & . 000 \\
\hline
\end{tabular}

\section*{Accurate Counts}

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name : 94190002
Site Code : 94190002
Start Date : 2/8/2023
Page No : 6


\section*{Accurate Counts}

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name : 94190002
Site Code : 94190002
Start Date: 2/8/2023
Page No : 7

Groups Printed- Trucks
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Main St From North} & \multicolumn{3}{|c|}{Epping St From East} & \multicolumn{3}{|c|}{\begin{tabular}{l}
Main St \\
From South
\end{tabular}} & \multicolumn{3}{|l|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & Right & Int. Total \\
\hline 04:00 PM & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 4 \\
\hline 04:15 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 04:30 PM & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 04:45 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 5 \\
\hline 05:00 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 05:15 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 05:30 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 05:45 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline Total & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline Grand Total & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 6 \\
\hline Apprch \% & 0 & 50 & 50 & 0 & 100 & 0 & 0 & 100 & 0 & 0 & 0 & 0 & \\
\hline Total \% & 0 & 16.7 & 16.7 & 0 & 16.7 & 0 & 0 & 50 & 0 & 0 & 0 & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Main St From North} & \multicolumn{4}{|c|}{Epping St From East} & \multicolumn{4}{|c|}{Main St From South} & \multicolumn{4}{|c|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Int. Total \\
\hline \multicolumn{18}{|l|}{\multirow[t]{2}{*}{Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 04:00 PM}} \\
\hline & & & & & & & & & & & & & & & & & \\
\hline 04:00 PM & 0 & 0 & 1 & & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 4 \\
\hline 04:15 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 04:30 PM & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 04:45 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total Volume & 0 & 1 & 1 & 2 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 5 \\
\hline \% App. Total & 0 & 50 & 50 & & 0 & 100 & 0 & & 0 & 100 & 0 & & 0 & 0 & 0 & & \\
\hline PHF & . 000 & . 250 & . 250 & . 500 & . 000 & . 250 & . 000 & . 250 & . 000 & . 250 & . 000 & . 250 & . 000 & . 000 & . 000 & . 000 & . 313 \\
\hline
\end{tabular}

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name: 94190002
Site Code : 94190002
Start Date: 2/8/2023
Page No : 8


Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{04:00 PM} & \multicolumn{4}{|l|}{04:00 PM} & \multicolumn{4}{|l|}{04:00 PM} & \multicolumn{4}{|l|}{04:00 PM} \\
\hline +0 mins. & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & \\
\hline +15 mins. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline +30 mins. & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline +45 mins. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline Total Volume & 0 & 1 & 1 & 2 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 \\
\hline \% App. Total & 0 & 50 & 50 & & 0 & 100 & 0 & & 0 & 100 & 0 & & 0 & 0 & 0 & \\
\hline PHF & . 000 & . 250 & 250 & . 500 & . 000 & . 250 & 000 & . 250 & . 000 & . 250 & 000 & . 250 & . 000 & 000 & . 000 & . 000 \\
\hline
\end{tabular}

\title{
Accurate Counts
}

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name : 94190002
Site Code : 94190002
Start Date : 2/8/2023
Page No : 9


\section*{Accurate Counts}

978-664-2565
N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear
File Name : 94190002
Site Code : 94190002
Start Date: 2/8/2023
Page No : 10
Groups Printed- Bikes Peds
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Main St From North} & \multicolumn{4}{|c|}{Epping St From East} & \multicolumn{4}{|c|}{Main St From South} & \multicolumn{4}{|c|}{Old Manchester Rd From West} & & & \\
\hline Start Time & Left & Thru & Right & Peds & Exclu. Total & Inclu. Total & Int. Total \\
\hline 04:00 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline 04:15 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 04:30 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 \\
\hline 04:45 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline Total & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 05:00 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 \\
\hline 05:15 PM & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 0 & 7 \\
\hline 05:30 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 05:45 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 9 & 0 & 9 \\
\hline Grand Total & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 11 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 12 & 1 & 13 \\
\hline Apprch \% & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 100 & 0 & & 0 & 0 & 0 & & & & \\
\hline Total \% & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 100 & 0 & & 0 & 0 & 0 & & 92.3 & 7.7 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Main St From North} & \multicolumn{4}{|c|}{Epping St From East} & \multicolumn{4}{|c|}{Main St From South} & \multicolumn{4}{|c|}{Old Manchester Rd From West} & \\
\hline Start Time & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Left & Thru & Right & App. Total & Int. Total \\
\hline \multicolumn{18}{|l|}{\multirow[t]{2}{*}{Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 04:00 PM}} \\
\hline & & & & & & & & & & & & & & & & & \\
\hline 04:00 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline 04:15 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 04:30 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 04:45 PM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total Volume & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline \% App. Total & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 100 & 0 & & 0 & 0 & 0 & & \\
\hline PHF & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 250 & . 000 & . 250 & . 000 & . 000 & . 000 & . 000 & 250 \\
\hline
\end{tabular}

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name: 94190002
Site Code : 94190002
Start Date: 2/8/2023
Page No : 11


Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{04:00 PM} & \multicolumn{4}{|l|}{04:00 PM} & \multicolumn{4}{|l|}{04:00 PM} & \multicolumn{4}{|l|}{04:00 PM} \\
\hline +0 mins. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline +15 mins. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline +30 mins. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline +45 mins. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total Volume & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline \% App. Total & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 100 & 0 & & 0 & 0 & 0 & \\
\hline PHF & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 000 & . 250 & . 000 & . 250 & . 000 & . 000 & . 000 & . 000 \\
\hline
\end{tabular}

\title{
Accurate Counts
}

978-664-2565

N/S Street : Main Street
E/W Street : Epping St / Old Manchester Rd
City/State : Raymond, NH
Weather : Clear

File Name : 94190002
Site Code : 94190002
Start Date : 2/8/2023
Page No : 12


Year 2019 Monthly Data
\begin{tabular}{ll} 
Town: & Candia \\
Station: & 02071090 \\
Location: & NH 101 at Raymond TL (Exit 3-4) \\
Group: & 3
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Month & ADT & Adjustment to Average & Adjustment to Peak \\
\hline January & 36,493 & 1.21 & 1.43 \\
\hline February & 38,272 & 1.15 & 1.37 \\
\hline March & 39,851 & 1.11 & 1.31 \\
\hline April & 42,655 & 1.03 & 1.23 \\
\hline May & 46,412 & 0.95 & 1.13 \\
\hline June & 49,295 & 0.89 & 1.06 \\
\hline July & 51,629 & 0.85 & 1.01 \\
\hline August & 52,308 & 0.84 & 1.00 \\
\hline September & 47,294 & 0.93 & 1.11 \\
\hline October & 45,996 & 0.96 & 1.14 \\
\hline November & 41,476 & 1.06 & 1.26 \\
\hline December & 36,831 & 1.20 & 1.42 \\
\hline
\end{tabular}

AADT: 44,064
Peak Month: 52,308

\section*{COVID ADJUSTMENT}

2019 Average Count Data - Sta. 02071090
March ADT: 39,851
2023 Average Count Data - Sta. 02071090
August ADT: 37,859

\section*{COVID Adjustment}
\(1-\frac{39,851}{37,859}=-0.0526\)
5.3\% below Pre-COVID conditions

New Hampshire DOT
02071090: Monthly Hourly Volume for March 2019
\begin{tabular}{llll} 
Location ID: & 02071090 & Seasonal Factor Group: & 03 \\
County: & ROCKINGHAM & Daily Factor Group: & \\
Functional Class & 2 & Axle Factor Group: & E \\
Location: & NH 101 Crossover & Growth Factor Group: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0:00 & 1:00 & 2:00 & 3:00 & 4:00 & 5:00 & 6:00 & 7:00 & 8:00 & 9:00 & 10:00 & 11:00 & 12:00 & 13:00 & 14:00 & 15:00 & 16:00 & 17:00 & 18:00 & 19:00 & 20:00 & 21:00 & 22:00 & 23:00 & total & QC Status \\
\hline 1 & 196 & 122 & 143 & 236 & 474 & 1186 & 2469 & 3349 & 2658 & 2148 & 2264 & 2282 & 2498 & 2704 & 3174 & 3686 & 4328 & 4171 & 2718 & 1633 & 1185 & 943 & 779 & 449 & 45795 & Accepted \\
\hline 2 & 290 & 196 & 142 & 136 & 267 & 392 & 758 & 1130 & 1325 & 1559 & 1939 & 2033 & 2118 & 2049 & 2089 & 2206 & 2124 & 2014 & 1482 & 1086 & 1037 & 755 & 543 & 343 & 28013 & Accepted \\
\hline 3 & 247 & 143 & 99 & 75 & 194 & 247 & 490 & 821 & 1118 & 1614 & 1934 & 2320 & 2605 & 2626 & 2553 & 2471 & 2531 & 2336 & 1708 & 1233 & 750 & 466 & 251 & 163 & 28995 & Accepted \\
\hline 4 & 139 & 115 & 91 & 126 & 361 & 660 & 1330 & 1918 & 1712 & 1549 & 1386 & 1289 & 1372 & 1506 & 1789 & 2234 & 2658 & 2857 & 1620 & 940 & 711 & 575 & 351 & 250 & 27539 & Accepted \\
\hline 5 & 163 & 131 & 128 & 237 & 534 & 1395 & 3076 & 4207 & 3444 & 2185 & 1972 & 1920 & 1993 & 2048 & 2414 & 3431 & 3894 & 3993 & 2178 & 1290 & 990 & 776 & 406 & 282 & 43087 & Accepted \\
\hline 6 & 217 & 101 & 143 & 217 & 503 & 1335 & 2965 & 4077 & 3307 & 2238 & 1917 & 1992 & 1896 & 2086 & 2548 & 3299 & 4116 & 3956 & 2165 & 1388 & 1001 & 851 & 537 & 323 & 43178 & Accepted \\
\hline 7 & 208 & 121 & 141 & 222 & 494 & 1319 & 2968 & 4117 & 3327 & 2271 & 1959 & 2079 & 2109 & 2153 & 2737 & 3445 & 4255 & 4101 & 2400 & 1403 & 1128 & 871 & 525 & 355 & 44708 & Accepted \\
\hline 8 & 232 & 140 & 144 & 251 & 474 & 1231 & 2667 & 3925 & 3079 & 2240 & 2096 & 2284 & 2491 & 2614 & 3278 & 4000 & 4640 & 4454 & 2798 & 1628 & 1227 & 945 & 706 & 433 & 47977 & Accepted \\
\hline 9 & 274 & 182 & 146 & 156 & 303 & 493 & 857 & 1411 & 1695 & 2188 & 2580 & 2836 & 2959 & 2874 & 3085 & 3148 & 3097 & 3132 & 2115 & 1524 & 1228 & 1019 & 738 & 449 & 38489 & Accepted \\
\hline 10 & 285 & 201 & 58 & 56 & 194 & 254 & 384 & 655 & 845 & 1018 & 1072 & 1126 & 1220 & 1324 & 1451 & 1548 & 1482 & 1467 & 1200 & 833 & 634 & 413 & 291 & 175 & 18186 & Accepted \\
\hline 11 & 142 & 88 & 112 & 202 & 557 & 1233 & 2655 & 3915 & 3310 & 2244 & 1837 & 1926 & 1978 & 1968 & 2415 & 3193 & 3973 & 3958 & 2050 & 1307 & 933 & 736 & 376 & 286 & 41394 & Accepted \\
\hline 12 & 177 & 115 & 107 & 236 & 526 & 1280 & 2771 & 4127 & 3362 & 2270 & 2036 & 2000 & 1985 & 2062 & 2538 & 3329 & 3935 & 3981 & 2287 & 1289 & 961 & 761 & 449 & 291 & 42875 & Accepted \\
\hline 13 & 187 & 116 & 123 & 242 & 501 & 1326 & 2781 & 4098 & 3380 & 2136 & 1941 & 2085 & 2054 & 2148 & 2581 & 3375 & 4217 & 4178 & 2272 & 1271 & 980 & 936 & 508 & 310 & 43746 & Accepted \\
\hline 14 & 182 & 121 & 161 & 250 & 486 & 1334 & 2864 & 4147 & 3364 & 2297 & 2068 & 2117 & 2199 & 2269 & 2779 & 3470 & 4151 & 4111 & 2317 & 1432 & 1072 & 781 & 563 & 341 & 44876 & Accepted \\
\hline 15 & 202 & 160 & 153 & 255 & 475 & 1221 & 2587 & 3743 & 3095 & 2218 & 2090 & 2181 & 2324 & 2637 & 3187 & 3899 & 4498 & 4239 & 2621 & 1663 & 1218 & 971 & 692 & 497 & 46826 & Accepted \\
\hline 16 & 318 & 172 & 145 & 138 & 275 & 399 & 793 & 1385 & 1776 & 2067 & 2585 & 2753 & 2777 & 2681 & 2912 & 2839 & 2804 & 2542 & 1838 & 1486 & 1309 & 955 & 727 & 464 & 36140 & Accepted \\
\hline 17 & 275 & 136 & 107 & 94 & 198 & 231 & 449 & 816 & 1018 & 1525 & 2147 & 2468 & 2800 & 2577 & 2740 & 2670 & 2612 & 2406 & 1856 & 1419 & 923 & 609 & 437 & 247 & 30760 & Accepted \\
\hline 18 & 160 & 91 & 129 & 209 & 552 & 1331 & 2889 & 4058 & 3312 & 2249 & 1991 & 1925 & 1975 & 2011 & 2422 & 3119 & 3886 & 3923 & 2075 & 1266 & 880 & 618 & 371 & 278 & 41720 & Accepted \\
\hline 19 & 186 & 111 & 118 & 264 & 505 & 1337 & 2926 & 4172 & 3447 & 2731 & 2015 & 1994 & 2025 & 2090 & 2455 & 3276 & 3965 & 4022 & 2394 & 1297 & 1112 & 770 & 441 & 288 & 43941 & Accepted \\
\hline 20 & 169 & 137 & 138 & 201 & 470 & 1252 & 2670 & 4268 & 3424 & 2382 & 2033 & 2062 & 2059 & 2163 & 2609 & 3498 & 4062 & 4244 & 2462 & 1403 & 1118 & 849 & 530 & 287 & 44490 & Accepted \\
\hline 21 & 206 & 140 & 142 & 222 & 489 & 1263 & 2744 & 3938 & 3549 & 2345 & 2134 & 2070 & 2153 & 2186 & 2636 & 3376 & 4016 & 4221 & 2383 & 1464 & 1148 & 797 & 544 & 322 & 44488 & Accepted \\
\hline 22 & 226 & 145 & 131 & 211 & 444 & 1135 & 2483 & 3605 & 3092 & 2191 & 1955 & 2126 & 2233 & 2441 & 2875 & 3689 & 4256 & 4202 & 2598 & 1598 & 1144 & 1000 & 594 & 428 & 44802 & Accepted \\
\hline 23 & 305 & 188 & 144 & 128 & 245 & 425 & 879 & 1289 & 1717 & 2053 & 2334 & 2629 & 2750 & 2740 & 2713 & 2815 & 2809 & 2495 & 1957 & 1517 & 1212 & 1007 & 766 & 509 & 35626 & Accepted \\
\hline 24 & 290 & 162 & 111 & 91 & 197 & 277 & 543 & 863 & 1196 & 1800 & 2297 & 2941 & 3063 & 2921 & 2943 & 3079 & 3016 & 2640 & 2017 & 1436 & 1024 & 584 & 380 & 229 & 34100 & Accepted \\
\hline 25 & 158 & 92 & 96 & 191 & 543 & 1257 & 2780 & 4182 & 3390 & 2201 & 1998 & 1870 & 1980 & 1995 & 2336 & 3218 & 3804 & 3940 & 2325 & 1271 & 925 & 678 & 417 & 280 & 41927 & Accepted \\
\hline 26 & 179 & 125 & 129 & 217 & 482 & 1248 & 2772 & 4283 & 3557 & 2260 & 1977 & 1970 & 1984 & 2025 & 2524 & 3255 & 3993 & 4054 & 2385 & 1327 & 1044 & 765 & 447 & 301 & 43303 & Accepted \\
\hline 27 & 179 & 121 & 144 & 185 & 463 & 1252 & 2824 & 4260 & 3482 & 2330 & 1996 & 2013 & 2006 & 2114 & 2609 & 3284 & 4088 & 4249 & 2428 & 1479 & 1178 & 879 & 500 & 318 & 44381 & Accepted \\
\hline 28 & 205 & 123 & 122 & 220 & 495 & 1308 & 2772 & 4154 & 3639 & 2412 & 2106 & 2138 & 2201 & 2282 & 2734 & 3473 & 4197 & 4302 & 2502 & 1592 & 1142 & 917 & 575 & 321 & 45932 & Accepted \\
\hline 29 & 227 & 132 & 127 & 215 & 472 & 1212 & 2635 & 3911 & 3205 & 2459 & 2097 & 2293 & 2463 & 2551 & 3099 & 3826 & 4615 & 4139 & 2642 & 1728 & 1179 & 966 & 839 & 501 & 47533 & Accepted \\
\hline 30 & 295 & 175 & 149 & 159 & 285 & 403 & 788 & 1503 & 1799 & 2215 & 2633 & 2953 & 2992 & 2924 & 3173 & 3196 & 3131 & 2914 & 2135 & 1717 & 1218 & 1259 & 829 & 502 & 39347 & Accepted \\
\hline 31 & 297 & 231 & 111 & 87 & 192 & 218 & 423 & 929 & 1153 & 1791 & 2415 & 2641 & 2861 & 2763 & 2756 & 2784 & 2482 & 2151 & 1741 & 1210 & 875 & 514 & 304 & 269 & 31198 & Accepted \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & 39850.71 & March 2019 ADT \\
\hline
\end{tabular}

\section*{New Hampshire DOT}

02071090: Monthly Hourly Volume for March 2023


VEHICLE TRAVEL SPEED DATA

Location : Main Street
96430001
Location : at \#110 Main Street
City/State: Raymond, NH
Direction: EB


Location : Main Street
96430001
Location: at \#110 Main Street
City/State: Raymond, NH
Direction: EB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(3 / 8 / 2023\)
Time & \[
\begin{array}{r}
0-3 \\
\text { MPH } \\
\hline
\end{array}
\] & \[
\begin{gathered}
>3-6 \\
\mathrm{MPH}
\end{gathered}
\] & \[
\begin{gathered}
>6-9 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>9-12 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>12- \\
15 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>15- \\
18 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>18- \\
21 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>21- \\
24 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>24- \\
27 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>27- \\
30 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>30- \\
33 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>33- \\
36 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>36- \\
39 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{array}{r}
>39 \\
\mathrm{MPH} \\
\hline
\end{array}
\] & Total \\
\hline 12:00 AM & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
\hline 1:00 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 2 \\
\hline 2:00 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\
\hline 3:00 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 5 \\
\hline 4:00 & 0 & 0 & 0 & 0 & 2 & 7 & 4 & 6 & 3 & 3 & 0 & 0 & 0 & 0 & 25 \\
\hline 5:00 & 0 & 0 & 0 & 1 & 3 & 4 & 13 & 7 & 9 & 3 & 2 & 0 & 0 & 0 & 42 \\
\hline 6:00 & 0 & 0 & 0 & 0 & 1 & 16 & 21 & 16 & 12 & 18 & 6 & 1 & 2 & 1 & 94 \\
\hline 7:00 & 0 & 0 & 4 & 3 & 2 & 15 & 21 & 17 & 23 & 14 & 10 & 5 & 2 & 0 & 116 \\
\hline 8:00 & 0 & 0 & 0 & 0 & 0 & 9 & 15 & 19 & 26 & 6 & 2 & 0 & 0 & 1 & 78 \\
\hline 9:00 & 0 & 0 & 0 & 1 & 0 & 7 & 15 & 13 & 14 & 6 & 2 & 1 & 1 & 0 & 60 \\
\hline 10:00 & 0 & 0 & 0 & 0 & 1 & 9 & 7 & 12 & 12 & 9 & 2 & 0 & 0 & 0 & 52 \\
\hline 11:00 & 0 & 0 & 0 & 1 & 5 & 8 & 17 & 14 & 15 & 5 & 6 & 0 & 1 & 0 & 72 \\
\hline 12:00 PM & 0 & 0 & 0 & 1 & 2 & 12 & 21 & 11 & 12 & 8 & 6 & 0 & 1 & 0 & 74 \\
\hline 1:00 & 0 & 0 & 0 & 0 & 6 & 8 & 13 & 14 & 14 & 4 & 1 & 1 & 0 & 0 & 61 \\
\hline 2:00 & 0 & 0 & 3 & 0 & 6 & 5 & 38 & 21 & 12 & 10 & 4 & 0 & 1 & 0 & 100 \\
\hline 3:00 & 0 & 0 & 2 & 1 & 5 & 11 & 20 & 14 & 22 & 13 & 7 & 2 & 1 & 1 & 99 \\
\hline 4:00 & 0 & 0 & 0 & 0 & 6 & 11 & 19 & 12 & 15 & 13 & 6 & 3 & 0 & 0 & 85 \\
\hline 5:00 & 0 & 0 & 1 & 0 & 7 & 14 & 18 & 23 & 24 & 7 & 3 & 1 & 0 & 0 & 98 \\
\hline 6:00 & 0 & 0 & 0 & 2 & 6 & 9 & 14 & 11 & 5 & 8 & 1 & 0 & 0 & 0 & 56 \\
\hline 7:00 & 0 & 0 & 0 & 1 & 3 & 10 & 8 & 13 & 5 & 2 & 1 & 0 & 0 & 0 & 43 \\
\hline 8:00 & 0 & 0 & 0 & 2 & 5 & 7 & 7 & 6 & 5 & 1 & 0 & 0 & 0 & 0 & 33 \\
\hline 9:00 & 0 & 0 & 0 & 0 & 2 & 4 & 3 & 4 & 3 & 1 & 0 & 0 & 1 & 0 & 18 \\
\hline 10:00 & 0 & 0 & 0 & 1 & 1 & 5 & 2 & 4 & 2 & 0 & 1 & 0 & 0 & 0 & 16 \\
\hline 11:00 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 3 \\
\hline Total & 0 & 0 & 10 & 14 & 64 & 174 & 285 & 238 & 235 & 131 & 60 & 15 & 10 & 3 & 1239 \\
\hline & & & ercentile & 15th & 50th & 85th & 95th & & & & & & & & \\
\hline & & & Speed & 17 & 22 & 28 & 31 & & & & & & & & \\
\hline & Mean & Speed (A & Average) & 22.5 & & & & & & & & & & & \\
\hline & & MPH Pac & Speed & 17-26 & & & & & & & & & & & \\
\hline & & Number & in Pace & 814 & & & & & & & & & & & \\
\hline & & Percent & in Pace & 65.7\% & & & & & & & & & & & \\
\hline & & umber > & 24 MPH & 454 & & & & & & & & & & & \\
\hline & & ercent > & 24 MPH & 36.6\% & & & & & & & & & & & \\
\hline Grand Total & 0 & 0 & 12 & 23 & 136 & 357 & 555 & 495 & 497 & 284 & 112 & 31 & 11 & 6 & 2519 \\
\hline \multirow[t]{8}{*}{Stats} & & & ercentile & 15th & 50th & 85th & 95th & & & & & & & & \\
\hline & & & Speed & 17 & 22 & 28 & 31 & & & & & & & & \\
\hline & Mean & Speed (A & Average) & 22.6 & & & & & & & & & & & \\
\hline & & MPH Pac & Speed & 17-26 & & & & & & & & & & & \\
\hline & & Number & in Pace & 1661 & & & & & & & & & & & \\
\hline & & Percent & in Pace & 65.9\% & & & & & & & & & & & \\
\hline & & umber > & 24 MPH & 941 & & & & & & & & & & & \\
\hline & & ercent > & 24 MPH & 37.4\% & & & & & & & & & & & \\
\hline
\end{tabular}

Location : Main Street
96430001
Location : at \#110 Main Street
City/State: Raymond, NH
Direction: WB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(3 / 7 / 2023\)
Time & \[
\begin{array}{r}
0-3 \\
\text { MPH } \\
\hline
\end{array}
\] & \[
\begin{gathered}
>3-6 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>6-9 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>9-12 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>12- \\
15 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>15- \\
18 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>18- \\
21 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>21- \\
24 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>24- \\
27 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>27- \\
30 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>30- \\
33 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>33- \\
36 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>36- \\
39 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{array}{r}
>39 \\
\mathrm{MPH} \\
\hline
\end{array}
\] & Total \\
\hline 12:00 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & 0 & 0 & 3 \\
\hline 1:00 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & 0 & 0 & 0 & 3 \\
\hline 2:00 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 \\
\hline 3:00 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 4 \\
\hline 4:00 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 2 \\
\hline 5:00 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 4 & 3 & 3 & 6 & 1 & 1 & 0 & 19 \\
\hline 6:00 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 4 & 8 & 13 & 7 & 5 & 0 & 2 & 40 \\
\hline 7:00 & 0 & 0 & 1 & 1 & 7 & 3 & 6 & 12 & 32 & 23 & 18 & 11 & 7 & 1 & 122 \\
\hline 8:00 & 0 & 0 & 0 & 0 & 1 & 2 & 6 & 7 & 23 & 20 & 8 & 3 & 3 & 1 & 74 \\
\hline 9:00 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 14 & 21 & 14 & 7 & 3 & 4 & 1 & 65 \\
\hline 10:00 & 0 & 0 & 1 & 0 & 1 & 1 & 6 & 26 & 16 & 10 & 9 & 3 & 2 & 0 & 75 \\
\hline 11:00 & 0 & 0 & 0 & 0 & 0 & , & 6 & 10 & 12 & 12 & 7 & 4 & 4 & 1 & 57 \\
\hline 12:00 PM & 0 & 0 & 0 & 0 & 0 & 3 & 2 & 10 & 21 & 16 & 11 & 2 & 0 & 0 & 65 \\
\hline 1:00 & 0 & 0 & 0 & 0 & 0 & 2 & 9 & 13 & 18 & 12 & 8 & 6 & 2 & 5 & 75 \\
\hline 2:00 & 0 & 0 & 0 & 0 & 6 & 5 & 6 & 13 & 17 & 20 & 8 & 11 & 2 & 2 & 90 \\
\hline 3:00 & 0 & 0 & 0 & 0 & 0 & 2 & 5 & 20 & 38 & 37 & 16 & 9 & 7 & 3 & 137 \\
\hline 4:00 & 0 & 0 & 0 & 1 & 2 & 2 & 4 & 25 & 38 & 24 & 21 & 8 & 1 & 5 & 131 \\
\hline 5:00 & 0 & 0 & 0 & 1 & 1 & 2 & 6 & 19 & 31 & 25 & 18 & 7 & 6 & 0 & 116 \\
\hline 6:00 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 13 & 25 & 17 & 10 & 2 & 2 & 2 & 73 \\
\hline 7:00 & 0 & 0 & 0 & 0 & 0 & 3 & 4 & 3 & 19 & 9 & 6 & 5 & 3 & 0 & 52 \\
\hline 8:00 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 5 & 11 & 8 & 7 & 2 & 0 & 1 & 35 \\
\hline 9:00 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 6 & 2 & 5 & 1 & 0 & 2 & 0 & 19 \\
\hline 10:00 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 6 \\
\hline 11:00 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 3 & 1 & 3 & 0 & 0 & 1 & 11 \\
\hline Total & 0 & 0 & 2 & 3 & 20 & 28 & 68 & 207 & 345 & 275 & 173 & 83 & 46 & 26 & 1276 \\
\hline \multicolumn{4}{|r|}{Percentile} & 15th & 50th & 85th & 95th & & & & & & & & \\
\hline \multicolumn{4}{|r|}{Speed} & 22 & 27 & 32 & 36 & & & & & & & & \\
\hline \multicolumn{4}{|r|}{Mean Speed (Average)} & 29.3 & & & & & & & & & & & \\
\hline \multicolumn{4}{|r|}{10 MPH Pace Speed} & 21-30 & & & & & & & & & & & \\
\hline \multicolumn{4}{|r|}{Number in Pace} & 881 & & & & & & & & & & & \\
\hline \multicolumn{4}{|r|}{Percent in Pace} & 69.0\% & & & & & & & & & & & \\
\hline \multicolumn{4}{|r|}{Number > 24 MPH} & 948 & & & & & & & & & & & \\
\hline \multicolumn{4}{|r|}{Percent > 24 MPH} & 74.3\% & & & & & & & & & & & \\
\hline
\end{tabular}

Location : Main Street
96430001
Location : at \#110 Main Street
City/State: Raymond, NH
Direction: WB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(3 / 8 / 2023\)
Time & \[
\begin{array}{r}
0-3 \\
\mathrm{MPH} \\
\hline
\end{array}
\] & \[
\begin{gathered}
>3-6 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>6-9 \\
\mathrm{MPH}
\end{gathered}
\] & \[
\begin{gathered}
>9-12 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>12- \\
15 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>15- \\
18 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>18- \\
21 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>21- \\
24 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>24- \\
27 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>27- \\
30 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>30- \\
33 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>33- \\
36 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>36- \\
39 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{aligned}
& >39 \\
& \text { MPH }
\end{aligned}
\] & Total \\
\hline 12:00 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 5 \\
\hline 1:00 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 & 1 & 1 & 1 & 1 & 0 & 8 \\
\hline 2:00 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 4 & 1 & 1 & 0 & 0 & 0 & 9 \\
\hline 3:00 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 4 \\
\hline 4:00 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 4 \\
\hline 5:00 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 3 & 5 & 6 & 1 & 0 & 0 & 0 & 17 \\
\hline 6:00 & 0 & 0 & 0 & 2 & 2 & 0 & 1 & 4 & 12 & 9 & 10 & 2 & 1 & 3 & 46 \\
\hline 7:00 & 0 & 0 & 0 & 2 & 4 & 1 & 5 & 12 & 23 & 27 & 13 & 3 & 6 & 0 & 96 \\
\hline 8:00 & 0 & 0 & 0 & 0 & 3 & 0 & 5 & 4 & 18 & 16 & 18 & 4 & 4 & 2 & 74 \\
\hline 9:00 & 0 & 0 & 0 & 0 & 1 & 0 & 3 & 8 & 13 & 10 & 10 & 1 & 2 & 2 & 50 \\
\hline 10:00 & 0 & 0 & 1 & 0 & 1 & 0 & 3 & 11 & 20 & 12 & 8 & 3 & 2 & 2 & 63 \\
\hline 11:00 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 13 & 20 & 12 & 14 & 7 & 6 & 1 & 76 \\
\hline 12:00 PM & 0 & 0 & 0 & 1 & 0 & 1 & 5 & 9 & 17 & 13 & 8 & 4 & 2 & 2 & 62 \\
\hline 1:00 & 0 & 0 & 1 & 0 & 2 & 0 & 9 & 11 & 18 & 16 & 15 & 5 & 1 & 0 & 78 \\
\hline 2:00 & 0 & 0 & 0 & 1 & 2 & 2 & 4 & 16 & 39 & 25 & 15 & 6 & 2 & 2 & 114 \\
\hline 3:00 & 0 & 0 & 0 & 1 & 1 & 2 & 3 & 21 & 27 & 24 & 14 & 9 & 1 & 4 & 107 \\
\hline 4:00 & 0 & 0 & 0 & 0 & 0 & 3 & 6 & 24 & 29 & 34 & 14 & 11 & 7 & 3 & 131 \\
\hline 5:00 & 0 & 0 & 1 & 3 & 0 & 8 & 9 & 21 & 35 & 34 & 17 & 9 & 2 & 1 & 140 \\
\hline 6:00 & 0 & 0 & 0 & 0 & 2 & 1 & 6 & 14 & 21 & 19 & 9 & 4 & 2 & 1 & 79 \\
\hline 7:00 & 0 & 0 & 0 & 0 & 0 & 0 & 5 & 6 & 20 & 11 & 4 & 1 & 0 & 3 & 50 \\
\hline 8:00 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 6 & 17 & 5 & 7 & 0 & 1 & 1 & 40 \\
\hline 9:00 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 5 & 4 & 6 & 3 & 2 & 0 & 1 & 22 \\
\hline 10:00 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 2 & 2 & 0 & 0 & 0 & 7 \\
\hline 11:00 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 2 \\
\hline Total & 0 & 0 & 3 & 10 & 18 & 21 & 71 & 195 & 350 & 286 & 188 & 73 & 41 & 28 & 1284 \\
\hline & & & ercentile & 15th & 50th & 85th & 95th & & & & & & & & \\
\hline & & & Speed & 22 & 27 & 32 & 36 & & & & & & & & \\
\hline & Mean & Speed (A & verage) & 29.4 & & & & & & & & & & & \\
\hline & & MPH Pac & Speed & 22-31 & & & & & & & & & & & \\
\hline & & Number & in Pace & 892 & & & & & & & & & & & \\
\hline & & Percent & in Pace & 69.5\% & & & & & & & & & & & \\
\hline & & umber > & 24 MPH & 966 & & & & & & & & & & & \\
\hline & & ercent > & 24 MPH & 75.2\% & & & & & & & & & & & \\
\hline Grand Total & 0 & 0 & 5 & 13 & 38 & 49 & 139 & 402 & 695 & 561 & 361 & 156 & 87 & 54 & 2560 \\
\hline \multirow[t]{8}{*}{Stats} & & & ercentile & 15th & 50th & 85th & 95th & & & & & & & & \\
\hline & & & Speed & 22 & 27 & 32 & 36 & & & & & & & & \\
\hline & Mean & Speed (A & verage) & 29.3 & & & & & & & & & & & \\
\hline & & MPH Pac & Speed & 21-30 & & & & & & & & & & & \\
\hline & & Number & in Pace & 1771 & & & & & & & & & & & \\
\hline & & Percent & in Pace & 69.2\% & & & & & & & & & & & \\
\hline & & umber > & 24 MPH & 1914 & & & & & & & & & & & \\
\hline & & ercent > & 24 MPH & 74.8\% & & & & & & & & & & & \\
\hline
\end{tabular}

City/State: Raymond, NH
Direction: Combined
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(3 / 7 / 2023\)
Time & \[
\begin{aligned}
& 0-3 \\
& \mathrm{MPH}
\end{aligned}
\] & \[
\begin{gathered}
>3-6 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>6-9 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>9-12 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>12- \\
15 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>15- \\
18 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>18- \\
21 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>21- \\
24 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>24- \\
27 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>27- \\
30 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>30- \\
33 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>33- \\
36 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>36- \\
39 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{aligned}
& >39 \\
& \mathrm{MPH}
\end{aligned}
\] & Total \\
\hline 12:00 AM & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & 2 & 0 & 1 & 0 & 0 & 6 \\
\hline 1:00 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 0 & 1 & 0 & 0 & 0 & 7 \\
\hline 2:00 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 5 \\
\hline 3:00 & 0 & 0 & 0 & 0 & 2 & 1 & 1 & 0 & 2 & 2 & 0 & 1 & 0 & 0 & 9 \\
\hline 4:00 & 0 & 0 & 0 & 0 & 3 & 9 & 7 & 4 & 4 & 3 & 0 & 0 & 0 & 0 & 30 \\
\hline 5:00 & 0 & 0 & 0 & 0 & 2 & 10 & 14 & 15 & 11 & 5 & 7 & 2 & 2 & 0 & 68 \\
\hline 6:00 & 0 & 0 & 0 & 0 & 2 & 9 & 22 & 19 & 24 & 21 & 15 & 8 & 0 & 2 & 122 \\
\hline 7:00 & 0 & 0 & 1 & 1 & 13 & 15 & 23 & 40 & 64 & 47 & 23 & 13 & 7 & 1 & 248 \\
\hline 8:00 & 0 & 0 & 0 & 0 & 7 & 15 & 25 & 27 & 45 & 32 & 11 & 4 & 3 & 1 & 170 \\
\hline 9:00 & 0 & 0 & 0 & 1 & 4 & 12 & 19 & 26 & 35 & 22 & 7 & 3 & 4 & 1 & 134 \\
\hline 10:00 & 0 & 0 & 2 & 1 & 5 & 5 & 20 & 42 & 23 & 14 & 13 & 3 & 2 & 0 & 130 \\
\hline 11:00 & 0 & 0 & 0 & 0 & 4 & 10 & 20 & 19 & 23 & 18 & 9 & 5 & 4 & 1 & 113 \\
\hline 12:00 PM & 0 & 0 & 0 & 1 & 6 & 15 & 16 & 25 & 34 & 23 & 13 & 3 & 0 & 0 & 136 \\
\hline 1:00 & 0 & 0 & 0 & 0 & 5 & 10 & 22 & 31 & 34 & 20 & 12 & 7 & 2 & 6 & 149 \\
\hline 2:00 & 0 & 0 & 0 & 0 & 10 & 19 & 21 & 26 & 40 & 29 & 11 & 11 & 2 & 3 & 172 \\
\hline 3:00 & 0 & 0 & 0 & 2 & 3 & 14 & 23 & 32 & 64 & 57 & 18 & 12 & 7 & 3 & 235 \\
\hline 4:00 & 0 & 0 & 0 & 3 & 8 & 16 & 21 & 52 & 61 & 43 & 26 & 10 & 1 & 5 & 246 \\
\hline 5:00 & 0 & 0 & 0 & 2 & 7 & 18 & 30 & 34 & 50 & 33 & 23 & 7 & 6 & 1 & 211 \\
\hline 6:00 & 0 & 0 & 0 & 0 & 1 & 8 & 16 & 32 & 36 & 22 & 15 & 2 & 2 & 2 & 136 \\
\hline 7:00 & 0 & 0 & 0 & 0 & 2 & 8 & 8 & 11 & 26 & 16 & 7 & 5 & 3 & 0 & 86 \\
\hline 8:00 & 0 & 0 & 1 & 0 & 4 & 10 & 9 & 13 & 15 & 9 & 7 & 2 & 0 & 1 & 71 \\
\hline 9:00 & 0 & 0 & 0 & 0 & 2 & 5 & 10 & 8 & 5 & 6 & 3 & 0 & 2 & 0 & 41 \\
\hline 10:00 & 0 & 0 & 0 & 0 & 2 & 0 & 4 & 4 & 3 & 1 & 0 & 0 & 0 & 1 & 15 \\
\hline 11:00 & 0 & 0 & 0 & 1 & 0 & 2 & 1 & 2 & 5 & 1 & 3 & 0 & 0 & 1 & 16 \\
\hline Total & 0 & 0 & 4 & 12 & 92 & 211 & 338 & 464 & 607 & 428 & 225 & 99 & 47 & 29 & 2556 \\
\hline \multicolumn{4}{|l|}{Percentile} & 15th & 50th & 85th & 95th & & & & & & & & \\
\hline \multicolumn{4}{|r|}{Speed} & 18 & 25 & 30 & 34 & & & & & & & & \\
\hline \multicolumn{4}{|r|}{Mean Speed (Average)} & 25.9 & & & & & & & & & & & \\
\hline \multicolumn{4}{|r|}{10 MPH Pace Speed} & \[
20-29
\] & & & & & & & & & & & \\
\hline \multicolumn{4}{|r|}{Number in Pace} & \[
1609
\] & & & & & & & & & & & \\
\hline \multicolumn{4}{|r|}{Percent in Pace} & 62.9\% & & & & & & & & & & & \\
\hline \multicolumn{4}{|r|}{Number > 24 MPH} & 1435 & & & & & & & & & & & \\
\hline \multicolumn{4}{|r|}{Percent > 24 MPH} & 56.1\% & & & & & & & & & & & \\
\hline
\end{tabular}

City/State: Raymond, NH
Direction: Combined
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(3 / 8 / 2023\)
Time & \[
\begin{aligned}
& 0-3 \\
& \mathrm{MPH}
\end{aligned}
\] & \[
\begin{gathered}
>3-6 \\
\mathrm{MPH}
\end{gathered}
\] & \[
\begin{gathered}
>6-9 \\
\mathrm{MPH}
\end{gathered}
\] & \[
\begin{gathered}
>9-12 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>12- \\
15 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>15- \\
18 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>18- \\
21 \\
M P H
\end{gathered}
\] & \[
\begin{gathered}
>21- \\
24 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
\hline>24- \\
27 \\
\text { MPH } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
>27- \\
30 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>30- \\
33 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>33- \\
36 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{gathered}
>36- \\
39 \\
\text { MPH }
\end{gathered}
\] & \[
\begin{aligned}
& >39 \\
& \mathrm{MPH}
\end{aligned}
\] & Total \\
\hline 12:00 AM & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 7 \\
\hline 1:00 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & 2 & 1 & 1 & 1 & 1 & 0 & 10 \\
\hline 2:00 & 0 & 0 & 0 & 0 & 0 & 1 & 5 & 2 & 4 & 1 & 1 & 0 & 0 & 0 & 14 \\
\hline 3:00 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 & 2 & 0 & 2 & 1 & 0 & 0 & 9 \\
\hline 4:00 & 0 & 0 & 0 & 0 & 2 & 7 & 4 & 6 & 4 & 5 & 0 & 0 & 1 & 0 & 29 \\
\hline 5:00 & 0 & 0 & 0 & 1 & 3 & 4 & 15 & 10 & 14 & 9 & 3 & 0 & 0 & 0 & 59 \\
\hline 6:00 & 0 & 0 & 0 & 2 & 3 & 16 & 22 & 20 & 24 & 27 & 16 & 3 & 3 & 4 & 140 \\
\hline 7:00 & 0 & 0 & 4 & 5 & 6 & 16 & 26 & 29 & 46 & 41 & 23 & 8 & 8 & 0 & 212 \\
\hline 8:00 & 0 & 0 & 0 & 0 & 3 & 9 & 20 & 23 & 44 & 22 & 20 & 4 & 4 & 3 & 152 \\
\hline 9:00 & 0 & 0 & 0 & 1 & 1 & 7 & 18 & 21 & 27 & 16 & 12 & 2 & 3 & 2 & 110 \\
\hline 10:00 & 0 & 0 & 1 & 0 & 2 & 9 & 10 & 23 & 32 & 21 & 10 & 3 & 2 & 2 & 115 \\
\hline 11:00 & 0 & 0 & 0 & 1 & 5 & 8 & 20 & 27 & 35 & 17 & 20 & 7 & 7 & 1 & 148 \\
\hline 12:00 PM & 0 & 0 & 0 & 2 & 2 & 13 & 26 & 20 & 29 & 21 & 14 & 4 & 3 & 2 & 136 \\
\hline 1:00 & 0 & 0 & 1 & 0 & 8 & 8 & 22 & 25 & 32 & 20 & 16 & 6 & 1 & 0 & 139 \\
\hline 2:00 & 0 & 0 & 3 & 1 & 8 & 7 & 42 & 37 & 51 & 35 & 19 & 6 & 3 & 2 & 214 \\
\hline 3:00 & 0 & 0 & 2 & 2 & 6 & 13 & 23 & 35 & 49 & 37 & 21 & 11 & 2 & 5 & 206 \\
\hline 4:00 & 0 & 0 & 0 & 0 & 6 & 14 & 25 & 36 & 44 & 47 & 20 & 14 & 7 & 3 & 216 \\
\hline 5:00 & 0 & 0 & 2 & 3 & 7 & 22 & 27 & 44 & 59 & 41 & 20 & 10 & 2 & 1 & 238 \\
\hline 6:00 & 0 & 0 & 0 & 2 & 8 & 10 & 20 & 25 & 26 & 27 & 10 & 4 & 2 & 1 & 135 \\
\hline 7:00 & 0 & 0 & 0 & 1 & 3 & 10 & 13 & 19 & 25 & 13 & 5 & 1 & 0 & 3 & 93 \\
\hline 8:00 & 0 & 0 & 0 & 2 & 5 & 10 & 7 & 12 & 22 & 6 & 7 & 0 & 1 & 1 & 73 \\
\hline 9:00 & 0 & 0 & 0 & 0 & 2 & 4 & 4 & 9 & 7 & 7 & 3 & 2 & 1 & 1 & 40 \\
\hline 10:00 & 0 & 0 & 0 & 1 & 1 & 5 & 2 & 4 & 5 & 2 & 3 & 0 & 0 & 0 & 23 \\
\hline 11:00 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 & 1 & 0 & 0 & 0 & 5 \\
\hline Total & 0 & 0 & 13 & 24 & 82 & 195 & 356 & 433 & 585 & 417 & 248 & 88 & 51 & 31 & 2523 \\
\hline & & & ercentile & 15th & 50th & 85th & 95th & & & & & & & & \\
\hline & & & Speed & 19 & 25 & 30 & 34 & & & & & & & & \\
\hline & Mea & Speed & Average) & 26.0 & & & & & & & & & & & \\
\hline & \[
10
\] & MPH Pac & e Speed & 20-29 & & & & & & & & & & & \\
\hline & & Number & in Pace & 1552 & & & & & & & & & & & \\
\hline & & Percen & in Pace & 61.5\% & & & & & & & & & & & \\
\hline & & umber > & 24 MPH & 1420 & & & & & & & & & & & \\
\hline & & ercent > & 24 MPH & 56.3\% & & & & & & & & & & & \\
\hline Grand Total & 0 & 0 & 17 & 36 & 174 & 406 & 694 & 897 & 1192 & 845 & 473 & 187 & 98 & 60 & 5079 \\
\hline \multirow[t]{8}{*}{Stats} & & & ercentile & 15th & 50th & 85th & 95th & & & & & & & & \\
\hline & & & Speed & 19 & 25 & 30 & 34 & & & & & & & & \\
\hline & Mean & Speed & Average) & 26.0 & & & & & & & & & & & \\
\hline & & MPH Pac & e Speed & 20-29 & & & & & & & & & & & \\
\hline & & Numbe & in Pace & 3160 & & & & & & & & & & & \\
\hline & & Percen & in Pace & 62.2\% & & & & & & & & & & & \\
\hline & & umber > & \[
24 \text { MPH }
\] & \[
2855
\] & & & & & & & & & & & \\
\hline & & ercent > & 24 MPH & 56.2\% & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{General Background Traffic Growth - Daily Traffic Volumes}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline CITY/TOWN & ROUTE/STREET & LOCATION & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & 2017 & 2018 & 2019 & Annual Growth \\
\hline Raymond & NH Route 101 & Exit 4 EB Off-Ramp & & & & & & & 1,200 & 1,224 & 1,248 & 1,267 & 1,282 & 1.67\% \\
\hline Raymond & NH Route 101 & Exit 4 WB Off-Ramp & & & & & & & 1,100 & 1,122 & 1,144 & 1,014 & 1,026 & -1.55\% \\
\hline Raymond & NH Route 101 & Exit 4 EB On-Ramp & & & & & & & 1,300 & 1,326 & 1,353 & 1,186 & 1,200 & -1.78\% \\
\hline Raymond & NH Route 101 & Exit 4 WB On-Ramp & & & & & & & 1,300 & 1,326 & 1,353 & 1,456 & 1,473 & 3.20\% \\
\hline Raymond & Scribner Road & east of Gile Road & & & & & 1,600 & 1,635 & 1,684 & 1,661 & 1,694 & 1,725 & 1,533 & -0.58\% \\
\hline Raymond & Old Manchester Road & west of Wight Street & & & & & & & 2,900 & 2,958 & 3,017 & 3,061 & 3,098 & 1.67\% \\
\hline Raymond & Main Street & over Lamprey River & & & & & 3,500 & 3,577 & 3,684 & 3,687 & 3,761 & 3,836 & 3,432 & -0.21\% \\
\hline Raymond & NH route 101 & between exits 4 and 5 & & & & & & & 41,000 & 41,820 & 42,656 & 43,951 & 44,478 & 2.06\% \\
\hline Raymond & Langford Road & over Lamprey River & & & & & 1,100 & 1,124 & 1,158 & 1,359 & 1,386 & 1,414 & 1,192 & 1.81\% \\
\hline
\end{tabular}


Industrial Drive Weekday Morning Peak-Hour Traffic Volumes


Industrial Drive Weekday Evening Peak-Hour Traffic Volumes


Weekday Morning Peak-Hour Traffic Volumes



Not To Scale
Figure A-5
Vanasse \&
Proposed Residential Development Batchelder Road Weekday Morning Peak-Hour Traffic Volumes







AIG Graph Look Up




\section*{ITETripGen Web-based App \\ AIIGraph Look Up}

TTETripGen Web-based App

ก Graph Look Up
How to Use ITETripGen

Trip Generation Manual, 11th Ed
Trip Generation Manual, 11th Ed \(v\)

221
LAND USE GROUP:
(200-299) Residentia
LAND USE:
221 - Multifamily Housing (Mid-Rise) \(\qquad\)
LAND USE SUBCATEGORY:
Not Close to Rail Transit
SETTING/LOCATION:
General Urban/Suburban
INDEPENDENT VARIABLE (IV):
Dwelling Units
tIME PERIOD:
Weekday, Peak Hour of Adjacent Street Traffic \(\vee\)
TRIP TYPE:
Vehicle \(\vee\)

ENTER IV VALUE TO CALCULATE TRIPS
156 \(\qquad\) Calculate


White Rock Place
Raymond, New Hampshire
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Residence & Workplace & Number & Main (W & & Epping & & Old Manch
(Sou & er Road & \[
\begin{array}{r}
\text { Freetow } \\
(\text { No }
\end{array}
\] & & \[
\begin{array}{r}
\text { Freetow } \\
\text { (Sol }
\end{array}
\] & \\
\hline Raymond town & Raymond town & 694 & 10\% & 69 & 40\% & 278 & & 0 & 40\% & 278 & 10\% & 69 \\
\hline Raymond town & Manchester city & 524 & & 0 & & 0 & 100\% & 524 & & 0 & & 0 \\
\hline Raymond town & Epping town & 311 & & 0 & & 0 & & 0 & 100\% & 311 & & 0 \\
\hline Raymond town & Exeter town & 303 & & 0 & & 0 & & 0 & 100\% & 303 & & 0 \\
\hline Raymond town & Portsmouth city & 299 & & 0 & & 0 & & 0 & 100\% & 299 & & 0 \\
\hline Raymond town & Londonderry town & 200 & & 0 & & 0 & & 0 & & 0 & 100\% & 200 \\
\hline Raymond town & Nashua city & 139 & & 0 & & 0 & 100\% & 139 & & 0 & & 0 \\
\hline Raymond town & Hampton town & 111 & & 0 & & 0 & & 0 & 100\% & 111 & & 0 \\
\hline Raymond town & Salem town & 110 & & 0 & & 0 & & 0 & & 0 & 100\% & 110 \\
\hline Raymond town & Concord city & 108 & & 0 & & 0 & 100\% & 108 & & 0 & & 0 \\
\hline Raymond town & Bedford town & 105 & & 0 & & 0 & 100\% & 105 & & 0 & & 0 \\
\hline Raymond town & Merrimack town & 98 & & 0 & & 0 & 100\% & 98 & & 0 & & 0 \\
\hline Raymond town & Boston city & 96 & & 0 & & 0 & 50\% & 48 & & 0 & 50\% & 48 \\
\hline Raymond town & Hooksett town & 94 & & 0 & & 0 & 100\% & 94 & & 0 & & 0 \\
\hline Raymond town & Fremont town & 89 & & 0 & & 0 & & 0 & & 0 & 100\% & 89 \\
\hline Raymond town & Plaistow town & 88 & & 0 & & 0 & & 0 & & 0 & 100\% & 88 \\
\hline Raymond town & Seabrook town & 85 & & 0 & & 0 & & 0 & 100\% & 85 & & 0 \\
\hline Raymond town & Kingston town & 77 & & 0 & & 0 & & 0 & & 0 & 100\% & 77 \\
\hline Raymond town & Derry town & 74 & & 0 & & 0 & & 0 & & 0 & 100\% & 74 \\
\hline Raymond town & Candia town & 72 & 100\% & 72 & & 0 & & 0 & & 0 & & 0 \\
\hline Raymond town & Auburn town & 69 & & 0 & & 0 & 100\% & 69 & & 0 & & 0 \\
\hline Raymond town & Hudson town & 65 & & 0 & & 0 & 50\% & 33 & 50\% & 33 & & 0 \\
\hline Raymond town & Brentwood town & 50 & & 0 & & 0 & & 0 & 50\% & 25 & 50\% & 25 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multirow[t]{2}{*}{3,861} & & 141 & & 278 & & 1,218 & & 1,444 & & 780 \\
\hline & & & & 3.7\% & & 7.2\% & & 31.5\% & & 37.4\% & & 20.2\% \\
\hline & & SAY & & 4\% & & 7\% & & 32\% & & 37\% & & 20\% \\
\hline
\end{tabular}

Main Street at Epping Street and Old Manchester Road Freetown Road at Main Street
Main Street at the Project Site Driveway




\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh 1 & 117.3 & & & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & \(\ddagger\) & & & \$ & & & \$ & \\
\hline Traffic Vol, veh/h & 88 & 157 & 106 & 49 & 172 & 163 & 0 & 0 & 0 & 18 & 146 & 53 \\
\hline Future Vol, veh/h & 88 & 157 & 106 & 49 & 172 & 163 & 0 & 0 & 0 & 18 & 146 & 53 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Free & Free & Free & Free & Free & Free & Stop & Stop & Stop & Stop & Stop & Stop \\
\hline RT Channelized & - & - & None \\
\hline Storage Length & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline Veh in Median Storage, \# & \# & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 88 & 88 & 88 & 81 & 81 & 81 & 92 & 92 & 92 & 49 & 49 & 49 \\
\hline Heavy Vehicles, \% & 5 & 1 & 4 & 0 & 3 & 5 & 2 & 2 & 2 & 0 & 6 & 3 \\
\hline Mvmt Flow & 100 & 178 & 120 & 60 & 212 & 201 & 0 & 0 & 0 & 37 & 298 & 108 \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh 181 & 181.8 & & & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & & \(\uparrow\) & & & \(\uparrow\) & & & \(\uparrow\) & \\
\hline Traffic Vol, veh/h & 97 & 174 & 116 & 53 & 190 & 179 & 0 & 0 & 0 & 20 & 158 & 58 \\
\hline Future Vol, veh/h & 97 & 174 & 116 & 53 & 190 & 179 & 0 & 0 & 0 & 20 & 158 & 58 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Free & Free & Free & Free & Free & Free & Stop & Stop & Stop & Stop & Stop & Stop \\
\hline RT Channelized & - & - & None \\
\hline Storage Length & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline Veh in Median Storage, \# & \# & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 88 & 88 & 88 & 81 & 81 & 81 & 92 & 92 & 92 & 49 & 49 & 49 \\
\hline Heavy Vehicles, \% & 5 & 1 & 4 & 0 & 3 & 5 & 2 & 2 & 2 & 0 & 6 & 3 \\
\hline Mvmt Flow & 110 & 198 & 132 & 65 & 235 & 221 & 0 & 0 & 0 & 41 & 322 & 118 \\
\hline
\end{tabular}







\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh 204 & 204.4 & & & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & & \(\uparrow\) & & & \(\uparrow\) & & & \(\uparrow\) & \\
\hline Traffic Vol, veh/h & 97 & 175 & 116 & 67 & 192 & 182 & 0 & 0 & 0 & 21 & 158 & 58 \\
\hline Future Vol, veh/h & 97 & 175 & 116 & 67 & 192 & 182 & 0 & 0 & 0 & 21 & 158 & 58 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Free & Free & Free & Free & Free & Free & Stop & Stop & Stop & Stop & Stop & Stop \\
\hline RT Channelized & - & - & None \\
\hline Storage Length & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline Veh in Median Storage, \# & \# & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 88 & 88 & 88 & 81 & 81 & 81 & 92 & 92 & 92 & 49 & 49 & 49 \\
\hline Heavy Vehicles, \% & 5 & 1 & 4 & 0 & 3 & 5 & 2 & 2 & 2 & 0 & 6 & 3 \\
\hline Mvmt Flow & 110 & 199 & 132 & 83 & 237 & 225 & 0 & 0 & 0 & 43 & 322 & 118 \\
\hline
\end{tabular}




Freetown Road at Main Street
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 28 & & & & & \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & T & \(\mathbf{7}\) & & A & 4 & \(\mathbf{7}\) \\
Traffic Vol, veh/h & 88 & 119 & 145 & 989 & 410 & 69 \\
Future Vol, veh/h & 88 & 119 & 145 & 989 & 410 & 69 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & Stop & - & None & - & None \\
Storage Length & 120 & 0 & 150 & - & - & 120 \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 85 & 85 & 85 & 85 & 86 & 86 \\
Heavy Vehicles, \% & 0 & 1 & 3 & 2 & 5 & 4 \\
Mvmt Flow & 104 & 140 & 171 & 1164 & 477 & 80
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline Int Delay, s/veh 17 & 17.7 & & & & & \\
\hline Movement E & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 「 & \({ }^{7}\) & 4 & 4 & 「 \\
\hline Traffic Vol, veh/h & 77 & 149 & 114 & 630 & 960 & 102 \\
\hline Future Vol, veh/h & 77 & 149 & 114 & 630 & 960 & 102 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control S & Stop & Stop & Free & Free & Free & Free \\
\hline RT Channelized & - & Stop & - & None & - & None \\
\hline Storage Length & 120 & 0 & 150 & - & - & 120 \\
\hline Veh in Median Storage, \# & \# 0 & - & - & 0 & 0 & - \\
\hline Grade, \% & 0 & - & - & 0 & 0 & - \\
\hline Peak Hour Factor & 89 & 89 & 94 & 94 & 96 & 96 \\
\hline Heavy Vehicles, \% & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline Mvmt Flow & 87 & 167 & 121 & 670 & 1000 & 106 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor \(\quad\) N & Minor2 & & Major1 & & Major2 & & & \\
\hline Conflicting Flow All & 1912 & 1000 & 1106 & 0 & - & 0 & & \\
\hline Stage 1 & 1000 & - & - & - & - & - & & \\
\hline Stage 2 & 912 & - & - & - & - & - & & \\
\hline Critical Hdwy & 6.4 & 6.2 & 4.1 & - & - & - & & \\
\hline Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - & & \\
\hline Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - & & \\
\hline Follow-up Hdwy & 3.5 & 3.3 & 2.2 & - & - & - & & \\
\hline Pot Cap-1 Maneuver & ~76 & 298 & 639 & - & - & - & & \\
\hline Stage 1 & 359 & - & - & - & - & - & & \\
\hline Stage 2 & 395 & - & - & - & - & - & & \\
\hline Platoon blocked, \% & & & & - & - & - & & \\
\hline Mov Cap-1 Maneuver & ~62 & 298 & 639 & - & - & - & & \\
\hline Mov Cap-2 Maneuver & \(\sim 62\) & - & - & - & - & - & & \\
\hline Stage 1 & 291 & - & - & - & - & - & & \\
\hline Stage 2 & 395 & - & - & - & - & - & & \\
\hline & & & & & & & & \\
\hline Approach & EB & & NB & & SB & & & \\
\hline HCM Control Delay, s & 144.3 & & 1.8 & & 0 & & & \\
\hline HCM LOS & F & & & & & & & \\
\hline & & & & & & & & \\
\hline \multicolumn{2}{|l|}{Minor Lane/Major Mvmt} & NBL & \multicolumn{3}{|l|}{NBT EBLn1 EBLn2} & SBT & SBR & \\
\hline Capacity (veh/h) & & 639 & - & 62 & 298 & - & - & \\
\hline HCM Lane V/C Ratio & & 0.19 & & 1.395 & 0.562 & - & - & \\
\hline HCM Control Delay (s) & & 11.9 & & 362.7 & 31.5 & - & - & \\
\hline HCM Lane LOS & & B & - & F & D & - & - & \\
\hline HCM 95th \%tile Q(veh) & & 0.7 & - & 7.4 & 3.2 & - & - & \\
\hline \multicolumn{9}{|l|}{Notes} \\
\hline \(\sim\) : Volume exceeds cap & pacity & \multicolumn{4}{|l|}{\$: Delay exceeds 300s} & \multicolumn{2}{|l|}{+: Computation Not Defined} & *: All major volume in platoon \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor \(\quad\) N & Minor2 & & Major1 & & Major2 & & & \\
\hline Conflicting Flow All & 2127 & 522 & 607 & 0 & - & 0 & & \\
\hline Stage 1 & 522 & - & - & - & - & - & & \\
\hline Stage 2 & 1605 & - & - & - & - & - & & \\
\hline Critical Hdwy & 6.4 & 6.21 & 4.13 & - & - & - & & \\
\hline Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - & & \\
\hline Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - & & \\
\hline Follow-up Hdwy & 3.5 & 3.309 & 2.227 & - & - & - & & \\
\hline Pot Cap-1 Maneuver & \(\sim 55\) & 557 & 966 & - & - & - & & \\
\hline Stage 1 & 599 & - & - & - & - & - & & \\
\hline Stage 2 & 183 & - & - & - & - & - & & \\
\hline Platoon blocked, \% & & & & - & - & - & & \\
\hline Mov Cap-1 Maneuver & \(\sim 45\) & 557 & 966 & - & - & - & & \\
\hline Mov Cap-2 Maneuver & \(\sim 45\) & - & - & - & - & - & & \\
\hline Stage 1 & 488 & - & - & - & - & - & & \\
\hline Stage 2 & 183 & - & - & - & - & - & & \\
\hline & & & & & & & & \\
\hline Approach & EB & & NB & & SB & & & \\
\hline HCM Control Delay, s & \$ 366 & & 1.2 & & 0 & & & \\
\hline HCM LOS & F & & & & & & & \\
\hline & & & & & & & & \\
\hline Minor Lane/Major Mvmt & & NBL & NBT & EBLn1 & EBLn2 & SBT & SBR & \\
\hline Capacity (veh/h) & & 966 & - & 45 & 557 & - & - & \\
\hline HCM Lane V/C Ratio & & 0.186 & & 2.405 & 0.258 & - & - & \\
\hline HCM Control Delay (s) & & 9.6 & & 833.1 & 13.7 & - & - & \\
\hline HCM Lane LOS & & A & - & F & B & - & - & \\
\hline HCM 95th \%tile Q(veh) & & 0.7 & - & 11.4 & 1 & - & - & \\
\hline Notes & & & & & & & & \\
\hline \multicolumn{2}{|l|}{\(\sim\) Volume exceeds capacity} & \multicolumn{4}{|l|}{\$: Delay exceeds 300s} & \multicolumn{2}{|l|}{+: Computation Not Defined} & *: All major volume in platoon \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline Int Delay, s/veh 28.2 & 28.2 & & & & & \\
\hline Movement E & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 「 & \({ }^{7}\) & 4 & 4 & 「 \\
\hline Traffic Vol, veh/h & 82 & 153 & 118 & 687 & 1038 & 104 \\
\hline Future Vol, veh/h & 82 & 153 & 118 & 687 & 1038 & 104 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control S & Stop & Stop & Free & Free & Free & Free \\
\hline RT Channelized & - & Stop & - & None & - & None \\
\hline Storage Length & 120 & 0 & 150 & - & - & 120 \\
\hline Veh in Median Storage, \# & \# 0 & - & - & 0 & 0 & - \\
\hline Grade, \% & 0 & - & - & 0 & 0 & - \\
\hline Peak Hour Factor & 89 & 89 & 94 & 94 & 96 & 96 \\
\hline Heavy Vehicles, \% & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline Mvmt Flow & 92 & 172 & 126 & 731 & 1081 & 108 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor \(\quad\) N & Minor2 & & Major1 & & Major2 & & & \\
\hline Conflicting Flow All & 2064 & 1081 & 1189 & 0 & - & 0 & & \\
\hline Stage 1 & 1081 & - & - & - & - & - & & \\
\hline Stage 2 & 983 & - & - & - & - & - & & \\
\hline Critical Hdwy & 6.4 & 6.2 & 4.1 & - & - & - & & \\
\hline Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - & & \\
\hline Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - & & \\
\hline Follow-up Hdwy & 3.5 & 3.3 & 2.2 & - & - & - & & \\
\hline Pot Cap-1 Maneuver & ~61 & 267 & 594 & - & - & - & & \\
\hline Stage 1 & 328 & - & - & - & - & - & & \\
\hline Stage 2 & 366 & - & - & - & - & - & & \\
\hline Platoon blocked, \% & & & & - & - & - & & \\
\hline Mov Cap-1 Maneuver & \(\sim 48\) & 267 & 594 & - & - & - & & \\
\hline Mov Cap-2 Maneuver & \(\sim 48\) & - & - & - & - & - & & \\
\hline Stage 1 & 258 & - & - & - & - & - & & \\
\hline Stage 2 & 366 & - & - & - & - & - & & \\
\hline & & & & & & & & \\
\hline Approach & EB & & NB & & SB & & & \\
\hline HCM Control Delay, s & 240.6 & & 1.9 & & 0 & & & \\
\hline HCM LOS & F & & & & & & & \\
\hline & & & & & & & & \\
\hline \multicolumn{2}{|l|}{Minor Lane/Major Mvmt} & NBL & \multicolumn{3}{|l|}{NBT EBLn1 EBLn2} & SBT & SBR & \\
\hline Capacity (veh/h) & & 594 & - & 48 & 267 & - & - & \\
\hline HCM Lane V/C Ratio & & 0.211 & & 1.919 & 0.644 & - & - & \\
\hline HCM Control Delay (s) & & 12.7 & & 614.9 & 40 & - & - & \\
\hline HCM Lane LOS & & B & - & F & E & - & - & \\
\hline HCM 95th \%tile Q(veh) & & 0.8 & - & 9.3 & 4 & - & - & \\
\hline \multicolumn{9}{|l|}{Notes} \\
\hline \(\sim\) : Volume exceeds cap & pacity & \multicolumn{4}{|l|}{\$: Delay exceeds 300s} & \multicolumn{2}{|l|}{+: Computation Not Defined} & *: All major volume in platoon \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 71.7 & & & & & \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & T & \(\mathbf{7}\) & & A & 个 & \(\mathbf{7}\) \\
Traffic Vol, veh/h & 101 & 134 & 169 & 1162 & 492 & 80 \\
Future Vol, veh/h & 101 & 134 & 169 & 1162 & 492 & 80 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & Stop & - & None & - & None \\
Storage Length & 120 & 0 & 150 & - & - & 120 \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 85 & 85 & 85 & 85 & 86 & 86 \\
Heavy Vehicles, \% & 0 & 1 & 3 & 2 & 5 & 4 \\
Mvmt Flow & 119 & 158 & 199 & 1367 & 572 & 93
\end{tabular}

\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor \(\quad\) N & Minor2 & & Major1 & & Major2 & & & \\
\hline Conflicting Flow All & 2263 & 1186 & 1306 & 0 & - & 0 & & \\
\hline Stage 1 & 1186 & - & - & - & - & - & & \\
\hline Stage 2 & 1077 & - & - & - & - & - & & \\
\hline Critical Hdwy & 6.4 & 6.2 & 4.1 & - & - & - & & \\
\hline Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - & & \\
\hline Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - & & \\
\hline Follow-up Hdwy & 3.5 & 3.3 & 2.2 & - & - & - & & \\
\hline Pot Cap-1 Maneuver & \(\sim 46\) & 232 & 537 & - & - & - & & \\
\hline Stage 1 & 293 & - & - & - & - & - & & \\
\hline Stage 2 & 330 & - & - & - & - & - & & \\
\hline Platoon blocked, \% & & & & - & - & - & & \\
\hline Mov Cap-1 Maneuver & \(\sim 34\) & 232 & 537 & - & - & - & & \\
\hline Mov Cap-2 Maneuver & ~34 & - & - & - & - & - & & \\
\hline Stage 1 & 218 & - & - & - & - & - & & \\
\hline Stage 2 & 330 & - & - & - & - & - & & \\
\hline & & & & & & & & \\
\hline Approach & EB & & NB & & SB & & & \\
\hline HCM Control Delay, s & \$ 438 & & 2.1 & & 0 & & & \\
\hline HCM LOS & F & & & & & & & \\
\hline & & & & & & & & \\
\hline Minor Lane/Major Mvmt & & NBL & NBT & BLn1 & EBLn2 & SBT & SBR & \\
\hline Capacity (veh/h) & & 537 & - & 34 & 232 & - & - & \\
\hline HCM Lane V/C Ratio & & 0.258 & & 2.974 & 0.818 & - & - & \\
\hline HCM Control Delay (s) & & 14 & & 137.3 & 65.6 & - & - & \\
\hline HCM Lane LOS & & B & - & F & F & - & - & \\
\hline HCM 95th \%tile Q(veh) & & 1 & - & 11.6 & 6.2 & - & - & \\
\hline Notes & & & & & & & & \\
\hline \multicolumn{2}{|l|}{\(\sim\) Volume exceeds capacity} & \multicolumn{4}{|l|}{\$: Delay exceeds 300s} & \multicolumn{2}{|l|}{+: Computation Not Defined} & *: All major volume in platoon \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\(l\)
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 36.6 & & & & & \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & T & \(\mathbf{7}\) & & A & 4 & \(\mathbf{7}\) \\
Traffic Vol, veh/h & 91 & 158 & 125 & 687 & 1038 & 118 \\
Future Vol, veh/h & 91 & 158 & 125 & 687 & 1038 & 118 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & Stop & - & None & - & None \\
Storage Length & 120 & 0 & 150 & - & - & 120 \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 89 & 89 & 94 & 94 & 96 & 96 \\
Heavy Vehicles, \% & 0 & 0 & 0 & 1 & 0 & 0 \\
Mvmt Flow & 102 & 178 & 133 & 731 & 1081 & 123
\end{tabular}


\begin{tabular}{lrrrlrl} 
Major/Minor & Minor2 & \multicolumn{2}{r}{ Major1 } & \multicolumn{2}{l}{ Major2 } \\
\hline Conflicting Flow All & 2341 & 572 & 671 & 0 & - & 0 \\
\(\quad\) Stage 1 & 572 & - & - & - & - & - \\
Stage 2 & 1769 & - & - & - & - & - \\
Critical Hdwy & 6.4 & 6.21 & 4.13 & - & - & - \\
Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - \\
Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - \\
Follow-up Hdwy & 3.5 & 3.309 & 2.227 & - & - & - \\
Pot Cap-1 Maneuver & \(\sim 41\) & 522 & 915 & - & - & - \\
\(\quad\) Stage 1 & 569 & - & - & - & - & - \\
\(\quad\) Stage 2 & 152 & - & - & - & - & - \\
Platoon blocked, \% & & & & - & - & - \\
Mov Cap-1 Maneuver & \(\sim 32\) & 522 & 915 & - & - & - \\
Mov Cap-2 Maneuver & \(\sim 32\) & - & - & - & - & - \\
\(\quad\) Stage 1 & 444 & - & - & - & - & - \\
Stage 2 & 152 & - & - & - & - & -
\end{tabular}
\begin{tabular}{lrrr} 
Approach & EB & NB & SB \\
\hline HCM Control Delay, s\$ 790.2 & 1.3 & 0 \\
HCM LOS & F & &
\end{tabular}
\begin{tabular}{lrrrrc} 
Minor Lane/Major Mvmt & NBL & NBT EBLn1 EBLn2 & SBT & SBR \\
\hline Capacity (veh/h) & 915 & - & 32 & 522 & - \\
\hline
\end{tabular}

\section*{Notes}

\author{
\(\sim\) : Volume exceeds capacity \(\quad \$\) : Delay exceeds \(300 \mathrm{~s} \quad+\) : Computation Not Defined \(\quad\) : All major volume in platoon
}
\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Major/Minor & Minor2 & \multicolumn{1}{r}{ Major1 } & \multicolumn{1}{r}{ Major2 } \\
\hline Conflicting Flow All & 2279 & 1186 & 1320 & 0 & - & 0 \\
\(\quad\) Stage 1 & 1186 & - & - & - & - & - \\
Stage 2 & 1093 & - & - & - & - & - \\
Critical Hdwy & 6.4 & 6.2 & 4.1 & - & - & - \\
Critical Hdwy Stg 1 & 5.4 & - & - & - & - & - \\
Critical Hdwy Stg 2 & 5.4 & - & - & - & - & - \\
Follow-up Hdwy & 3.5 & 3.3 & 2.2 & - & - & - \\
Pot Cap-1 Maneuver & \(\sim 44\) & 232 & 530 & - & - & - \\
\(\quad\) Stage 1 & 293 & - & - & - & - & - \\
\(\quad\) Stage 2 & 324 & - & - & - & - & - \\
Platoon blocked, \% & & & & - & - & - \\
Mov Cap-1 Maneuver & \(\sim 32\) & 232 & 530 & - & - & - \\
Mov Cap-2 Maneuver & \(\sim 32\) & - & - & - & - & - \\
Stage 1 & 212 & - & - & - & - & - \\
Stage 2 & 324 & - & - & - & - & - \\
& & & & & &
\end{tabular}
\begin{tabular}{lrrr} 
Approach & EB & NB & SB \\
\hline HCM Control Delay, s\$ 541.9 & 2.2 & 0 \\
HCM LOS & F & &
\end{tabular}
\begin{tabular}{lrrrrl} 
Minor Lane/Major Mvmt & NBL & NBT EBLn1 EBLn2 & SBT & SBR \\
\hline Capacity (veh/h) & 530 & - & 32 & 232 & - \\
\hline
\end{tabular}

\section*{Notes}

\author{
\(\sim\) : Volume exceeds capacity \(\quad \$\) : Delay exceeds \(300 \mathrm{~s} \quad+\) : Computation Not Defined \(\quad\) : All major volume in platoon
}
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 1.2 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & Mr & & & \(\uparrow\) & l & \\
Traffic Vol, veh/h & 19 & 25 & 7 & 177 & 181 & 6 \\
Future Vol, veh/h & 19 & 25 & 7 & 177 & 181 & 6 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 90 & 90 & 90 & 78 & 93 & 90 \\
Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 \\
Mvmt Flow & 21 & 28 & 8 & 227 & 195 & 7
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 1 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & Mr & & & -1 & 1 & \\
Traffic Vol, veh/h & 10 & 14 & 21 & 163 & 190 & 16 \\
Future Vol, veh/h & 10 & 14 & 21 & 163 & 190 & 16 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 90 & 90 & 90 & 90 & 78 & 90 \\
Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 \\
Mvmt Flow & 11 & 16 & 23 & 181 & 244 & 18
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 1.1 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & M & & & -1 & F & \\
Traffic Vol, veh/h & 19 & 25 & 7 & 195 & 199 & 6 \\
Future Vol, veh/h & 19 & 25 & 7 & 195 & 199 & 6 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 90 & 90 & 90 & 78 & 93 & 90 \\
Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 \\
Mvmt Flow & 21 & 28 & 8 & 250 & 214 & 7
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.9 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & Mr & & & \(\uparrow\) & \(\uparrow\) & \\
Traffic Vol, veh/h & 10 & 14 & 21 & 180 & 209 & 16 \\
Future Vol, veh/h & 10 & 14 & 21 & 180 & 209 & 16 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 90 & 90 & 90 & 90 & 78 & 90 \\
Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 \\
Mvmt Flow & 11 & 16 & 23 & 200 & 268 & 18
\end{tabular}







\begin{tabular}{lrrrrrr}
\hline Intersection & & & \\
\hline Int Delay, s/veh & 10.1 & & & & & \\
\hline
\end{tabular}





\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 9.7 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & Mr & & & 个 & 个 & \\
Traffic Vol, veh/h & 229 & 46 & 0 & 213 & 196 & 0 \\
Future Vol, veh/h & 229 & 46 & 0 & 213 & 196 & 0 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 73 & 73 & 81 & 81 & 93 & 93 \\
Heavy Vehicles, \% & 2 & 2 & 0 & 0 & 0 & 0 \\
Mvmt Flow & 314 & 63 & 0 & 263 & 211 & 0
\end{tabular}




35 New England Business Center Drive
Suite 140
Andover, MA 01810

Ref: 9643
May 26, 2023

Tuck Realty Corporation
c/o Mr. Turner Porter
PO Box 190
Exeter, NH 03833

\author{
Re: Parking Demand Assessment \\ White Rock Place Multifamily Residential Development - 109 Main Street \\ Raymond, Massachusetts
}

Mr. Porter:
Vanasse \& Associates, Inc. (VAI) has completed a parking demand assessment in order to determine the adequacy of the proposed parking supply associated with the construction of a \(156 \pm\)-unit multifamily residential development to be known as White Rock Place and located at 109 Main Street in Raymond, New Hampshire (hereafter referred to as the "Project"). This assessment reviews parking demand data obtained for multifamily residential communities located in a similar setting to the Project and parking demand data published by the Institute of Transportation Engineers (ITE) \({ }^{1}\) for multifamily residential communities. The following details our assessment of the anticipated parking demand for the Project.

\section*{Parking Demand Observations}

Parking demand observations were obtained from four (4) multifamily residential communities located in Massachusetts and New Hampshire, which included parking occupancy data collected at each community on a weekday between 4:00 and 6:00 AM, or between 5:00 and 8:00 AM. These time periods represent the peak parking demand periods for a residential community. \({ }^{2}\) Table 1 summarizes the parking demand observations for each community along with the parking occupancy and corresponding parking ratio.

As can be seen in Table 1, the peak-parking demands at the four (4) multifamily residential communities were found to range from 1.23 parking spaces per unit to 1.49 parking spaces per unit, or an average peak parking demand of 1.34 parking spaces per unit. The average peak occupancy rate was found to be approximately 77 percent of the available parking spaces.

\footnotetext{
\({ }^{1}\) Parking Generation, \(5^{\text {th }}\) Edition; Institute of Transportation Engineers; Washington, D.C.; January 2019.
\({ }^{2}\) The peak-parking demand for a residential community generally occurs on a weekday after 10:00 PM and before 6:00 AM.
}

\section*{Table 1}

\section*{MULTIFAMILY PARKING DEMAND OBSERVATIONS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Domain Foxborough, Foxborough,
\[
M A
\]} & \multicolumn{3}{|l|}{Hanover at Andover, Andover, MA} & \multicolumn{3}{|l|}{Hanover Tuscan Village, Salem, NH} & \multicolumn{3}{|l|}{Bell Westford, Westford, MA} \\
\hline Time & No. of Occupied Spaces & Occupancy \({ }^{\text {a }}\) & Parking Demand Ratio \({ }^{\text {b }}\) & No. of Occupied Spaces & Occupancy \({ }^{\text {c }}\) & Parking Demand Ratio \({ }^{\text {d }}\) & No. of Occupied Spaces \({ }^{\text {e }}\) & Occupancy \({ }^{\text {f }}\) & Parking Demand Ratio \({ }^{\text {g }}\) & No. of Occupied Spaces \({ }^{\text {h }}\) & Occupancy \({ }^{\text {i }}\) & Parking Demand Ratio \({ }^{\text {j }}\) \\
\hline 4:00 AM & 298 & 76.4\% & 1.27 & 282 & 78.3\% & 1.23 & -- & -- & -- & -- & -- & -- \\
\hline 4:30 & 296 & 75.9\% & 1.26 & 281 & 78.1\% & 1.23 & -- & -- & -- & -- & -- & -- \\
\hline 5:00 & 295 & 75.6\% & 1.26 & 280 & 77.8\% & 1.22 & 350 & 77.6\% & 1.35 & 548 & 75.8\% & 1.49 \\
\hline 5:30 & 286 & 73.3\% & 1.22 & 277 & 76.9\% & 1.21 & 340 & 75.4\% & 1.31 & 543 & 75.1\% & 1.48 \\
\hline 6:00 & 282 & 72.3\% & 1.21 & 273 & 75.8\% & 1.19 & 333 & 73.8\% & 1.28 & 532 & 73.6\% & 1.45 \\
\hline 6:30 & -- & -- & -- & -- & -- & -- & 327 & 72.5\% & 1.26 & 517 & 71.5\% & 1.41 \\
\hline 7:00 & -- & -- & -- & -- & -- & -- & 307 & 68.1\% & 1.18 & 501 & 69.3\% & 1.37 \\
\hline 7:30 & -- & -- & -- & -- & -- & -- & 292 & 64.7\% & 1.12 & 473 & 65.4\% & 1.29 \\
\hline 8:00 & -- & -- & -- & -- & -- & -- & 283 & 62.7\% & 1.09 & 435 & 60.2\% & 1.19 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) The available parking supply consists of 390 parking spaces
\({ }^{\mathrm{b}}\) Based on 234 occupied units at the time of the parking demand observations.
\({ }^{\text {c }}\) The available parking supply consists of 360 parking spaces
\({ }^{\text {d }}\) Based on 229 occupied units at the time of the parking demand observations
\({ }^{\mathrm{e}}\) Assumes full occupancy of the 41 individual garages located throughout the property.
\({ }^{\mathrm{f}}\) The available parking supply consists of 451 parking spaces, including the 41 garage spaces
gBased on approximately 260 occupied units at the time of the parking demand observations.
\({ }^{\mathrm{h}}\) Assumes full occupancy of the 90 individual garages located throughout the property
\({ }^{i}\) The available parking supply consists of 723 parking spaces, including the 90 garage spaces
\({ }^{j}\) Based on approximately 367 occupied units at the time of the parking demand observations.

\section*{ITE Parking Demand Data}

Table 2 summarizes the ITE peak parking demand data that is derived from parking demand observations performed at multifamily residential communities situated in a general urban/suburban setting.

Table 2
ITE PEAK PARKING DEMAND DATA
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Land Use Code/Time Period} & \multicolumn{2}{|l|}{Peak Parking Demand per Dwelling Unit} \\
\hline & Average Rate & 85 \({ }^{\text {th }}\) Percentile \\
\hline Multifamily Housing (Mid-Rise) \({ }^{\text {a }}\) & & \\
\hline Weekday & 1.31 & 1.47 \\
\hline Saturday & 1.22 & 1.33 \\
\hline
\end{tabular}
\({ }^{\text {a}}\) ITE Land Use Code 221, Multifamily Housing (Mid-Rise).

As can be seen in Table 2, the ITE parking demand data for a multifamily residential community indicates that the average peak parking demand on a weekday is 1.31 parking spaces per unit, with an observed \(85^{\text {th }}\) percentile peak parking demand \({ }^{3}\) of 1.47 parking spaces per unit. On a Saturday, the average observed peak parking demand was observed to be 1.22 parking spaces per unit, with the observed \(85^{\text {th }}\) percentile peak parking demand found to be 1.33 parking spaces per unit. Given that the weekday peak parking demands are higher than those on a Saturday, the weekday data is used for design purposes.

The ITE data for a multifamily residential community is generally consistent with the parking demand observations that were obtained for the four (4) residential communities, with an average peak parking demand of 1.31 to 1.34 parking spaces per unit, and a design value (typically the \(85^{\text {th }}\) percentile peak parking demand) of between 1.47 and 1.49 parking spaces per unit. The ITE parking demand data is provided in the Appendix.

\section*{Parking Demand Comparison}

On-site parking will be provided for 281 vehicles, or a parking ratio of 1.8 parking spaces per dwelling unit, \({ }^{4}\) which is greater than the parking ratios at the observed multifamily residential communities and those located in a similar setting as documented by the ITE.

Based on a review of parking demand observations obtained for multifamily residential communities in similar settings and those documented by the ITE, the proposed parking supply should be sufficient to support the needs of the Project.

\footnotetext{
\({ }^{3}\) The \(85^{\text {th }}\) percentile peak parking demand is defined as the parking demand at which 85 percent of the observed peak parking demands fall below and 15 percent are above.
\({ }^{4} 156 \pm\) residential units are proposed.
}

Mr. Turner Porter
Tuck Realty Corporation
May 26, 2023
Page 4 of 4

If you should have any questions regarding the anticipated parking demand for the Project, please feel free to contact me.

Sincerely,

VANASSE \& ASSOCIATES, INC.

jeffrey S. Dirk, P.E., PTOE, FITE
Managing partner
Professional Engineer in CT, MA, ME, NH, RI and VA
JSD/dcl

\section*{ATTACHMENTS}

Project Site Plan
ITE Parking Demand Data


\section*{AII Graph Look Up}



\title{
JONES\&BEACH \\ 85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885 \\ 603.772.4746 - JonesandBeach.com
}

March 20, 2023
Raymond Planning Board
Attn. Brad Reed, Chair
4 Epping Street
Raymond, NH 03077

\author{
Re: Response Letter \\ White Rock Place \\ 109A, B, C, \& D Main Street, Raymond, NH \\ Tax Map 23, Lots 24, 25, 28 \& 29 \\ JBE Project No. 20564
}

Dear Mr. Reed,
On behalf of our client, Tuck Realty Corporation, Jones and Beach Engineers, Inc., respectfully submits a Unified Development Plan for the proposed development on the above-referenced parcels. The intent of this project is to adjust the lot lines between the four subject parcels and construct a 156-Unit apartment complex consisting of (72) 2-Bedroom Units and (84) 1Bedroom Units.

The proposed development will take place entirely on what will be Lot 25 after the proposed lot line adjustment, which consists of parts of what is currently lots 25 and 29. Tax Map 23, Lots 24 and 25 are vested into the Sewer Overlay District because this project first went to design review in 2020, before the sewer overlay district was removed. Therefore, this development will require a written unified development plan in accordance with the 2020 Raymond Zoning Ordinance.

\section*{SECTION 5.3 Sewer Overlay District (03/2006), Raymond Zoning Ordinance 2020}
5.3.2. UNIFIED DEVELOPMENT: All development within this SOD must take place in accordance with a Unified Development Plan approved by the Planning Board. For purposes of this Ordinance, a Unified Development Plan shall be defined as an overall plan that identifies in a conceptual nature how the lot or lots contained in the plan will be developed in a manner consistent with the intent of this Ordinance and how the plan will allow and encourage the development of other lots within the SOD zoning district, in a manner consistent with the intent of the Ordinance.
5.3.2.1. The Unified Development Plan must describe and illustrate, in written and graphic format, and shall specify the intended locations
and types of proposed uses, the layout of proposed vehicle and pedestrian access and circulation systems, provision of transit facilities and water and sewer facilities, and areas designated to meet requirements for open space, parking, on site amenities, utilities and landscaping. It shall include statements or conceptual plans describing how signage and lighting will be designed in a unified and integrated manner within the district. In addition, the Unified Development Plan shall indicate how the proposed uses will relate to the surrounding properties both within and outside of the district.
5.3.2.2. The submittal of written concept statement(s) in lieu of a Unified Development Plan shall not be accepted. In determining whether to approve a Unified Development Plan, the Planning Board will consider the following criteria:
5.3.2.2.1. Compatibility of the plan with the goals and objectives set forth in the Town's Master Plan;
5.3.2.2.2. Compatibility of the plan with the permitted uses in the Sewer Overlay District.
5.3.2.2.3. Approval of the Unified Development Plan must occur prior to the consideration of individual site development plans for one or several contiguous lots within the SOD. All site development plans must be reviewed and approved in accordance with this Ordinance and the Planning Board's Site Plan, Subdivision and Earth Excavation Regulations prior to the issuance of any building permits within the district.
5.3.3. AMENDMENT TO UNIFIED DEVELOPMENT PLAN: Any Unified Development Plan may be changed or amended by an applicant and such changes may occur concurrently with, or prior to the submittal of individual site development plans. To the extent that the approved Unified Development Plan addresses lots within the SOD which are not owned by the applicant, then such approved plan shall be binding only on the applicant and the owners of such other lots may seek changes to the Unified Development Plan consistent with their own development project.
5.3.4. SPECIAL PROVISIONS: All new development, change of use, subdivision, site review or development requiring a building permit must be connected to both town water and town sewer services. Notwithstanding the above, application for new development may be made prior to the availability of town water and sewer, provided that the proposed use is permitted as a matter of right in the underlying districts or provided that relief is obtained from the Zoning Board of Adjustment, and provided that the applicant proposes development subject to a condition of approval that the property shall be connected to town water and sewer when it becomes available within
one hundred (100) feet of the property line.

\section*{RESPONSES}
5.3.2. UNIFIED DEVELOPMENT: All development within this SOD must take place in accordance with a Unified Development Plan approved by the Planning Board. For purposes of this Ordinance, a Unified Development Plan shall be defined as an overall plan that identifies in a conceptual nature how the lot or lots contained in the plan will be developed in a manner consistent with the intent of this Ordinance and how the plan will allow and encourage the development of other lots within the SOD zoning district, in a manner consistent with the intent of the Ordinance.

Per the 2020 Zoning Ordinance, the stated intent of the Sewer Overlay District (SOD) is to "encourage a mixture of land uses as part of a unified development that could not otherwise occur in the underlying zones," in order to "foster economic development of primarily commercial and industrial development while allowing a limited amount of multi-family residential". The proposed multi-family development is located in the industrial zone and is surrounded primarily by single-family and industrial uses, with downtown nearby. The addition of this multi-family development will foster economic growth within the Town of Raymond by bringing more people to the town center who will utilize local businesses within downtown Raymond and other parts of town. This is in line with the intent of the SOD because it will foster economic development in town.

With regards to allowing or encouraging the development of other lots within the SOD zoning district, we are subdividing the subject lot in a way that will potentially enable a future commercial, industrial, or residential development. Any future development on the subdivided parcel will meet the goals of the SOD zoning district because it will foster economic growth within the Town and mix uses between commercial, industrial, and residential. Although future development on the subdivided parcel will no longer be subject to the stipulations of the SOD zoning district, Lot 24 was part of the SOD zoning district and would in the future be developed in a way that meets the general intent of the SOD.
5.3.4.1. The Unified Development Plan must describe and illustrate, in written and graphic format, and shall specify the intended locations and types of proposed uses, the layout of proposed vehicle and pedestrian access and circulation systems, provision of transit facilities and water and sewer facilities, and areas designated to meet requirements for open space, parking, on site amenities, utilities and landscaping. It shall include statements or conceptual plans describing how signage and lighting will be designed in a unified and integrated manner within the district. In addition, the Unified Development Plan shall indicate how the proposed uses will relate to the surrounding properties both within and outside of the

\section*{district.}

Please refer to the plan set for the majority of this information in graphic format. The proposed use is multi-family residential and the 156 units in three buildings will take place on the north end of the subject parcel. Two points of egress are proposed, being the main access drive (White's Rock Lane) and an emergency access driveway. White's Rock Lane is designed primarily for vehicular traffic, but pedestrians may utilize the emergency access drive as a walking path to downtown when it is not being used by emergency vehicles. The emergency access drive is located within a convenient walking distance of downtown and this development will enable both vehicular and pedestrian use of downtown Raymond.

Originally, we were planning to service this development using Town water. However, Underwood Engineers' report says that Town water is not available in sufficient quantity. Therefore, we will need to draw water from an on-site well for drinking water and fire suppression. The well will be surrounded by an undeveloped \(200^{\prime}\) radius as required by the State. The Town of Raymond does not have a sanitary sewer system at this time, so we will need to use on-site septic systems for wastewater. These septic systems have been designed and are sized in accordance with Env-Wq 1000 rules as put forth by the State of New Hampshire. The locations and design of the well and septic system are shown on the plan set. See the utility plans and effluent disposal design plans for more information.

More than 23 acres of land are being put into open space with this development. We are balancing multi-family residential development that will promote economic growth within the Town of Raymond and conservation.

We are seeking a waiver from the parking requirements. With 156 units proposed, 468 parking spaces would be required based on the Town's requirement for 3 parking spaces per dwelling unit. This requirement is based on a larger number of bedrooms per unit than are being provided with this development. A large number of these units will be 1-bedroom and 3 parking spaces are excessive for a 1-bedroom apartment. Based on empirical observations we believe that 1.8 parking spaces per unit would be more appropriate for the given mixture of 1-bedroom and 2-bedroom apartments. Therefore, we are providing 281 parking spaces at this time. As shown on Sheet EX-1 of the plan set, the ability exists to install the full number of parking spaces required by the Site Plan Review Regulations should the need arise, but we do not believe that this will be necessary.

Landscaping is provided as shown on Sheet L1-L2 in order to enhance the aesthetics of the development and provide screening to abutters. The majority of screening will take place in the form of natural wooded buffers, but failing this, landscaping is provided in areas where there is proposed development that is close to a property that is not part of the application.

Lighting is designed so that the parking lot and entrance to the apartment complex can be well-lit for safety, without lighting trespass into the proposed buildings or on to adjacent properties. See sheets L3-L4. Signage is proposed as necessary as shown on the site plans for safe passage of traffic.

The proposed development will be shielded from adjacent single-family uses through the use of landscaping and naturally existing wooded buffers. We are proposing a subdivision of the subject parcel and the parcel created to the south can be used in the future for a commercial, industrial, or residential development. Any future development of the created parcel will require Planning Board review and will not be subject to the stipulations of the Sewer Overlay District based on the current (2023) zoning ordinance.

\subsection*{5.3.4.1.1. Compatibility of the plan with the goals and objectives set forth in the Town's Master Plan;}

The Economic Development section of the 2009 Master Plan states that the majority ( \(57 \%\) ) of residents of Raymond who were surveyed by the University of New Hampshire would like to see the population of Raymond grow.

Economic Development Related Ouestions
Question 2: In the next five years, would you like to see the population of Raymond ... 1 . Decrease, 2. Stay the same, 3. Grow Slighty, or 4. Grow faster?


Bringing more housing to the Town of Raymond is in line with the intent of the Town's master plan. Doing so will support local businesses and promote economic development within the Town. Additionally, we are putting more than 23 acres of land into open space, which is another issue of focus within the 2009 Master Plan. This development balances the needs of economic development and conservation by bringing more residents to the Town of Raymond while also placing permanent restrictions on the parts of the subject parcel that do not need to be developed in order to facilitate the construction of 156 apartments.

\subsection*{5.3.2.1.1. Compatibility of the plan with the permitted uses in the Sewer Overlay District.}

Multi-family residential is an allowed use within the Sewer Overlay District. Per Note \#4 on Sheet C14 of the project plan set, the proposed number of units is allowed by the Town's density regulations. 16 units per acre are allowed based on \(25 \%\) of non-Zone G land. 5.1
units per acre are provided, but the lot had to be made larger than what is required by density requirements due to the State's lot loading rules for sewage flow.
5.3.2.1.1. Approval of the Unified Development Plan must occur prior to
the consideration of individual site development plans for one
or several contiguous lots within the SOD. All site development
plans must be reviewed and approved in accordance with this
Ordinance and the Planning Board's Site Plan, Subdivision
and Earth Excavation Regulations prior to the issuance of any
building permits within the district.

Redundantly, this Unified Development Plan is being submitted for review and approval at this time prior to conditional approval by the Town of Raymond Planning Board.

> 5.3.2. AMENDMENT TO UNIFIED DEVELOPMENT PLAN: Any Unified Development Plan may be changed or amended by an applicant and such changes may occur concurrently with, or prior to the submittal of individual site development plans. To the extent that the approved Unified Development Plan addresses lots within the SOD which are not owned by the applicant, then such approved plan shall be binding only on the applicant and the owners of such other lots may seek changes to the Unified Development Plan consistent with their own development project.

The SOD has been repealed and this Unified Development Plan is only necessary because the subject parcel is vested into the SOD per the \(\mathbf{2 0 2 0}\) zoning ordinance. Regardless, if the SOD is reinstated in the future and an amendment to the site plan is proposed, we understand that the Unified Development Plan will need to be updated at such time.
> 5.3.2. SPECIAL PROVISIONS: All new development, change of use, subdivision, site review or development requiring a building permit must be connected to both town water and town sewer services. Notwithstanding the above, application for new development may be made prior to the availability of town water and sewer, provided that the proposed use is permitted as a matter of right in the underlying districts or provided that relief is obtained from the Zoning Board of Adjustment, and provided that the applicant proposes development subject to a condition of approval that the property shall be connected to town water and sewer when it becomes available within one hundred (100) feet of the property line.

The proposed use is allowed without the necessity for Zoning relief. Town sewer does not exist for this development, and Underwood Engineers that Town water is not available to support this development. Therefore, we are proposing to install a well for drinking water
and fire suppression and to construct septic systems for wastewater disposal as designed in accordance with the Env-Wq 1000 regulations. We understand that based on the wording of this requirement that if Town sewer or water becomes available in sufficient quantity in the future, this development will be required to tie in. We are comfortable with this as a condition of approval.

If you have any questions or need any additional information, please feel free to contact our office. Thank you very much for your time.

Very truly yours,
JONES \& BEACH ENGINEERS, INC.


Daniel Meditz, EIT
Project Engineer
cc: Michael Garrepy, Tuck Realty Corp. (via email)
Madeleine Dilonno, Rockingham Planning Commission (via email) Jeff Adler, Dubois and King (via email)

\section*{FISCAL IMPACT ANALYSIS}

\title{
White Rock Apartments 109 Main Street
}

Prepared For:
Tuck Realty Group

\title{
FOUGERE PLANNING \& DEVELOPMENT, Inc. Mark J. Fougere, AICP \\ Milford, New Hampshire 03055 phone: \\ 603-315-1288 email: Fougereplanning@comcast.net
}

\title{
FISCAL IMPACT ANALYSIS
}

\author{
White Rock Place \\ 109 Main Street, Raymond NH
}

\section*{April 20, 2023}

\section*{I. Introduction}

Fougere Planning and Development has been engaged by Tuck Realty Corp to undertake this Fiscal Impact Analysis to outline the potential financial ramifications to the Town of Raymond from a proposal to construct a 156 unit apartment community located on a 97.4 acre Main Street property. As detailed in Table One, the proposed residential development will consist of a mix of one and two bedroom unit types; \(53.8 \%\) of the units will be one bedrooms.

Table One
\begin{tabular}{lc}
\multicolumn{1}{c}{ Unit Type } & \(\#\) \\
\hline One Bed & 84 \\
\hline Two Bed & 72 \\
\hline Total Units & 156
\end{tabular}

This fiscal analysis reviews potential municipal service demands and revenues from this proposed new land use. The apartment use will be a private business with all driveways and site features maintained by the owner, along with trash disposal. The proposed residential community will be fully sprinkled and adhere to all current building codes.

\section*{II. Local Trends}

Census figures report that from 2010 to 2020 Raymond's population increased from 10,138 to 10,684 , showing a \(5.3 \%\) growth rate over the 10 year period. Estimates from the Office of Strategic Initiatives (OSI) note a 2021 population estimate of 10,903 .

A majority of Raymond's housing stock consists of single family homes, with data from OSI reporting 2,831 single family homes out of a total housing stock of 4,604 units as detailed in Figure One.

Figure One
Housing Units


Municipal Budgets
The 2023 Town Budget totaled \(\$ 9,401,529\), with the public safety budgets being some the largest, the school budget totals \(\$ 29,550,732\) as outlined in Figure Two. The school department, as well as police and fire departments will realize the most direct measurable impact on services as a result of changes in land use. As such, we will be focus our analysis on schools \& emergency services as those departments will realize the most direct increase in service demands from the proposed development.

Figure Two
Town \& School Budgets


\section*{III. Fiscal Methodology Approach}

There are a number of methodologies that are used to estimate fiscal impacts of proposed development projects. The Per Capita Multiplier Method is the most often used analysis to determine municipal cost allocation. This method is the classic "average" costing method for projecting the impact of population growth on local spending patterns and is used to establish the costs of existing services for a new development. The basic premise of this method is that current revenue/cost ratios per person and per unit is a potential indicator of future revenue/cost impacts occasioned by growth. New capital expenditures required for provision of services to a development are not added to current costs; instead, the present debt service for previous improvements is included to represent ongoing capital projects. The advantage of this approach is its simplicity of implementation and its wide acceptance by both consultants and local officials. The downside of this approach is that the methodology calculates the "average" cost as being the expected cost, which is often not the same as the marginal increase in costs. Thus, costs of a development may be exaggerated, significantly in some instances. For example, if one student is added to a school system, limited marginal cost impacts will occur; however, based on an "average"
cost to educate one student the cost would be treated as \(\$ 18,000 /\) year which includes such costs as existing debt, building maintenance, administrative and other factors, all of which will be minimally impacted by the addition of one student. The "true cost" could be significantly less, especially in those communities with declining enrollment.

The Marginal Cost Approach is a more realistic methodology that can be used to estimate and measure developmental impacts based on actual costs that occur in the community. At this time, a "level of service" exists in Raymond to serve the community. This existing service level, for the most part, addresses the needs of the community through existing tax collections. As new development occurs, pressures are placed on some departments to address increased demands, while other departments see negligible, if any impacts. In reviewing the potentially impacted town departments specifically, a truer picture of anticipated cost impacts can be determined. Unless specific cost impacts are noted by Town staff, an average costing approach will be used in this Report.

Any required off-site road improvements will be addressed during the approval process. Solid waste generated by this project will be removed by a private hauler. Any construction related or operating utility expenses will be offset through user fees. All on-site improvements will be private and all maintenance expenses will be paid for by the owner. This report does not intend to infer that no costs will be incurred as a result of this project. Measurable service demand increases will be felt by a few community departments, most notably schools and emergency services. Other town agencies including highway/streets \& sanitation costs, will see no measurable impacts.

\section*{IV. Local Revenues From Development}
1. Property Taxes

Local property taxes provide the bulk of municipal revenues for New Hampshire communities. The 2022 Tax Rate for Raymond is \(\$ 18.29\), for this analysis we will use a local tax rate of \(\$ 17.57\), excluding the County portion of the Rate.
Figure Three outlines the breakdown of the tax rate.

Figure Three
2022 Tax Rate


Based upon the local and regional rental market \& assessments, cost of construction and estimated rents, Table Two outlines the anticipated property assessment and tax revenue that may be generated by the proposed new apartment community. Based upon the estimated project assessment of \(\$ 14,800,000\) as outlined in Table Two, \(\$ 260,387\) is property taxes will be generated.

\author{
Table Two \\ Anticipated Assessment and Property Tax Revenue Est. Assessment \({ }^{1}\) Property Taxes \$14,820,000 \$260,387
}

\section*{2) Miscellaneous Yearly Revenues}

Another major revenue source for the community is from motor vehicle registration fees. In fiscal year ending 2022 the Town of Raymond received a total of \(\$ 2,330,917^{2}\) from this revenue source. Table Three outlines the projected car registration revenue stream from the additional housing units.

\footnotetext{
\({ }^{1}\) Estimated per unit assessment of \(\$ 95,000\); review of Raymond apartment assessments as well as the local market.
\({ }^{2} 2022\) Town Report.
}
\begin{tabular}{lc}
\multicolumn{2}{c}{ Table Three } \\
\multicolumn{2}{c}{ Motor Vehicle \({ }^{3}\) Permit Fees } \\
210 vehicles @ \(\$ 15,000 /\) avg. value & \(\$ 3,150,000\) \\
\hline\(\$ 3,150 \times \$ 12 /\) & \(\$ 37,800\)
\end{tabular}

\section*{3) Total Project Revenues}

The construction of 156 apartment units is estimated to generate \(\$ 298,187\) in annual revenue from both property tax and automotive permit fees as detailed in Table Four.
\begin{tabular}{lc}
\multicolumn{2}{c}{ Table Four } \\
\multicolumn{2}{c}{ Projected Gross Revenue } \\
Estimated Property Tax Revenue & \(\$ 260,387\) \\
\hline Estimated Automotive Permit Fees & \(\$ 37,800\) \\
\hline Total Estimated Project Revenue & \(\mathbf{+ 2 9 8 , 1 8 7}\)
\end{tabular}

\section*{V. Municipal Service Costs}

Given the nature of the proposed development project, as will be seen by the analysis below, few significant impacts will be felt by Town Departments. Any required off site road improvements will be addressed during the Planning Board approval process. All of the proposed new driveways will be private and all maintenance expense will be paid for by property owner. All trash will be privately disposed of. This is not to infer that no cost impacts will occur as a result of this project. Measurable impacts will certainly be felt by a few municipal departments, most notably the schools as well as the Police and Fire Departments.

\section*{Department Impacts}
1. Police and Fire Departments

The Police and Fire Departments are projected to realize an increase in demand for services. For fiscal year 2023, the Police Department budget was \$2,101,273

\footnotetext{
\({ }^{3}\) One bedroom; one vehicle; two bedrooms 1.75 vehicles.
}
and the Fire Department budget \({ }^{4}\) was \(\$ 646,989\). To assess the degree of impact this project would have on these departments, three larger Raymond apartment complexes were reviewed totaling 192 units. Emergency call data was obtained from these facilities and averaged to determine the annual numbers of calls. These ratios were then totaled to derive a total average call volume per unit which was then used to generate projected yearly emergency calls for each Department. Table Five outlines the findings from this research.

Table Five
Average Calls: Police-Fire-Ambulance
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Town & Units & Avg. Police Calls Per Year & Avg. Fire Calls. Per Year & Avg. EMS Calls Per Year \\
\hline \multicolumn{6}{|l|}{Apartments} \\
\hline Canterbury & Raymond & 78 & 39 & 50 & 11 \\
\hline Branch River & Raymond & 48 & 6 & 39 & 8 \\
\hline Sunview & Raymond & 66 & 30 & 19 & 17 \\
\hline Total Average & Total & 192 & 75 & 108 & 36 \\
\hline & Avg. Call Per Unit & & 0.39 & 0.563 & 0.188 \\
\hline & Proposed Apt. & 156 & 61 & 88 & 29 \\
\hline & Other Communities \({ }^{5}\) & 2,962 & 0.036 & 0.046 & 0.056 \\
\hline
\end{tabular}

It should be highlighted that the average call per unit in Raymond for fire and ems emergencies are much greater than seen in many other New Hampshire communities, even when taking into consideration the age of the properties. This will be discussed further below.

\footnotetext{
\({ }^{4}\) Includes ambulance
\({ }^{5}\) Complete call data in Appendix
}

\section*{Police Department}

Based upon the call data outlined in Table Five, the Police Department is projected to realize an increase in call volume of 61 calls annually (1.17/week). To put the call volume into perspective, the Department received 24,888 Calls for Service in 2021 (478 per week). To fully gage the impact of the development on the Police Department, we shared our call data findings with Police Chief Michael Labell. The Chief believed the noted estimated calls were reasonable and did not see any issues with the proposed community. The Department is presently down 2 positions and is actively searching to fill new officers. The Department's budget was increased this year to provide increased competitive pay for police officers, which should help with recruiting efforts. The average cost of a police officer, with benefits, is \(\$ 85,000-\$ 100,000\) annually. The Chief noted that good management is essential to address apartment site issues quickly and reduce conflicts between neighbors.

By using the proportional demand methodology to assess impact on the
Department, a cost impact can be assigned. The 2022 Police Budget was \(\$ 2,050,053\) and reported Police calls totaled \({ }^{6} 19,910\). Dividing calls into the budget arrives at a cost per call of \(\$ 106\) or a total of \(\$ 6,500\) as outlined in Table Six. To be conservative, we will carry a fiscal cost of \(\$ 13,000\) in this analysis. The Chief thought this was a fair outline of potential costs.

Table Six
Estimated Police Costs
\begin{tabular}{|c|c|}
\hline 2022 Police Budget & \(\$ 2,101,273\) \\
\hline 2021 Calls & 19,910 \\
\hline Projected Annual Calls & 61 \\
\hline Cost Per Call & \(\$ 2,101,273 / 19,910=\$ 106\) \\
\hline Estimated Cost & 61 Calls \(\times \$ 103=\$ 6,500\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{6}\) Calls discounted by \(20 \%\) to account for minor Service calls.
}

\section*{Fire Department}

For the Fire Department 118 total calls are projected of which 29 are EMS calls \({ }^{7}\). In 2022 the Department responded to a total of 806 calls. We discussed the proposed project with Deputy Chief Grant. The Deputy noted that at this year's Town Meeting, voters approved adding two full time positions this year with an estimated total cost (retirement \(\&\) benefits) of \(\$ 260,000\). The Deputy Chief noted that this extra staffing will provide more reliable coverage throughout the week. The Deputy noted that the existing apartment complexes do generate a lot of calls and he believes one of the issues is the age of these complexes. Some are heated with gas furnaces, which have created issues for the Department. The Deputy noted that a fire protection engineer is working with the applicant on recommend building protections, including water supply and sprinkler details. We discussed with the Deputy that based on our database of calls to other New Hampshire communities fire departments, that the volume of calls being experience in Raymond are extraordinarily high. The Deputy noted that it is very hard to predict the future and time will tell if the calls will be less. In speaking with the Deputy relative to account for this projects impact to the Department, it was agreed that accounting for \(1 / 2\) salary of a fire fighter, \(\$ 65,000\), would be an appropriate figure to report.

Age of structures can influence the impacts of a land use for the fire department. But is should be noted that the proposed multi-family buildings will be fully compliant with current building codes including sprinkler and alarm systems. Reviewing our database of over 2,600 apartments units in New Hampshire, as detailed in the Appendix, indicates that the proposed apartment use is estimated to generate a total of 16 total calls annually. This database includes new properties, as well as properties constructed in 1967 and 1970. Although the higher estimate calls are noted in this Report, it is our opinion that the fire department calls generated by the proposed apartment community will be far less than noted in Table Five.

\footnotetext{
\({ }^{7}\) Private Ambulance Company serves the community, the Fire Department supports these calls.
}

\section*{2. Other Departments}

\section*{Building}

Building Department costs were not included in this analysis because they are not permanent yearly impacts and will be more than offset by permit fees which are estimated to exceed \(\$ 36,816\). In addition there will be plumbing, electric and mechanical permit fees.

Given this proposed new land use, no other measurable impacts are anticipated on any other town department; to be conservative we have carried \$15.600 in expenses \({ }^{8}\) for potential miscellaneous budget costs on other departments.

\section*{3. School Department}

As noted previously, the proposed residential community will consist of a mix of one and two bedroom unit types; \(53.8 \%\) of the units will be one bedrooms generating few school age children (SAC). Table Seven details the unit breakdown.

> Table Seven
\begin{tabular}{lc} 
Unit Type & \(\#\) \\
\hline One Bed & 84 \\
\hline Two Bed & 72 \\
\hline Total Units & 156
\end{tabular}

\section*{Enrollment Trends}

Overall enrollment has declined 17.53 \% since 2015 as detailed in Table Eight and Figure Three. In 2020 school grades were re-aligned, with pre-K being separated and the fourth grade moving to the middle school.

\footnotetext{
\({ }^{8}\) Estimated \(\$ 100\) per unit to offset potential other departments such as Recreation.
}

Table Eight
Grade Enrollment Profile: 2015-2022
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{2015/16} & \multirow[b]{2}{*}{2016/17} & \multirow[b]{2}{*}{2017/18} & \multirow[b]{2}{*}{2018/19} & \multirow[b]{2}{*}{2019/20} & \multirow[b]{2}{*}{PK} & \multirow[t]{2}{*}{\[
\begin{gathered}
2020 / 21 \\
\hline 38 \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
2021 / 22 \\
\hline 48 \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
2022 / 23 \\
45 \\
\hline
\end{gathered}
\]} \\
\hline & & & & & & & & & \\
\hline Elementary PK - 4 & 568 & 515 & 502 & 494 & 508 & Elementary K-3 & 354 & 375 & 364 \\
\hline Middle School 5-8 & 411 & 401 & 401 & 380 & 373 & Middle School 4-8 & 439 & 441 & 416 \\
\hline High School 9-12 & 441 & 420 & 373 & 368 & 345 & High School 9-12 & 351 & 359 & 346 \\
\hline Total Enrollment & 1,420 & 1,336 & 1,276 & 1,242 & 1,226 & Total Enrollment & 1,182 & 1,223 & 1,171 \\
\hline
\end{tabular}

Figure Three
School Enrollment 2015-2022
```

1,600
1,400
1,200
1,000
800
600
4 0 0
200
0
2015/16 2016/17 2017/18 2018/19 2019/20 2020/21 2021/22 2022/23

```

\section*{Estimated School Age Children}

To gain an understanding of potential cost implications of the enrollment increases estimated for the proposed apartment complex, the anticipated number of school children (School Age Children/SAC) that may be generated by the proposed development was analyzed. The proposed residential development program will have a mix of one and two bedroom units. One bedroom units generate few SAC and will make up \(53.8 \%\) of all unit types outlined above.

Based upon SAC data obtained from three larger Raymond apartment complexes totaling 156 units, a two bedroom SAC ratio of .304 was calculated \(^{9}\) ( 42 SAC / 138 two bedroom units). The proposed project will have 72 two bedroom units and multiplying these units by .304 ( \(72 \times .304\) ), results in an

\footnotetext{
\({ }^{9}\) NHHFA 2012 Enrollment Study, Appendix noted a per unit ratio for two bedroom rental at .25 for structures with five or more units.
}
estimated 22 school children potentially residing within the planned residential community as detailed in Table Nine.

Table Nine Estimated School Age Children
\begin{tabular}{lccccc} 
& \multicolumn{6}{c}{\begin{tabular}{c} 
\# Units \\
One
\end{tabular}} & \begin{tabular}{c} 
Two \\
Beds
\end{tabular} & SAC & SAC/Two Beds \\
\hline Sunview & 48 & 0 & 48 & 19 & 0.396 \\
\hline Branch River & 48 & 14 & 34 & 10 & 0.294 \\
\hline Canterbury & 78 & 22 & 56 & 13 & 0.232 \\
\hline & 174 & 36 & 138 & 42 & 0.304 \\
\hline \hline Proposed & 156 & 84 & 72 & \(\mathbf{2 2}(21.9)\) &
\end{tabular}

To gain insight into the state of the Raymond school system and how the proposed project may generate service issues, we met with Superintendent Terry Leatherman. At this time there are no capacity issues in the school system and he does not believe costs impact would occur with the addition of the estimated 22 school children; which he believed was a reliable figure. Bussing should also not be an issue. The Superintendent did note that special education enrollment may be a factor and potential costs should be accounted for. Based on recent costs, SPED expenses average \(\$ 24,284\) per student; the population of SPED students equates to approximately \(22.9 \%\) of the total student enrollment. Applying this percentage to the projected number of students, suggest 5 students may need SPED services. Taking into account State Educational aid of \$2,079 per SPED student, special educational costs are estimated to total \$113,662 (5 students \(\times \$ 24,284=\$ 124,122\) - State SPED Aid of \(\$ 10,460\) )

It should also be noted the Town of Raymond receives Adequacy Aid \({ }^{10}\) from the State, which in for FY2023 is estimated to total \(\$ 5,318,975\). At this time Base Adequacy per student aid equals \(\$ 3,866\), which would generate \(\$ 85,052\) in additional revenue based upon 22 new students. Other qualified State Aid that may be generated includes: Free and Reduced Lunch payments of \$1,973 per student, English learners \(\$ 756\) and Third grade reading \(\$ 756\). These monies will assist to offset future costs to educate the estimated new student population.

\footnotetext{
\({ }^{10}\) NH Dept. of Education, FY20203 Estimated, dated Sept. 1, 2022.
}

\section*{FISCAL SUMMARY}

Table Ten
Fiscal Summary
\begin{tabular}{lr}
\multicolumn{2}{c}{ Estimated Gross Revenue } \\
\hline Estimated Municipal Expenses \\
\hline Police & \(\$ 298,187\) \\
\hline Fire & \(\$ 13,000\) \\
\hline Misl. & \(\$ 65,000\) \\
\hline Schools & \(\$ 15,600\) \\
\hline Total Estimated Expenses & \(\$ 113,662\) \\
\hline \multicolumn{2}{c}{ Net Positive Fiscal Impact } \\
& \(\$ 207,262\) \\
\hline \(\mathbf{\$ 9 0 , 9 2 5}\)
\end{tabular}

Based upon the findings in this Report the proposed residential community, it is estimated to produce a yearly positive fiscal impact to the Town of Raymond of \(\$ 90,925\). Key findings supporting this conclusion include:
> The proposed project will include private roads along with private trash disposal.
> Town Emergency Departments will are adequately staffed to address any incidents that may occur on the site.
> Adequate capacity exists within the school system to accommodate the estimated number of new school children; State Educational Aid may generate \(\$ 85,052\) in new revenues to the community.
- Additional positive economic activity will occur in the local economy, with short term benefits of construction jobs and long term benefits of new employment opportunities which will support local businesses including restaurants which contributes to local tax revenue in the community.

\section*{Appendix}

Emergency Call Data to New Hampshire Apartment Complex
\begin{tabular}{l|l|c|c|c|c|c|}
\cline { 2 - 7 } \begin{tabular}{c} 
Year \\
Built
\end{tabular} & \multicolumn{1}{|c|}{ Project } & & & \begin{tabular}{c} 
Avg. Fire \\
Call Per \\
Year
\end{tabular} & \begin{tabular}{c} 
Avg. \\
Call Per \\
Unit
\end{tabular} & \begin{tabular}{c} 
Projected \\
Calls
\end{tabular} \\
\hline 2020 & Gilbert Crossing & Merrimack & 96 & 1 & 0.010 & \\
\hline 2020 & Halstead & Merrimack & 176 & 8 & 0.045 & \\
\hline 2001 & Bowers Landing Apts. & Merrimack & 104 & 2.33 & 0.022 & \\
\hline 1998 & Heritage on the Merrimack & Bedford & 216 & 3.00 & 0.014 & \\
\hline 1997 & Hampshire Green & Bedford & 204 & 9.00 & 0.044 & \\
\hline 2000 & Kensington & Bedford & 100 & 2.00 & 0.020 & \\
\hline 1985 & Bay Ridge Apts. & Nashua & 412 & 31.67 & 0.077 & \\
\hline 1970 & Royal Crest Apts. & Nashua & 902 & 65.67 & 0.073 & \\
\hline 1986 & Boulder Park Apts. & Nashua & 482 & 6.33 & 0.013 & \\
\hline 1967 & Tara Meadows & Somersworth & 270 & 6.00 & 0.022 & \\
\cline { 2 - 7 } & Totals & & 2,962 & 135 & 0.046 & \\
\cline { 2 - 7 } & Proposed Apt. & & 156 & & & \(\mathbf{7}\) \\
\cline { 2 - 7 } & & & & Avg. EMS & Avg. & \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Year \\
Built
\end{tabular}} & & & & Call Per & Call Per & Projected \\
\hline 2020 & Gilbert Crossing & Town & Units & Year & Unit & Calls \\
\hline 2020 & Halstead & Merrimack & 96 & 20 & 0.208 & \\
\hline 2001 & Bowers Landing & Merrimack & 176 & 3 & 0.017 & \\
\hline 1998 & Heritage on the Merrimack & Medford & 216 & 15.33 & 0.071 & \\
\hline 1997 & Hampshire Green & Bedford & 204 & 16.00 & 0.078 & \\
\hline 2000 & Kensington & Bedford & 100 & 7.00 & 0.070 & \\
\hline 1985 & Bay Ridge & Nashua & 412 & 23.67 & 0.057 & \\
\hline 1970 & Royal Crest & Nashua & 902 & 46.67 & 0.052 & \\
\hline 1986 & Boulder Park & Nashua & 482 & 13.33 & 0.028 & \\
\hline 1967 & Totals & & 2,692 & 152 & 0.056 & \\
\cline { 2 - 7 } & Proposed & 156 & & & \(\mathbf{9}\) \\
\hline
\end{tabular}

\section*{DRAINAGE ANALYSIS}

\title{
SEDIMENT AND EROSION CONTROL PLAN
}

\author{
109A, B, C, \& D Main Street \\ Raymond, NH 03077 \\ Tax Map 23, Lots 24, 25, 28 \& 29
}

\section*{Prepared for:}

Tuck Realty Corporation
PO Box 190
Exeter, NH 03833


Prepared bv:
Jones \& Beach Engineers, Inc.
85 Portsmouth Avenue
P.O. Box 219

Stratham, NH 03885
(603) 772-4746

November 22, 2022
REVISED December 21, 2022
REVISED February 10, 2023
REVISED March 20, 2023
JBE Project No. 20564

\section*{EXECUTIVE SUMMARY}

Tuck Realty Corporation proposes to perform a lot line adjustment between the three subject parcels and then construct a 156 -unit apartment complex with two points of access; one main driveway as well as an emergency access road. The proposed development will take place on what will be Raymond Tax Map 23, Lot 25, post-Lot Line Adjustment. This proposed development will additionally involve the construction of new utilities, a paved parking area, and a stormwater management system. The subject parcels are primarily wooded and vacant except for with the exception of some cleared area for singlefamily uses.

A drainage analysis of the portion of the subject parcel that is to be developed as well as the contributing watershed area was conducted for the purpose of estimating the peak rate of stormwater runoff and to subsequently design adequate drainage structures. A summary of the existing and proposed conditions peak rates of runoff in units of cubic feet per second (cfs) is as follows:
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Analysis Point & \multicolumn{2}{|c|}{ 2 Year } & \multicolumn{2}{c|}{ 10 Year } & \multicolumn{2}{c|}{ 25 Year } & \multicolumn{2}{c|}{50 Year } \\
\hline & Pre & Post & Pre & Post & Pre & Post & Pre & Post \\
\hline Analysis Point \#1 & 0.76 & 0.72 & 4.86 & 4.53 & 9.02 & 8.58 & 13.67 & 12.55 \\
\hline Analysis Point \#2 & 0.96 & 0.69 & 6.24 & 4.17 & 12.56 & 8.89 & 19.47 & 14.70 \\
\hline Analysis Point \#3 & 0.59 & 0.57 & 3.71 & 3.30 & 7.35 & 6.77 & 11.34 & 10.11 \\
\hline
\end{tabular}

The project site is located in the Industrial (D) and Residential/Agricultural (B) Zoning Districts. Per Town of Raymond Site Plan Review Regulations Section 6.11.01, flood protection structures were evaluated for the 100-year storm as well and a 100 -year analysis is included with this report, but a reduction in peak flows is not required for the 100-year storm. The study area includes the portions of the site that are slated for development as well as upstream contributing watershed areas. It was determined that the existing topography of the study area is such that surface runoff drains toward three distinct areas, represented for modelling purposes as Analysis Points \(1,2, \& 3\). The addition of the proposed impervious road and parking surfaces as well as the proposed apartment buildings results an increase in the curve number \(\left(\mathrm{C}_{\mathrm{n}}\right)\) and a decrease in the time of concentration \(\left(\mathrm{T}_{\mathrm{c}}\right)\), the result being a potential increase in peak rates of runoff from the site toward the three analysis points. However, due to the implementation of a stormwater management systems, the proposed development results in a decrease in the peak flow rate to all three Analysis Points during all analyzed storm events.

The proposed site development consists of the aforementioned apartment complex with associated access roads, parking area, utilities, grading, and drainage features. The same three Analysis Points were used in the Pre- and Post-Development Analysis. Runoff from all of the developed areas of the subject parcels and incidentally some of the undeveloped areas will be treated and detained through the use of several different practices including a permeable paver apron, a bioretention system, an underground Stormtech detention chamber system, a proprietary Focal Point biofiltration system, and a wet pond. Runoff from the most of the remainder of the site will maintain its existing flow pattern.

The use of Best Management Practices per the NHDES Stormwater Manual have been applied to the design of this drainage system and will be observed during all stages of construction. All land disturbed during construction will be stabilized within thirty days of groundbreaking and abutting property owners will suffer minimal adversity resultant of this development.

\section*{TABLE OF CONTENTS}

\section*{Executive Summary}
\begin{tabular}{lll}
1.0 & Rainfall Characteristics & Page 1 \\
2.0 & Existing Conditions Analysis & Page 1 \\
3.0 & Proposed Conditions Analysis & Page 1 \\
4.0 & Conclusion & Page 5
\end{tabular}

Appendix I Existing Conditions Analysis
2 Year-24 Hour Summary
10 Year - 24 Hour Complete
25 Year - 24 Hour Complete
50 Year - 24 Hour Complete
100 Year - 24 Hour Complete

\section*{Appendix II Proposed Conditions Analysis}

2 Year - 24 Hour Summary
10 Year - 24 Hour Complete
25 Year - 24 Hour Complete
50 Year - 24 Hour Complete
100 Year - 24 Hour Complete
\begin{tabular}{ll} 
Appendix III & Extreme Precipitation Estimates \\
Appendix IV & Test Pit Logs \\
Appendix V & Site Specific Soil Map \\
Appendix VI & NRCS Soil Map \\
Appendix VII & Rip Rap Calculations \\
Appendix VIII & Stormwater Operations and Maintenance Manual \\
Appendix IX & Pre- and Post-Construction Watershed Plans
\end{tabular}

\subsection*{1.0 RAINFALL CHARACTERISTICS}

This drainage report includes an existing conditions analysis of the study area, as well as a proposed condition, or post-construction analysis, of the same location. These analyses were conducted using data for the 2 Year - 24 Hour (3.04"), 10 Year - 24 Hour (4.60"), 25 Year - 24 Hour (5.83"), 50 Year -24 Hour ( \(6.98^{\prime \prime}\) ), and 100 Year - 24 Hour ( \(8.36^{\prime \prime}\) ) storm events using the USDA SCS TR-20 method within the HydroCAD Stormwater Modeling System environment. This data was taken from the Extreme Precipitation Tables developed by the Northeast Regional Climate Center (NRCC).

The post-construction peak rates of runoff will be reduced from the existing condition, thereby minimizing any potential for a negative impact on abutting properties or erosion of wetland systems. This is accomplished through systems designed for treatment of stormwater runoff and attenuation of peak flows resulting from storm events.

\subsection*{2.0 EXISTING CONDITIONS ANALYSIS}

The subject parcels consist primarily of woodland with some cleared area for existing single-family houses. The subject parcels are very heavily sloped and consist of several hills. The existing topography is such that runoff drains toward three distinct analysis points in the existing condition, with the peaks of these hills defining the dividing lines between subcatchments. Additionally, there are existing low points and channels which require separate subcatchments for the runoff that flows toward them before reaching the analysis point. Ultimately, three analysis points and eight subcatchments were defined.

Analysis Point 1 is defined by a catch basin off the side of Main Street. The low point of Main Street is slightly below the grade of this catch basin, so some of the runoff from the slope of the hill is directed toward Analysis Point 1 and some of it is directed toward the low point. Water that reaches the low point infiltrates in the existing condition, but on larger storm events, the low point fills up and runoff enters the catch basin. The subcatchment draining directly toward the low point, the low point itself being modelled as Pond \(1 P\), is modelled as Subcatchment 1 S . The subcatchment that represents the portion of the hill that drains directly toward the catch basin represented as Analysis Point 1 is modelled as Subcatchment 8 S . There is also an uphill depression that is modelled as Pond 2P. The land draining toward this depression is represented as Subcatchment 2S. When Pond 2P fills up, it floods over a berm and down the slope of the hill, through Subcatchment 8 S via Reach 3R and toward Analysis Point 1.

Analysis Point 2 is defined as another section of the frontage of Main Street. The runoff directed toward Analysis Point 2 is modelled as Subcatchment 3S.

Finally, Analysis Point 3 is defined as a wetland system just off the subject parcel on an abutting property. Subcatchments \(4 \mathrm{~S}-76\) drain toward here. Subcatchment 6 S drains directly toward Analysis Point 3. Reach 2 R is included in the Tc path for 6 S because it is internal to the subcatchment. Subcatchments 4S drains toward AP3 through Reach 4R through subcatchment 6S, while Subcatchment 5S drains toward a depression (3P) which overflows down a hill and toward a channel (2R) that ultimately outlets toward AP3.

Existing soil types were determined through a Site-Specific Soil Survey conducted by a Certified Soil Scientist. These soils are categorized into Hydrologic Soil Groups (HSG) B and C. The upland areas
were determined to be entirely HSG B and the wetland areas were determined to be entirely HSG C. Infiltration rates for each respective soil type were determined using published data from "Ksat Values for New Hampshire Soils," sponsored by the Society of Soil Scientists of Northern New England SSSNNE Special Publication No. 5. The lowest published Ksat value within the provided range for each soil type was divided by a factor of safety of two in accordance with Env-Wq 1504.14(c)(3), and the end result was used as the infiltration rate used for design.

\subsection*{3.0 PROPOSED CONDITIONS ANALYSIS}

The proposed construction divides the site into 40 Subcatchments, all ultimately draining toward the three analysis points as previously defined. The site will be graded such that runoff from all on-site impervious areas will be treated and detained post-construction. Runoff will be directed toward treatment and detention practices through the use of overland flow as well as closed drainage systems. Each treatment and detention practice, catch basin, drain manhole, and cross culvert is modelled in HydroCAD as a separate pond with a separate subcatchment draining toward each structure as applicable. Peak rates of runoff will be reduced toward the three analysis points during all analyzed storm events post-construction, and runoff will be treated to Town and AOT standards.

Treatment and detention devices as well as catch basins, dry wells, culverts, and drain manholes were represented as ponds in the analysis. The benches along the side slopes of the entry roads were modelled as channel reaches in order to analyze the extent to which they fill up with water during storms and whether they overflow or the runoff continues along the longitudinal slopes of the benches themselves. The benches will be stabilized with rip rap for erosion control.

\subsection*{4.0 CONCLUSION}

This proposed site development located at 109A, B, \&C Main Street in Raymond, NH will have minimal adverse effect on abutting infrastructures, properties, and wetlands by way of stormwater runoff or siltation. Appropriate steps will be taken to eliminate erosion and sedimentation; these will be accomplished through the construction of an engineered stormwater management system for the proposed development as well as curbing, site grading, slope benching, rip rap, erosion control blankets, a stabilized construction entrance, and fiber berms in lieu of silt fence. The use of Best Management Practices developed by the State of New Hampshire have been utilized in the design of this system and their application will be enforced throughout the construction process.

A site specific, terrain alteration permit (RSA 485:A-17) is required for this site plan as the area of disturbance exceeds 100,000 S.F.

Respectfully Submitted,

\section*{JONES \& BEACH ENGINEERS, INC.}

Daniel Meditz, E.I.T
Project Engineer

\section*{APPENDIX I}

\title{
EXISTING CONDITIONS DRAINAGE ANALYSIS
}

\author{
Summary 2 YEAR \\ Complete 10 YEAR \\ Complete 25 YEAR \\ Complete 50 YEAR \\ Complete 100 YEAR
}


\section*{20564-EX}

Prepared by Jones \& Beach Engineers Inc
HydroCAD® 10.20-2g s/n 00762 © 2022 HydroCAD Software Solutions LLC

\section*{Area Listing (all nodes)}
\begin{tabular}{rll}
\begin{tabular}{c} 
Area \\
(acres)
\end{tabular} & CN & \begin{tabular}{l} 
Description \\
(subcatchment-numbers)
\end{tabular} \\
\hline 0.947 & 61 & \(>75 \%\) Grass cover, Good, HSG B (3S, 8S) \\
0.251 & 85 & Gravel roads, HSG B (8S) \\
0.504 & 98 & Paved parking, HSG B (1S, 3S, 8S) \\
0.244 & 98 & Roofs, HSG B (3S, 8S) \\
29.954 & 55 & Woods, Good, HSG B (1S, 2S, 3S, 4S, 5S, 6S, 8S) \\
1.013 & 70 & Woods, Good, HSG C (3S, 4S) \\
32.913 & 57 & TOTAL AREA
\end{tabular}

\section*{Soil Listing (all nodes)}
\begin{tabular}{rll}
\begin{tabular}{r} 
Area \\
(acres)
\end{tabular} & \begin{tabular}{l} 
Soil \\
Group
\end{tabular} & \begin{tabular}{l} 
Subcatchment \\
Numbers
\end{tabular} \\
\hline 0.000 & HSG A & \\
31.900 & HSG B & \(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S}, 4 \mathrm{~S}, 5 \mathrm{~S}, 6 \mathrm{~S}, 8 \mathrm{~S}\) \\
1.013 & HSG C & \(3 \mathrm{~S}, 4 \mathrm{~S}\) \\
0.000 & HSG D & \\
0.000 & Other & \\
32.913 & & TOTAL AREA
\end{tabular}

Prepared by Jones \& Beach Engine
HydroCAD® 10.20-2g s/n 00762 © 2022
Time span=0
Runoff by SC
Reach routing by Dyn-Sto
Subcatchment1S: Subcatchment1S
Subcatchment2S: Subcatchment2S

Subcatchment3S: Subcatchment3S

\section*{Subcatchment4S: Subcatchment4S}

Runoff Area=110,362 sf \(1.77 \%\) Impervious Runoff Depth \(>0.23^{\prime \prime}\) Flow Length \(=667^{\prime}\) Tc \(=29.5 \mathrm{~min} \mathrm{CN}=56\) Runoff=0.17 cfs 0.048 af

Runoff Area=27,810 sf \(0.00 \%\) Impervious Runoff Depth \(>0.20\) " Flow Length \(=380^{\prime}\) Tc=32.2 \(\mathrm{min} \mathrm{CN}=55\) Runoff \(=0.03 \mathrm{cfs} 0.011\) af

Runoff Area \(=636,817\) sf \(1.44 \%\) Impervious Runoff Depth \(>0.23^{\prime \prime}\) Flow Length \(=998^{\prime} \quad \mathrm{Tc}=32.0 \mathrm{~min} \mathrm{CN}=56\) Runoff \(=0.96 \mathrm{cfs} 0.277\) af

Runoff Area \(=223,276\) sf \(0.00 \%\) Impervious Runoff Depth \(>0.26^{\prime \prime}\) Flow Length=688' Tc=27.1 min CN=57 Runoff=0.44 cfs 0.109 af

Runoff Area=17,061 sf \(0.00 \%\) Impervious Runoff Depth>0.20" Flow Length \(=100^{\prime}\) Tc=16.9 min CN=55 Runoff= 0.03 cfs 0.007 af

Runoff Area \(=122,925\) sf \(\quad 0.00 \%\) Impervious Runoff Depth \(>0.20^{\prime \prime}\) Flow Length=332' Tc=15.3 min CN=55 Runoff=0.19 cfs 0.048 af

Runoff Area=295,459 sf \(\mathbf{7 . 2 6 \%}\) Impervious Runoff Depth \(>0.31^{\prime \prime}\) Flow Length \(=1,018^{\prime} \quad \mathrm{T}=34.1 \mathrm{~min} \quad \mathrm{CN}=59\) Runoff \(=0.76\) cfs 0.176 af

Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow= 0.00 cfs 0.000 af \(\mathrm{n}=0.400 \mathrm{~L}=50.0\) ' \(\mathrm{S}=0.1800\) '/' Capacity \(=169.82 \mathrm{cfs}\) Outflow= 0.00 cfs 0.000 af

Reach 2Rb: Flow Through 6S Avg. Flow Depth \(=0.00^{\prime}\) Max Vel \(=0.00 \mathrm{fps}\) Inflow=0.00 cfs 0.000 af \(\mathrm{n}=0.400 \mathrm{~L}=62.0\) ' \(\mathrm{S}=0.4194\) '/" Capacity=2,470.25 cfs Outflow=0.00 cfs 0.000 af

Reach 2Rc: Flow Through 6S Avg. Flow Depth \(=0.00^{\prime}\) Max Vel \(=0.00 \mathrm{fps}\) Inflow \(=0.00 \mathrm{cfs} 0.000\) af \(\mathrm{n}=0.400 \mathrm{~L}=120.0^{\prime} \mathrm{S}=0.0167 \%\) Capacity= 68.83 cfs Outflow \(=0.00 \mathrm{cfs} 0.000 \mathrm{af}\)

Reach 3Ra: Flow Through Avg. Flow Depth \(=0.00^{\prime}\) Max Vel \(=0.00 \mathrm{fps}\) Inflow=0.00 cfs 0.000 af \(\mathrm{n}=0.400 \mathrm{~L}=131.0^{\prime} \mathrm{S}=0.1069 \%\) Capacity=201.91 cfs Outflow=0.00 cfs 0.000 af

Reach 3Rb: Flow Through Avg. Flow Depth \(=0.00\) Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af \(\mathrm{n}=0.400 \mathrm{~L}=175.0^{\prime} \quad \mathrm{S}=0.2286\) '/' Capacity=573.66 cfs Outflow=0.00 cfs 0.000 af

Reach 4Ra: Flow Through Avg. Flow Depth=0.20' Max Vel=0.38 fps Inflow=0.44 cfs 0.109 af


\author{
Reach 4Rb: Flow Through
}

Avg. Flow Depth=0.10' Max Vel=0.33 fps Inflow=0.44 cfs 0.109 af \(\mathrm{n}=0.400 \mathrm{~L}=71.0^{\prime} \mathrm{S}=0.2817 \mathrm{I} / \mathrm{C}\) Cacity=\(=276.81 \mathrm{cfs}\) Outflow=0.44 cfs 0.108 af

\section*{Reach AP1: Analysis Point 1}

\section*{Reach AP2: Analysis Point 2}

Inflow \(=0.76\) cfs 0.188 af Outflow \(=0.76\) cfs 0.188 af

Inflow=0.96 cfs 0.277 af Outflow=0.96 cfs 0.277 af
Reach AP3: AnalysisPoint \(3 \quad\) Inflow=0.59 cfs 0.156 af
Pond 1P: Low Point \(\quad\)\begin{tabular}{r} 
Peak Elev=199.31' Storage \(=1,041 \mathrm{cf}\) Inflow \(=0.17 \mathrm{cfs} 0.048 \mathrm{af}\)
\end{tabular}

Pond 2P: Depression

Pond 3P: Depression

Peak Elev=199.31' Storage \(=1,041\) cf Inflow=0.17 cfs 0.048 af

Peak Elev=256.31' Storage \(=468\) cf Inflow=0.03 cfs 0.011 af Outflow \(=0.00\) cfs 0.000 af

Peak Elev=258.28' Storage=290 cf Inflow=0.03 cfs 0.007 af Outflow \(=0.00\) cfs 0.000 af

Total Runoff Area \(=32.913\) ac Runoff Volume \(=\mathbf{0} .676\) af Average Runoff Depth \(=0.25^{\prime \prime}\)
\(97.73 \%\) Pervious \(=32.166\) ac \(\quad 2.27 \%\) Impervious \(=0.748\) ac

Time span \(=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 481\) points \(\times 9\)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S

\section*{Subcatchment2S: Subcatchment2S}

Subcatchment3S: Subcatchment3S

Subcatchment4S: Subcatchment4S

\section*{Subcatchment5S: Subcatchment5S}

\section*{Subcatchment6S: Subcatchment6S}

\section*{Subcatchment8S: Subcatchment8S}

\section*{Reach 2Ra: Flow Through 6S}
\(\mathrm{n}=0.400\)
Reach 2Rb: Flow Through 6S
 \(\mathrm{n}=0.400 \mathrm{~L}=62.0^{\prime} \mathrm{S}=0.4194\) '/' Capacity=2,470.25 cfs Outflow=0.00 cfs 0.000 af

Reach 2Rc: Flow Through 6S Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af \(\mathrm{n}=0.400 \mathrm{~L}=120.0^{\prime} \mathrm{S}=0.0167^{\prime \prime} / \mathrm{Capacity}=68.83 \mathrm{cfs}\) Outflow=0.00 cfs 0.000 af

\author{
Reach 3Ra: Flow Through
}

Avg. Flow Depth=0.05' Max Vel=0.14 fps Inflow=0.14 cfs 0.029 af \(\mathrm{n}=0.400 \mathrm{~L}=131.0^{\prime} \mathrm{S}=0.1069\) 'f Capacity=201.91 cfs Outflow=0.09 cfs 0.028 af

Reach 3Rb: Flow Through Avg. Flow Depth=0.03' Max Vel=0.14 fps Inflow=0.09 cfs 0.028 af n=0.400 L=175.0' \(\mathrm{S}=0.2286\) //' Capacity=573.66 cfs Outflow=0.07 cfs 0.028 af

Reach 4Ra: Flow Through Avg. Flow Depth=0.46' Max Vel=0.65 fps Inflow=2.58 cfs 0.380 af \(\mathrm{n}=0.400 \mathrm{~L}=40.0^{\prime} \mathrm{S}=0.1500\) \% Capacity= 62.15 cfs Outflow=2.58 cfs 0.380 af

Reach 4Rb: Flow Through Avg. Flow Depth=0.23' Max Vel=0.57 fps Inflow=2.58 cfs 0.380 af \(\mathrm{n}=0.400 \mathrm{~L}=71.0^{\prime} \mathrm{S}=0.2817^{\prime} \%\) Capacity \(=276.81 \mathrm{cfs}\) Outflow=2.56 cfs 0.379 af

\section*{Reach AP1: Analysis Point 1}

\section*{Reach AP2: Analysis Point 2}

Inflow=4.86 cfs 0.733 af Outflow \(=4.86 \mathrm{cfs} 0.733 \mathrm{af}\)

Inflow=6.24 cfs 1.015 af Outflow=6.24 cfs 1.015 af


\section*{Summary for Subcatchment 1S: Subcatchment 1S}
Runoff \(=\quad 1.12\) cfs @ 12.51 hrs, Volume= \(\quad 0.176\) af, Depth> \(0.83^{\prime \prime}\) Routed to Pond 1P : Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & ea (sf) & CN & escription & & & \\
\hline & \[
\begin{array}{r}
1,957 \\
08,405
\end{array}
\] & 98
55 & \multicolumn{2}{|l|}{Paved parking, HSG B Woods, Good, HSG B} & & \\
\hline & \[
\begin{array}{r}
10,362 \\
08,405 \\
1,957
\end{array}
\] & 56 &  & \begin{tabular}{l}
verage \\
vious Area rvious Area
\end{tabular} & & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description & \\
\hline 24.8 & 100 & 0.0150 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 1.3 & 163 & 0.1800 & 2.12 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.3 & 129 & 0.1090 & 1.65 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.1 & 101 & 0.0890 & 1.49 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.0 & 174 & 0.3300 & 2.87 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline
\end{tabular}

Summary for Subcatchment 2S: Subcatchment 2S
Runoff \(=\quad 0.25 \mathrm{cfs} @ 12.56 \mathrm{hrs}\), Volume= \(\quad 0.041 \mathrm{af}\), Depth> \(0.78^{\text {" }}\)
Routed to Pond 2P : Depression
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
Area (sf) CN Description

27,81055 Woods, Good, HSG B 27,810 100.00\% Pervious Area
\begin{tabular}{rrrrl}
\begin{tabular}{r} 
Tc \\
\((\mathrm{min})\)
\end{tabular} & \begin{tabular}{r} 
Length \\
\((\mathrm{ffeet})\)
\end{tabular} & \begin{tabular}{r} 
Slope \\
\((\mathrm{ft/ft})\)
\end{tabular} & \begin{tabular}{r} 
Velocity \\
\((\mathrm{ft} / \mathrm{sec})\)
\end{tabular} & \begin{tabular}{r} 
Capacity \\
\((\mathrm{cfs})\)
\end{tabular} \\
\hline 29.2 & 100 & 0.0100 & 0.06 & \begin{tabular}{l} 
Description \\
1.1
\end{tabular} \\
61 & 0.0330 & 0.91 & \begin{tabular}{l} 
Sheet Flow, \\
Woods: Light underbrush n= \\
Shallow Concentrated Flow,
\end{tabular} \\
0.3 & 27 & 0.0740 & 1.36 & \begin{tabular}{l} 
Woodland Kv=5.0 fps \\
Shallow Concentrated Flow,
\end{tabular} \\
0.8 & 104 & 0.2100 & 2.29 & \begin{tabular}{l} 
Woodland Kv=5.0 fps \\
Shallow Concentrated Flow, \\
Woodland Kv=5.0 fps \\
Shallow Concentrated Flow, \\
Woodland Kv=5.0 fps
\end{tabular} \\
0.8 & 88 & 0.1400 & 1.87 & \\
\hline
\end{tabular}
32.2380 Total

\section*{Summary for Subcatchment 3S: Subcatchment 3S}

Runoff \(=6.24\) cfs @ 12.55 hrs, Volume \(=\quad 1.015\) af, Depth> 0.83" Routed to Reach AP2 : Analysis Point 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{rrl} 
Area (sf) & CN & Description \\
\hline 568,855 & 55 & Woods, Good, HSG B \\
18,326 & 70 & Woods, Good, HSG C \\
4,531 & 98 & Roofs, HSG B \\
40,469 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
4,636 & 98 & Paved parking, HSG B \\
\hline 636,817 & 56 & Weighted Average \\
627,650 & & \(98.56 \%\) Pervious Area \\
9,167 & & \(1.44 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity
(cfs) & Description & \\
\hline 5.0 & 37 & 0.0160 & 0.12 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} & \\
\hline 9.0 & 29 & 0.0160 & 0.05 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 3.2 & 20 & 0.1000 & 0.10 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \[
\mathrm{P} 2=3.02^{\prime \prime}
\] \\
\hline 3.4 & 14 & 0.0430 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.5 & 32 & 0.0430 & 1.04 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.2 & 41 & 0.4400 & 3.32 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 2.1 & 132 & 0.0450 & 1.06 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.7 & 55 & 0.0730 & 1.35 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.9 & 132 & 0.2400 & 2.45 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.2 & 100 & 0.0800 & 1.41 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.9 & 64 & 0.0625 & 1.25 & & Shallow Concentrated Fiow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.7 & 102 & 0.2350 & 2.42 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.1 & 8 & 0.1540 & 1.96 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 3.2 & 168 & 0.0300 & 0.87 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.9 & 64 & 0.0300 & 1.21 & & Shallow Concentrated Flow, Short Grass Pasture \(\mathrm{Kv}=7.0 \mathrm{fps}\) & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 4S: Subcatchment 4S}

Runoff \(=\quad 2.58 \mathrm{cfs} @ 12.46 \mathrm{hrs}\), Volume= \(\quad 0.380 \mathrm{af}\), Depth> \(0.89^{\prime \prime}\)
Routed to Reach 4Ra : Flow Through Subcatchment 7S
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{rrl} 
Area (sf) & CN & Description \\
\hline 197,469 & 55 & Woods, Good, HSG B \\
25,807 & 70 & Woods, Good, HSG C \\
\hline 223,276 & 57 & Weighted Average \\
223,276 & & \(100.00 \%\) Pervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 3.5 & 23 & 0.1090 & 0.11 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 10.1 & 52 & 0.0380 & 0.09 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 2.4 & 20 & 0.2000 & 0.14 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02\) "
\end{tabular} \\
\hline 1.7 & 5 & 0.0320 & 0.05 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 1.0 & 56 & 0.0320 & 0.89 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.2 & 22 & 0.0910 & 1.51 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.6 & 42 & 0.0480 & 1.10 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.3 & 33 & 0.1210 & 1.74 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps \\
\hline 1.0 & 58 & 0.0350 & 0.94 & & Shallow Concentrated Flow, Woodiand \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.9 & 89 & 0.1120 & 1.67 & & Shallow Concentrated Flow, Woodiand \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.3 & 32 & 0.0940 & 1.53 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 5.1 & 256 & 0.0136 & 0.84 & 282.32 & Trap/Vee/Rect Channel Flow, Bot. W=44.00' \(\mathrm{D}=4.00^{\prime} \mathrm{Z}=10.0 \mathrm{I} / \mathrm{\prime}\) Top.W=124.00' \(\mathrm{n}=0.400\) Sheet flow: Woods+light brush \\
\hline
\end{tabular}

\subsection*{27.1688 Total}

\section*{Summary for Subcatchment 5S: Subcatchment 5S}

Runoff \(=0.19\) cfs @ 12.30 hrs , Volume \(=0.026\) af, Depth> 0.78"
Routed to Pond 3P : Depression
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\)
Type III 24-hr 10-Year 24-Hour Rainfall=4.60"


\section*{Summary for Subcatchment 6S: Subcatchment 6S}

\author{
Runoff \(=1.43\) cfs @ 12.27 hrs, Volume= \\ 0.184 af, Depth> \(0.78^{\prime \prime}\) \\ Routed to Reach AP3 : Analysis Point 3
}

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Area (sf)} & CN & \multicolumn{3}{|l|}{Description} \\
\hline & 22,925 & 55 & oods, Go & od, HSG B & \\
\hline \multicolumn{2}{|r|}{122,925} & \multicolumn{3}{|r|}{100.00\% Pervious Area} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 7.7 & 67 & 0.1270 & 0.15 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400 \quad \mathrm{P} 2=3.02\) "
\end{tabular} \\
\hline 2.1 & 20 & 0.3000 & 0.16 & & Sheet Flow, \\
\hline 2.5 & 13 & 0.0800 & 0.09 & & Woods: Light underbrush \(\mathrm{n}=0.400 \mathrm{P} 2=3.02{ }^{\prime \prime}\)
Sheet Flow, \\
\hline 2.5 & 1 & 0.0800 & 0.09 & & Woods: Light underbrush \(\mathrm{n}=0.400 \quad \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.1 & 12 & 0.0800 & 1.41 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.2 & 27 & 0.1480 & 1.92 & & Shallow Concentrated Flow, Woodiand \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.4 & 73 & 0.4380 & 3.31 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 2.3 & 120 & 0.0167 & 0.86 & 68.89 & Trap/Vee/Rect Channel Flow, Bot.W=8.00' D=4.00' Z=3.0'/' Top.W=32.00' \(\mathrm{n}=0.400\) \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 8S: Subcatchment \(8 \mathbf{S}\)}

\section*{Runoff \(=3.65\) cfs @ 12.56 hrs, Volume= \(\quad 0.567\) af, Depth> 1.00"}

Routed to Reach AP1 : Analysis Point 1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{rrl} 
Area \((\mathrm{sf})\) & CN & Description \\
\hline 15,363 & 98 & Paved parking, HSG B \\
798 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
6,086 & 98 & Roofs, HSG B \\
10,953 & 85 & Gravel roads, HSG B \\
262,259 & 55 & Woods, Good, HSG B \\
\hline 295,459 & 59 & Weighted Average \\
274,010 & & 92.74\% Pervious Area \\
21,449 & & \(7.26 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & Slope
\[
(\mathrm{ft} / \mathrm{ft})
\] & Velocity (ft/sec) & Capacity
(cfs) & Description & \\
\hline 14.3 & 46 & 0.0125 & 0.05 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 4.9 & 36 & 0.1110 & 0.12 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(P 2=3.02^{\prime \prime}\) \\
\hline 5.4 & 24 & 0.0390 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.5 & 27 & 0.0390 & 0.99 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 26 & 0.0770 & 1.39 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 61 & 0.2290 & 2.39 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 24 & 0.0830 & 1.44 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 3.3 & 127 & 0.0160 & 0.63 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 45 & 0.3110 & 2.79 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \\
\hline 0.4 & 56 & 0.1790 & 2.12 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 48 & 0.2080 & 2.28 & & Shallow Concentrated Flow, Woodland Kv=5.0 fps & \\
\hline 0.8 & 80 & 0.1000 & 1.58 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.7 & 86 & 0.1860 & 2.16 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.1 & 102 & 0.0490 & 1.55 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 1.0 & 230 & 0.0330 & 3.69 & & Shallow Concentrated Flow, Paved Kv= 20.3 fps & \\
\hline
\end{tabular}
34.1 1,018 Total

\section*{Summary for Reach 2Ra: Flow Through 6S}
\begin{tabular}{lllll} 
Inflow Area \(=\) & 0.392 ac, & \(0.00 \%\) & Impervious, Inflow Depth \(=0.00 "\) & for \(10-\) Year 24-Hour event \\
Inflow & \(=\) & \(0.00 \mathrm{cfs} @\) & 0.00 hrs , Volume \(=\) & 0.000 af \\
Outflow & \(=\) & \(0.00 \mathrm{cfs} @\) & 0.00 hrs , Volume \(=\) & 0.000 af , Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\)
\end{tabular}

Routed to Reach 2Rb : Flow Through 6S
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt=0.05 hrs / 9
Max. Velocity \(=0.00 \mathrm{fps}\), Min. Travel Time \(=0.0 \mathrm{~min}\)
Avg. Velocity \(=0.00 \mathrm{fps}\), Avg. Travel Time \(=0.0 \mathrm{~min}\)
Peak Storage= 0 cf @ 0.00 hrs
Average Depth at Peak Storage \(=0.00^{\prime}\)
Bank-Full Depth \(=4.00^{\prime}\) Flow Area= 64.0 sf, Capacity \(=169.82\) cfs
\(4.00^{\prime} \times 4.00^{\prime}\) deep channel, \(n=0.400\) Sheet flow: Woods+light brush
Side Slope Z-value=3.0 '/' Top Width= 28.00'
Length=50.0' Slope \(=0.1800\) '/'
Inlet Invert= 259.00', Outlet Invert= 250.00'


Summary for Reach 2Rb: Flow Through 6S
\begin{tabular}{lllll} 
Inflow Area \(=\) & 0.392 ac, & \(0.00 \%\) Impervious, Inflow Depth \(=0.00 "\) & for \(10-\) Year 24 -Hour event \\
Inflow & \(=\) & \(0.00 \mathrm{cfs} @\) & 0.00 hrs, Volume \(=\) & 0.000 af \\
Outflow & \(=\) & \(0.00 \mathrm{cfs} @\) & 0.00 hrs , Volume \(=\) & 0.000 af, Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\)
\end{tabular}

Routed to Reach 2Rc : Flow Through 6S
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.00 \mathrm{fps}\), Min. Travel Time \(=0.0 \mathrm{~min}\)
Avg. Velocity \(=0.00 \mathrm{fps}\), Avg. Travel Time \(=0.0 \mathrm{~min}\)
Peak Storage= 0 cf @ 0.00 hrs
Average Depth at Peak Storage \(=0.00^{\prime}\)
Bank-Full Depth \(=4.00\) ' Flow Area= 432.0 sf, Capacity \(=2,470.25\) cfs
\(100.00^{\prime} \times 4.00^{\prime}\) deep channel, \(n=0.400\) Sheet flow: Woods+light brush
Side Slope Z-value= 2.0 '/' Top Width= 116.00'
Length=62.0' Slope \(=0.4194\) '//
Inlet Invert=250.00', Outlet Invert=224.00'


\section*{Summary for Reach 2Rc: Flow Through 6S}
\begin{tabular}{lllll} 
Inflow Area \(=\) & 0.392 ac, & \(0.00 \%\) Impervious, Inflow Depth \(=0.00^{n \prime}\) & for \(10-\) Year 24 -Hour event \\
Inflow & \(=\) & \(0.00 \mathrm{cfs} @\) & 0.00 hrs, Volume \(=\) & 0.000 af \\
Outflow & \(=\) & \(0.00 \mathrm{cfs} @\) & 0.00 hrs , Volume \(=\) & 0.000 af, Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\)
\end{tabular}

Routed to Reach AP3 : Analysis Point 3
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.00 \mathrm{fps}\), Min. Travel Time \(=0.0 \mathrm{~min}\)
Avg. Velocity \(=0.00 \mathrm{fps}\), Avg. Travel Time \(=0.0 \mathrm{~min}\)

Peak Storage= 0 cf @ 0.00 hrs
Average Depth at Peak Storage \(=0.00^{\prime}\)
Bank-Full Depth \(=4.00^{\prime}\) Flow Area \(=80.0\) sf, Capacity \(=68.83\) cfs
\(8.00^{\prime} \times 4.00^{\prime}\) deep channel, \(n=0.400\) Sheet flow: Woods+light brush
Side Slope Z-value= 3.0 '/' Top Width= 32.00'
Length \(=120.0^{\prime}\) Slope \(=0.0167^{\prime} / \prime\)
Inlet Invert=224.00', Outlet Invert=222.00'


\section*{Summary for Reach 3Ra: Flow Through Subcatchment 8 S}

Inflow Area \(=0.638\) ac, \(0.00 \%\) Impervious, Inflow Depth \(>0.54\) " for 10-Year 24-Hour event Inflow = \(0.14 \mathrm{cfs} @ 13.07 \mathrm{hrs}\), Volume= 0.029 af Outflow \(=\quad 0.09 \mathrm{cfs} @ 13.46 \mathrm{hrs}\), Volume \(=10.028 \mathrm{af}\), Atten \(=37 \%\), Lag \(=23.0 \mathrm{~min}\)

Routed to Reach 3Rb: Flow Through Subcatchment 8 S
Routing by Dyn-Stor-Ind method, Time Span \(=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.14 \mathrm{fps}\), Min. Travel Time \(=16.0 \mathrm{~min}\)
Avg. Velocity \(=0.10 \mathrm{fps}\), Avg. Travel Time \(=22.1 \mathrm{~min}\)
Peak Storage= 82 cf @ 13.46 hrs
Average Depth at Peak Storage \(=0.05^{\prime}\), Surface Width= 17.01'
Bank-Full Depth=2.00' Flow Area= 137.3 sf, Capacity= 201.91 cf
\(103.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush
Length \(=131.0^{\prime}\) Slope \(=0.1069\) '/'
Inlet Invert \(=256.00^{\prime}\), Outlet Invert= \(242.00^{\prime}\)


\section*{Summary for Reach 3Rb: Flow Through Subcatchment 8 S}
[61] Hint: Exceeded Reach 3Ra outlet invert by 0.03 @ 13.90 hrs


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity= 0.14 fps , Min. Travel Time \(=20.4 \mathrm{~min}\)
Avg. Velocity \(=0.11 \mathrm{fps}\), Avg. Travel Time \(=26.5 \mathrm{~min}\)
Peak Storage= 89 cf @ 13.91 hrs
Average Depth at Peak Storage \(=0.03^{\prime}\), Surface Width \(=24.48^{\prime}\)
Bank-Full Depth= \(2.00^{\prime}\) Flow Area= 266.7 sf, Capacity= 573.66 cfs
\(200.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush Length= 175.0' Slope \(=0.2286{ }^{\prime} / \prime\)
Inlet Invert=242.00', Outlet Invert=202.00'


\section*{Summary for Reach 4Ra: Flow Through Subcatchment 7S}


Routed to Reach 4Rb : Flow Through Subcatchment 7S
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.65 \mathrm{fps}, \mathrm{Min}\). Travel Time \(=1.0 \mathrm{~min}\)
Avg. Velocity \(=0.33 \mathrm{fps}\), Avg. Travel Time \(=2.0 \mathrm{~min}\)
Peak Storage= 158 cf @ 12.47 hrs
Average Depth at Peak Storage= \(0.46^{\prime}\), Surface Width= 12.93'
Bank-Full Depth= \(2.00^{\circ}\) Flow Area= 36.0 sf, Capacity= 62.15 cfs
\(27.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush Length \(=40.0^{\prime}\) Slope \(=0.1500\) '/' Inlet Invert= 252.00', Outlet Invert= 246.00'


Summary for Reach 4Rb: Flow Through Subcatchment 7S
[61] Hint: Exceeded Reach 4Ra outlet invert by 0.23 @ 12.50 hrs


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.57 \mathrm{fps}\), Min. Travel Time \(=2.1 \mathrm{~min}\)
Avg. Velocity \(=0.29 \mathrm{fps}\), Avg. Travel Time \(=4.1 \mathrm{~min}\)
Peak Storage= 322 cf @ 12.50 hrs
Average Depth at Peak Storage \(=0.23\) ' , Surface Width \(=29.51^{\prime}\)
Bank-Full Depth=2.00' Flow Area= 116.0 sf, Capacity= 276.81 cfs
\(87.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush Length= 71.0 ' Slope \(=0.2817\) '/'
Inlet Invert=246.00', Outlet Invert= 226.00'


\section*{Summary for Reach AP1: Analysis Point 1}
[40] Hint: Not Described (Outflow=Inflow)
\begin{tabular}{llll} 
Inflow Area \(=\) & 9.955 ac, & \(5.40 \%\) Impervious, Inflow Depth \(>0.88 "\) for \(10-\) Year 24 -Hour event \\
Inflow & \(=\) & \(4.86 \mathrm{cfs} @\) & 12.57 hrs, Volume \(=\) \\
Outflow & \(=\) & \(4.86 \mathrm{cfs} @\) & 12.57 hrs, Volume \(=\)
\end{tabular}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach AP2: Analysis Point 2}
[40] Hint: Not Described (Outflow=Inflow)
\begin{tabular}{lllll} 
Inflow Area \(=\) & 14.619 ac, & \(1.44 \%\) Impervious, Inflow Depth \(>0.83\) " for \(10-\) Year 24-Hour event \\
Inflow & \(=\) & \(6.24 \mathrm{cfs} @\) & 12.55 hrs, Volume= & 1.015 af \\
Outflow & \(=\) & \(6.24 \mathrm{cfs} @\) & 12.55 hrs , Volume= & 1.015 af , Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\)
\end{tabular}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt=0.05 hrs / 9

\section*{Summary for Reach AP3: Analysis Point 3}
[40] Hint: Not Described (Outflow=Inflow)


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Pond 1P: Low Point}
[90] Warning: Qout>Qin may require smaller dt or Finer Routing

\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \#0 & Primary & 199.31' & Automatic Storage Overflow (Discharged without head) \\
\hline \#1 & Discarded & 198.50' & \(0.300 \mathrm{in} / \mathrm{hr}\) Exfiltration over Surface area \\
\hline \multirow{6}{*}{\#2} & \multirow{6}{*}{Primary} & & Conductivity to Groundwater Elevation = 195.83' Phase-In=0.01' \\
\hline & & \multirow[t]{5}{*}{199.30'} & 20.0' long x \(1.0{ }^{\prime}\) breadth Broad-Crested Rectangular Weir \\
\hline & & & \(\begin{array}{llllllllllllllllll}\text { Head (feet) } & 0.20 & 0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60 & 1.80 & 2.00\end{array}\) \\
\hline & & & \[
2.50 \quad 3.00
\] \\
\hline & & & Coef. (English) 2.692 .722 .752 .852 .983 .083 .203 .283 .31 \\
\hline & & & 3.303 .313 .32 \\
\hline
\end{tabular}

Discarded OutFlow Max=0.01 cfs @ 12.55 hrs HW=199.31' (Free Discharge)
—1=Exfiltration (Controls 0.01 cfs)
Primary OutFlow Max=0.05 cfs @ 12.57 hrs HW=199.31' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Weir Controls 0.05 cfs @ 0.27 fps )

\section*{Summary for Pond 2P: Depression}


Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= \(0.05 \mathrm{hrs} / 9\) Peak Elev= 256.36' @ 13.05 hrs Surf.Area=2,263 sf Storage= 569 cf

Plug-Flow detention time \(=183.4\) min calculated for 0.029 af ( \(69 \%\) of inflow)
Center-of-Mass det. time=74.4 min (993.8-919.3)
\begin{tabular}{|c|c|c|c|}
\hline Volume & \multicolumn{3}{|l|}{Invert Avail.Storage Storage Description} \\
\hline \#1 & 256.00' & 1,682 cf Custo & tage Data (Prismatic)_isted below (Recalc) \\
\hline Elevation (feet) & Surf.Area (sq-ft) & Inc.Store (cubic-feet) & Cum.Store (cubic-feet) \\
\hline 256.00 & 882 & 0 & 0 \\
\hline 256.35 & 2,263 & 550 & 550 \\
\hline 256.85 & 2,263 & 1,132 & 1,682 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{5}{*}{\#1} & \multirow[t]{5}{*}{Primary} & \multirow[t]{5}{*}{256.35'} & 70.0' long x 4.0' breadth Broad-Crested Rectangular Weir \\
\hline & & & Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80 \\
\hline & & & 2.503 .003 .504 .004 .505 .005 .50 \\
\hline & & & Coef. (English) 2.382 .5412 .6912 .682 .6712 .6712 .6512 .6612 .66 \\
\hline & & & 2.682 .722 .732 .762 .792 .883 .073 .32 \\
\hline
\end{tabular}

Primary OutFlow Max=0.13 cfs @ 13.07 hrs HW=256.36' TW=256.03' (Dynamic Tailwater)
—1 \(^{1=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(W e i r ~ C o n t r o l s ~} 0.13 \mathrm{cfs} @ 0.22 \mathrm{fps}\) )

\section*{Summary for Pond 3P: Depression}


Prepared by Jones \& Beach Engineers Inc Printed 3/20/2023
HydroCAD® 10.20-2g s/n 00762 © 2022 HydroCAD Software Solutions LLC Page 13
\begin{tabular}{rrrrrr}
\begin{tabular}{r} 
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r} 
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r} 
Perim. \\
(feet)
\end{tabular} & \begin{tabular}{r} 
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r} 
Cum.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r} 
Wet.Area \\
(sq-ft)
\end{tabular} \\
\hline 258.00 & 871 & 121.0 & 0 & 0 & 871 \\
259.00 & 2,526 & 233.0 & 1,627 & 1,627 & 4,031 \\
259.01 & 2,526 & 233.0 & 25 & 1,652 & 4,033
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{5}{*}{\#1} & Primary & 259.00' & \(14.0^{\prime}\) long \(\times 4.0^{\circ}\) breadth Broad-Crested Rectangular Weir \\
\hline & & & Head (feet) \(0.200 .400 .600 .801 .001 .201 .401 .601 .80 \quad 2.00\) \\
\hline & & & 2.503 .003 .504 .004 .505 .005 .50 \\
\hline & & & Coef. (English) 2.382 .542 .692 .682 .672 .6712 .6512 .662 .66 \\
\hline & & & 2.682 .722 .732 .762 .792 .883 .073 .32 \\
\hline
\end{tabular}

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=258.00' TW=259.00' (Dynamic Tailwater)
\(亡_{1=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~}^{0.00} \mathrm{cfs}\) )

Time span \(=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 481\) points \(\times 9\)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S

Subcatchment2S: Subcatchment2S

Subcatchment3S: Subcatchment3S

Subcatchment4S: Subcatchment4S

Subcatchment5S: Subcatchment5S

Subcatchment6S: Subcatchment6S

\section*{Subcatchment8S: Subcatchment8S}

\section*{Reach 2Ra: Flow Through 6S}

Reach 2Rb: Flow Through 6S
\(\mathrm{n}=0.400\)

Runoff Area=110,362 sf \(1.77 \%\) Impervious Runoff Depth>1.48" Flow Length=667' \(\mathrm{Tc}=29.5 \mathrm{~min} \mathrm{CN}=56\) Runoff=2.26 cfs 0.313 af

Runoff Area \(=27,810\) sf \(0.00 \%\) Impervious Runoff Depth \(>1.41^{\prime \prime}\) Flow Length=380' Tc=32.2 min CN=55 Runoff=0.51 cfs 0.075 af

Runoff Area \(=636,817\) sf \(\quad 1.44 \%\) Impervious Runoff Depth \(>1.48^{\prime \prime}\) Flow Length \(=998^{\prime} \quad \mathrm{Tc}=32.0 \mathrm{~min} \quad \mathrm{CN}=56\) Runoff \(=12.56 \mathrm{cfs} 1.807\) af

Runoff Area=223,276 sf \(0.00 \%\) Impervious Runoff Depth \(>1.56\) " Flow Length=688' \(\mathrm{Tc}=27.1 \mathrm{~min} \quad \mathrm{CN}=57\) Runoff=5.05 cfs 0.667 af

Runoff Area \(=17,061\) sf \(0.00 \%\) Impervious Runoff Depth \(>1.41^{\prime \prime}\) Flow Length=100' \(\mathrm{Tc}=16.9 \mathrm{~min} \quad \mathrm{CN}=55\) Runoff=0.41 cfs 0.046 af

Runoff Area \(=122,925\) sf \(0.00 \%\) Impervious Runoff Depth \(>1.42^{\prime \prime}\) Flow Length \(=332^{\prime} \quad \mathrm{Tc}=15.3 \mathrm{~min} \quad \mathrm{CN}=55\) Runoff \(=3.04 \mathrm{cfs} 0.333\) af

Runoff Area \(=295,459\) sf \(7.26 \%\) Impervious Runoff Depth \(>1.71^{\prime \prime}\) Flow Length \(=1,018^{\prime} \quad \mathrm{Tc}=34.1 \mathrm{~min} \quad \mathrm{CN}=59\) Runoff=6.79 cfs 0.969 af

Avg. Flow Depth=0.03' Max Vel=0.18 fps Inflow=0.04 cfs 0.008 af \(\mathrm{L}=50.0^{\prime} \quad \mathrm{S}=0.1800 \mathrm{I} / \mathrm{I}\) Capacity=169.82 cfs Outflow=0.02 cfs 0.008 af

Avg. Flow Depth=0.00' Max Vel=0.28 fps Inflow=0.02 cfs 0.008 af \(\mathrm{n}=0.400 \quad \mathrm{~L}=62.0^{\prime} \mathrm{S}=0.4194\) '/' Capacity=\(=2,470.25 \mathrm{cfs} \quad\) Outflow=0.02 cfs 0.008 af

Reach 2Rc: Flow Through 6S
Avg. Flow Depth=0.04' Max Vel=0.06 fps Inflow=0.02 cfs 0.008 af \(\mathrm{n}=0.400 \mathrm{~L}=120.0\) ' \(\mathrm{S}=0.0167^{\prime \prime} \mathrm{I}\) Capacity \(=68.83 \mathrm{cfs}\) Outflow=0.02 cfs 0.007 af

Reach 3Ra: Flow Through
\(\mathrm{n}=0.400 \mathrm{~L}=1310^{\prime} \mathrm{S}=0.1069^{\prime \prime}\) Capacity=201.91 cfs Outflow=0.36 cfs 0.061 af

\section*{Reach 3Rb: Flow Through}

Avg. Flow Depth=0.06' Max Vel=0.21 fps Inflow=0.36 cfs 0.061 af \(\mathrm{n}=0.400 \mathrm{~L}=175.0^{\prime} \mathrm{S}=0.2286 \mathrm{I} /\) ' Capacity=573.66 cfs Outflow=0.29 cfs 0.061 af

\section*{Reach 4Ra: Flow Through}

Reach 4Rb: Flow Through Avg. Flow Depth=0.31' Max Vel=0.70 fps Inflow=5.05 cfs 0.667 af \(\mathrm{n}=0.400 \mathrm{~L}=71.0^{\prime} \mathrm{S}=0.2817 \boldsymbol{\prime} /\) Capacity=276.81 cfs Outflow=5.04 cfs 0.665 af

\author{
Reach AP1: Analysis Point 1
}

Inflow=9.02 cfs 1.305 af Outflow \(=9.02\) cfs 1.305 af

\section*{Reach AP2: Analysis Point 2}

20564-EX
Prepared by Jones \& Beach Engineers Inc HydroCAD® 10.20-2g s/n 00762 © 2022 HydroCAD Software Solutions LLC
Reach AP3: Analysis Point 3

Pond 1P: Low Point

Pond 2P: Depression

Pond 3P: Depression

Inflow=7.35 cfs 1.006 af Outflow=7.35 cfs 1.006 af

Peak Elev=199.31' Storage=1,044 cf Inflow=2.26 cfs 0.313 af Discarded \(=0.01\) cfs 0.014 af Primary \(=2.23\) cfs 0.275 af Outflow=2.25 cfs 0.289 af

Peak Elev=256.37' Storage=599 cf Inflow=0.51 cfs 0.075 af Outflow=0.52 cfs 0.062 af

Peak Elev=259.03' Storage=1,652 cf Inflow=0.41 cfs 0.046 af Outflow=0.04 cfs 0.008 af

Total Runoff Area \(=32.913\) ac Runoff Volume \(=4.210\) af Average Runoff Depth \(=1.53\) " 97.73\% Pervious \(=32.166\) ac \(2.27 \%\) Impervious \(=0.748\) ac

\section*{Summary for Subcatchment 1S: Subcatchment 1S}

\author{
Runoff \(=2.26\) cfs @ 12.47 hrs, Volume= \\ 0.313 af, Depth> 1.48" \\ Routed to Pond 1P : Low Point
}

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & a (sf) & CN & escription & & \\
\hline & \[
\begin{array}{r}
1,957 \\
08,405
\end{array}
\] & & \multicolumn{2}{|l|}{Paved parking, HSG B Woods, Good, HSG B} & \\
\hline & \[
\begin{array}{r}
10,362 \\
08,405 \\
1,957
\end{array}
\] & 56 & \multicolumn{2}{|l|}{Weighted Average 98.23\% Pervious Area 1.77\% Impervious Area} & \\
\hline Tc (min) & Length (feet) & Slope
\[
\text { ( } \mathrm{t} / \mathrm{ft} \text { ) }
\] & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 24.8 & 100 & 0.0150 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 1.3 & 163 & 0.1800 & 2.12 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 1.3 & 129 & 0.1090 & 1.65 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 1.1 & 101 & 0.0890 & 1.49 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 1.0 & 174 & 0.3300 & 2.87 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 29.5 & 667 & Total & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 2S: Subcatchment 2S}

Runoff \(=0.51\) cfs @ 12.52 hrs, Volume \(=0.075\) af, Depth> 1.41" Routed to Pond 2P : Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"

Area (sf) CN Description
27,81055 Woods, Good, HSG B
27,810 100.00\% Pervious Area
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & \[
\begin{gathered}
\text { Length } \\
\text { (feet) }
\end{gathered}
\] & Slope (ft/ft) & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 29.2 & 100 & 0.0100 & 0.06 & & Sheet Flow, \\
\hline & & & & & Woods: Light underbrush \(\mathrm{n}=0.400 \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 1.1 & 61 & 0.0330 & 0.91 & & Shallow Concentrated Flow, \\
\hline & & & & & Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.3 & 27 & 0.0740 & 1.36 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.8 & 104 & 0.2100 & 2.29 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.8 & 88 & 0.1400 & 1.87 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 32.2 & 380 & Total & & & \\
\hline
\end{tabular}

Summary for Subcatchment 3S: Subcatchment 3S
Runoff \(=12.56 \mathrm{cfs} @ 12.51 \mathrm{hrs}\), Volume= 1.807 af, Depth> \(1.48^{\prime \prime}\)
Routed to Reach AP2 : Analysis Point 2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{rrl} 
Area (sf) & CN & Description \\
\hline 568,855 & 55 & Woods, Good, HSG B \\
18,326 & 70 & Woods, Good, HSG C \\
4,531 & 98 & Roofs, HSG B \\
40,469 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
4,636 & 98 & Paved parking, HSG B \\
\hline 636,817 & 56 & Weighted Average \\
627,650 & & \(98.56 \%\) Pervious Area \\
9,167 & & \(1.44 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & \begin{tabular}{l}
Length \\
(feet)
\end{tabular} & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
(\mathrm{cfs})
\end{array}
\] & Description \\
\hline 5.0 & 37 & 0.0160 & 0.12 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 9.0 & 29 & 0.0160 & 0.05 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02\) "
\end{tabular} \\
\hline 3.2 & 20 & 0.1000 & 0.10 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 3.4 & 14 & 0.0430 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.5 & 32 & 0.0430 & 1.04 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps \\
\hline 0.2 & 41 & 0.4400 & 3.32 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 2.1 & 132 & 0.0450 & 1.06 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps \\
\hline 0.7 & 55 & 0.0730 & 1.35 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.9 & 132 & 0.2400 & 2.45 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 1.2 & 100 & 0.0800 & 1.41 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.9 & 64 & 0.0625 & 1.25 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps \\
\hline 0.7 & 102 & 0.2350 & 2.42 & & Shallow Concentrated Flow, Woodiand \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.1 & 8 & 0.1540 & 1.96 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 3.2 & 168 & 0.0300 & 0.87 & & Shallow Concentrated Flow, Woodland Kv=5.0 fps \\
\hline 0.9 & 64 & 0.0300 & 1.21 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 4S: Subcatchment 4S}

\author{
Runoff \(=5.05\) cfs @ 12.43 hrs, Volume \(=0.667 \mathrm{af}\), Depth> \(1.56^{\prime \prime}\)
}

Routed to Reach 4Ra : Flow Through Subcatchment 7S
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{rrl} 
Area (sf) & CN & Description \\
\hline 197,469 & 55 & Woods, Good, HSG B \\
25,807 & 70 & Woods, Good, HSG C \\
\hline 223,276 & 57 & Weighted Average \\
223,276 & & \(100.00 \%\) Pervious Area
\end{tabular}

27.1688 Total

Summary for Subcatchment 5S: Subcatchment 5S
Runoff \(=0.41 \mathrm{cfs} @ 12.27 \mathrm{hrs}\), Volume= \(\quad 0.046 \mathrm{af}\), Depth> 1.41"
Routed to Pond 3P : Depression
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"


\section*{Summary for Subcatchment 6S: Subcatchment 6S}
Runoff \(=\quad 3.04 \mathrm{cfs} @ 12.24 \mathrm{hrs}\), Volume \(=\quad 0.333\) af, Depth> 1.42"
Routed to Reach AP3:Analysis Point 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Area (sf) CN Description} \\
\hline \multicolumn{2}{|r|}{122,925} & \multicolumn{3}{|l|}{55 Woods, Good, HSG B} & \\
\hline \multicolumn{2}{|r|}{122,925} & \multicolumn{3}{|r|}{100.00\% Pervious Area} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & Slope
\[
(\mathrm{ft} / \mathrm{ft})
\] & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 7.7 & 67 & 0.1270 & 0.15 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400 \quad \mathrm{P} 2=3.02\) "
\end{tabular} \\
\hline 2.1 & 20 & 0.3000 & 0.16 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02\) "
\end{tabular} \\
\hline 2.5 & 13 & 0.0800 & 0.09 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.1 & 12 & 0.0800 & 1.41 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.2 & 27 & 0.1480 & 1.92 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.4 & 73 & 0.4380 & 3.31 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 2.3 & 120 & 0.0167 & 0.86 & 68.89 & Trap/Vee/Rect Channel Flow, Bot.W=8.00' D=4.00' Z=3.0'/' Top.W=32.00' \(\mathrm{n}=0.400\) \\
\hline
\end{tabular}
15.3332 Total

\section*{Summary for Subcatchment 8S: Subcatchment 8S}

Runoff \(=6.79\) cfs @ 12.52 hrs, Volume \(=0.969\) af, Depth> 1.71"
Routed to Reach AP1 : Analysis Point 1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{rrl} 
Area \((\mathrm{sf})\) & CN & Description \\
\hline 15,363 & 98 & Paved parking, HSG B \\
798 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
6,086 & 98 & Roofs, HSG B \\
10,953 & 85 & Gravel roads, HSG B \\
262,259 & 55 & Woods, Good, HSG B \\
\hline 295,459 & 59 & Weighted Average \\
274,010 & & \(92.74 \%\) Pervious Area \\
21,449 & & \(7.26 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & Capacity (cfs) & \multicolumn{2}{|l|}{Description} \\
\hline 14.3 & 46 & 0.0125 & 0.05 & & Sheet Flow, & \\
\hline & & & & & Woods: Light underbrush \(n=0.400\) & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 4.9 & 36 & 0.1110 & 0.12 & & Sheet Flow, & \\
\hline & & & & & Woods: Light underbrush \(\mathrm{n}=0.400\) & P2 \(=3.02\) " \\
\hline 5.4 & 24 & 0.0390 & 0.07 & & Sheet Flow, & \\
\hline & & & & & Woods: Light underbrush \(\mathrm{n}=0.400\) & P2 \(=3.02\) " \\
\hline 0.5 & 27 & 0.0390 & 0.99 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 26 & 0.0770 & 1.39 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 61 & 0.2290 & 2.39 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 24 & 0.0830 & 1.44 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 3.3 & 127 & 0.0160 & 0.63 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 45 & 0.3110 & 2.79 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 56 & 0.1790 & 2.12 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 48 & 0.2080 & 2.28 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.8 & 80 & 0.1000 & 1.58 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.7 & 86 & 0.1860 & 2.16 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.1 & 102 & 0.0490 & 1.55 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 1.0 & 230 & 0.0330 & 3.69 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) & \\
\hline
\end{tabular}

\section*{Summary for Reach 2Ra: Flow Through 6S}
[80] Warning: Exceeded Pond 3P by 0.02 @ 18.10 hrs ( 0.14 cfs 0.022 af)


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.18 \mathrm{fps}\), Min. Travel Time \(=4.6 \mathrm{~min}\)
Avg. Velocity \(=0.18 \mathrm{fps}\), Avg. Travel Time \(=4.6 \mathrm{~min}\)
Peak Storage= 6 cf @ 18.09 hrs
Average Depth at Peak Storage= 0.03 ' , Surface Width= 4.17 \({ }^{\prime}\)
Bank-Full Depth \(=4.00^{\prime}\) Flow Area= 64.0 sf, Capacity \(=169.82 \mathrm{cfs}\)
\(4.00^{\prime} \times 4.00^{\prime}\) deep channel, \(n=0.400\) Sheet flow: Woods+light brush
Side Slope Z-value= 3.0 '/' Top Width= 28.00'
Length=50.0' Slope= \(0.1800{ }^{\prime \prime} /\)
Inlet Invert=259.00', Outlet Invert=250.00'


\section*{Summary for Reach 2Rb: Flow Through 6S}

Inflow Area \(=0.392 \mathrm{ac}, 0.00 \%\) Impervious, Inflow Depth \(>0.25\) " for 25 -Year 24-Hour event Inflow = 0.02 cfs @ 18.09 hrs , Volume= 0.008 af Outflow = 0.02 cfs @ 18.17 hrs , Volume= 0.008 af, Atten \(=2 \%\), Lag \(=4.6 \mathrm{~min}\)

Routed to Reach 2Rc: Flow Through 6S
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt=0.05 hrs \(/ 9\)
Max. Velocity \(=0.28 \mathrm{fps}\), Min. Travel Time \(=3.7 \mathrm{~min}\)
Avg. Velocity \(=0.28 \mathrm{fps}\), Avg. Travel Time \(=3.7 \mathrm{~min}\)
Peak Storage=5 cf @ 18.17 hrs
Average Depth at Peak Storage \(=0.00^{\prime}\), Surface Width \(=100.00^{\prime}\)
Bank-Full Depth \(=4.00^{\prime}\) Flow Area= 432.0 sf, Capacity \(=2,470.25\) cfs
\(100.00^{\prime} \times 4.00^{\prime}\) deep channel, \(n=0.400\) Sheet flow: Woods+light brush
Side Slope Z-value= 2.0 '/' Top Width= 116.00'
Length=62.0' Slope \(=0.4194 \mathrm{I}^{\prime} /\)
Inlet Invert= 250.00', Outlet Invert= 224.00'


Summary for Reach 2Rc: Flow Through 6S
[62] Hint: Exceeded Reach 2Rb OUTLET depth by 0.04' @ 19.70 hrs
Inflow Area \(=0.392 \mathrm{ac}, 0.00 \%\) Impervious, Inflow Depth \(>0.25\) " for 25-Year 24-Hour event
Inflow \(=0.02\) cfs @ 18.17 hrs, Volume= 0.008 af

Outflow = \(0.02 \mathrm{cfs} @ 19.69 \mathrm{hrs}\), Volume= 0.007 af , Atten= \(14 \%\), Lag= 91.2 min
Routed to Reach AP3 : Analysis Point 3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, \(\mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.06 \mathrm{fps}\), Min. Travel Time \(=36.0 \mathrm{~min}\)
Avg. Velocity \(=0.06 \mathrm{fps}\), Avg. Travel Time \(=36.0 \mathrm{~min}\)
Peak Storage= 38 cf @ 19.69 hrs
Average Depth at Peak Storage \(=0.04^{\prime}\), Surface Width= 8.23'
Bank-Full Depth \(=4.00^{\prime}\) Flow Area= 80.0 sf, Capacity= 68.83 cfs
\(8.00^{\prime} \times 4.00^{\prime}\) deep channel, \(n=0.400\) Sheet flow: Woods+light brush
Side Slope Z-value= 3.0 '/' Top Width= 32.00'
Length \(=120.0^{\prime}\) Slope \(=0.0167 \mathrm{l} /\)
Inlet Invert=224.00', Outlet Invert=222.00'


\section*{Summary for Reach 3Ra: Flow Through Subcatchment 85}


Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}\), \(\mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Max. Velocity= 0.21 fps , Min. Travel Time= 10.3 min
Avg. Velocity \(=0.12 \mathrm{fps}\), Avg. Travel Time \(=18.5 \mathrm{~min}\)
Peak Storage= 225 cf @ 12.83 hrs
Average Depth at Peak Storage= 0.11' , Surface Width= 23.89'
Bank-Full Depth=2.00' Flow Area= 137.3 sf, Capacity= 201.91 cfs
\(103.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush Length \(=131.0^{\prime}\) Slope \(=0.1069 ~ / /\) Inlet Invert= 256.00', Outlet Invert=242.00'


\section*{Summary for Reach 3Rb: Flow Through Subcatchment 8S}
[61] Hint: Exceeded Reach 3Ra outlet invert by 0.06' @ 13.05 hrs


Routed to Reach AP1 : Analysis Point 1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt=0.05 hrs / 9
Max. Velocity \(=0.21 \mathrm{fps}, \mathrm{Min}\). Travel Time \(=14.0 \mathrm{~min}\)
Avg. Velocity \(=0.13 \mathrm{fps}\), Avg. Travel Time \(=23.1 \mathrm{~min}\)
Peak Storage= 243 cf @ 13.07 hrs
Average Depth at Peak Storage \(=0.06^{\prime}\), Surface Width \(=34.66^{\prime}\)
Bank-Full Depth=2.00' Flow Area= 266.7 sf, Capacity= 573.66 cfs
\(200.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush
Length \(=175.0^{\prime}\) Slope \(=0.2286\) '/'
Inlet Invert=242.00', Outlet Invert= 202.00'


\section*{Summary for Reach 4Ra: Flow Through Subcatchment 75}
\begin{tabular}{|c|c|c|c|}
\hline Inflow Area = & 5.126 ac , & 0.00\% Impervious, In & h > 1.56" for 25 -Year 24-Hour event \\
\hline Inflow & 5.05 cfs @ & 12.43 hrs , Volume= & 0.667 af \\
\hline Outflow & 5.05 cfs @ & 12.44 hrs , Volume= & 0.667 af, Atten \(=0 \%\), Lag \(=0.6 \mathrm{~min}\) \\
\hline Routed to & 4Rb : Flow & hrough Subcatchment 7S & \\
\hline
\end{tabular}

Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.80 \mathrm{fps}\), Min. Travel Time \(=0.8 \mathrm{~min}\)
Avg. Velocity \(=0.37 \mathrm{fps}\), Avg. Travel Time \(=1.8 \mathrm{~min}\)
Peak Storage= 252 cf @ 12.44 hrs
Average Depth at Peak Storage \(=0.63^{\prime}\), Surface Width= 15.10'
Bank-Full Depth= 2.00' Flow Area= 36.0 sf, Capacity= 62.15 cfs
\(27.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush
Length \(=40.0\) ' Slope \(=0.1500\) '/'
Inlet Invert \(=252.00^{\prime}\), Outlet Invert=246.00'


\section*{Summary for Reach 4Rb: Flow Through Subcatchment 7S}
[61] Hint: Exceeded Reach 4Ra outlet invert by 0.31 @ 12.45 hrs


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.70 \mathrm{fps}\), Min. Travel Time \(=1.7 \mathrm{~min}\)
Avg. Velocity \(=0.33 \mathrm{fps}\), Avg. Travel Time \(=3.6 \mathrm{~min}\)
Peak Storage= 514 cf @ 12.46 hrs
Average Depth at Peak Storage \(=0.31^{\prime}\), Surface Width \(=34.50^{\prime}\)
Bank-Full Depth= 2.00' Flow Area= 116.0 sf, Capacity= 276.81 cfs
\(87.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(\mathrm{n}=0.400\) Sheet flow: Woods+light brush Length= 71.0' Slope= 0.2817 '/'
Inlet Invert= 246.00', Outlet Invert= 226.00'


\section*{Summary for Reach AP1: Analysis Point 1}
[40] Hint: Not Described (Outflow=Inflow)


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

Prepared by Jones \& Beach Engineers Inc

\section*{Summary for Reach AP2: Analysis Point 2}
[40] Hint: Not Described (Outflow=Inflow)
Inflow Area \(=14.619 \mathrm{ac}, 1.44 \%\) Impervious, Inflow Depth \(>1.48^{\prime \prime}\) for 25-Year 24-Hour event Inflow = 12.56 cfs @ 12.51 hrs, Volume= 1.807 af Outflow = \(12.56 \mathrm{cfs} @ 12.51 \mathrm{hrs}\), Volume \(=1.807 \mathrm{af}\), Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach AP3: Analysis Point 3}
[40] Hint: Not Described (Outflow=Inflow)


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Pond 1P: Low Point}


Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs} / 9\) Peak Elev=199.31' @ 12.30 hrs Surf.Area=1,663 sf Storage= 1,044 cf

Plug-Flow detention time \(=51.6 \mathrm{~min}\) calculated for 0.289 af ( \(92 \%\) of inflow)
Center-of-Mass det. time \(=14.7 \mathrm{~min}(907.9-893.2\) )

2.503 .00

Coef. (English) 2.692 .722 .752 .852 .983 .083 .203 .283 .31
3.303 .313 .32

Discarded OutFlow Max=0.01 cfs @ 12.30 hrs HW=199.31' (Free Discharge)
\(\Psi_{1=\text { Exfiltration ( Controls } 0.01 \mathrm{cfs} \text { ) }}\)
Primary OutFlow Max=0.05 cfs @ \(12.50 \mathrm{hrs} \mathrm{HW}=199.31^{\prime} \mathrm{TW}=0.00^{\prime}\) (Dynamic Tailwater)
-2=Broad-Crested Rectangular Weir(Weir Controls 0.05 cfs @ 0.27 fps )

\section*{Summary for Pond 2P: Depression}
[90] Warning: Qout>Qin may require smaller dt or Finer Routing


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev= 256.37' @ 12.61 hrs Surf.Area= 2,263 sf Storage= 599 cf
Plug-Flow detention time \(=104.8 \mathrm{~min}\) calculated for 0.062 af ( \(83 \%\) of inflow)
Center-of-Mass det. time= \(34.1 \mathrm{~min}(932.3-898.2\) )
\begin{tabular}{crrr} 
Volume & Invert & Avail.Storage & Storage Description \\
\hline\(\# 1\) & \(256.00^{\prime}\) & 1,682 cf & Custom Stage Data (Prismatic)Listed below (Recalc)
\end{tabular}
\begin{tabular}{rrrr}
\begin{tabular}{r} 
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r} 
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r} 
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r} 
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 256.00 & 882 & 0 & 0 \\
256.35 & 2,263 & 550 & 550 \\
256.85 & 2,263 & 1,132 & 1,682
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{5}{*}{\#1} & Primary & 256.35' & 70.0' long x 4.0' breadth Broad-Crested Rectangular Weir \\
\hline & & & Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80 \\
\hline & & & 2.503 .003 .504 .004 .505 .005 .50 \\
\hline & & & Coef. (English) \(2.382 .542 .692 .682 .672 .67 \quad 2.6512 .662 .66\) \\
\hline & & & \(\begin{array}{lllllllllll}2.68 & 2.72 & 2.73 & 2.76 & 2.79 & 2.88 & 3.07 & 3.32\end{array}\) \\
\hline
\end{tabular}

Primary OutFlow Max=0.51 cfs @ \(12.61 \mathrm{hrs} H W=256.37^{\prime}\) TW=256.07' (Dynamic Tailwater)
—1=Broad-Crested Rectangular Weir(Weir Controls \(0.51 \mathrm{cfs} @ 0.34 \mathrm{fps})\)

\section*{Summary for Pond 3P: Depression}
[93] Warning: Storage range exceeded by \(0.02^{\prime}\)
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=61)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Inflow Area =} & \multirow[t]{2}{*}{\[
0.392 \mathrm{ac},
\]} & \multicolumn{2}{|l|}{0.00\% Impervious, Inflow Depth > 1.41} & \\
\hline & & 12.27 hrs , Volume= & 0.046 af & \\
\hline Outflow & 0.04 cfs @ & 17.85 hrs , Volume= & 0.008 af , & en= \(89 \%\), Lag \(=334.9 \mathrm{~min}\) \\
\hline Primary & 0.04 cfs @ & 17.85 hrs , Volume= & 0.008 af & \\
\hline
\end{tabular} Routed to Reach 2Ra: Flow Through 6S

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=259.03' @ 18.04 hrs Surf.Area= \(2,526 \mathrm{sf}\) Storage \(=1,652 \mathrm{cf}\)
Plug-Flow detention time \(=502.7\) min calculated for 0.008 af ( \(18 \%\) of inflow)
Center-of-Mass det. time \(=345.6 \mathrm{~min}(1,232.4-886.8)\)


Time span \(=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 481\) points \(\times 9\)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

\section*{Subcatchment1S: Subcatchment1S}

\section*{Subcatchment2S: Subcatchment2S}

\section*{Subcatchment3S: Subcatchment3S}

Subcatchment4S: Subcatchment4S

\section*{Subcatchment5S: Subcatchment5S}

\section*{Subcatchment6S: Subcatchment6S}

Subcatchment8S: Subcatchment8S

Runoff Area=110,362 sf \(1.77 \%\) Impervious Runoff Depth \(>2.19^{\prime \prime}\) Flow Length=667' Tc=29.5 min CN=56 Runoff=3.50 cfs 0.462 af

Runoff Area \(=27,810\) sf \(0.00 \%\) Impervious Runoff Depth \(>2.09\) " Flow Length=380' \(\mathrm{Tc}=32.2 \mathrm{~min} \mathrm{CN}=55\) Runoff \(=0.80 \mathrm{cfs} 0.111\) af

Runoff Area=636,817 sf \(1.44 \%\) Impervious Runoff Depth>2.19" Flow Length=998' \(\quad\) c \(c=32.0 \mathrm{~min} \quad \mathrm{CN}=56\) Runoff \(=19.47 \mathrm{cfs} 2.664\) af

Runoff Area=223,276 sf \(0.00 \%\) Impervious Runoff Depth \(>2.28^{\prime \prime}\) Flow Length=688' \(\mathrm{Tc}=27.1 \mathrm{~min} \quad \mathrm{CN}=57\) Runoff=7.74 cfs 0.976 af

Runoff Area=17,061 sf \(0.00 \%\) Impervious Runoff Depth>2.10" Flow Length \(=100^{\prime} \mathrm{Tc}=16.9 \mathrm{~min} \mathrm{CN}=55\) Runoff \(=0.65 \mathrm{cfs} 0.069\) af

Runoff Area \(=122,925\) sf \(0.00 \%\) Impervious Runoff Depth \(>2.10^{\prime \prime}\) Flow Length=332' Tc=15.3 min CN=55 Runoff=4.81 cfs 0.495 af

Runoff Area=295,459 sf \(\mathbf{7 . 2 6 \%}\) Impervious Runoff Depth>2.47" Flow Length \(=1,018\) ' \(\mathrm{Cc}=34.1 \mathrm{~min} \mathrm{CN}=59\) Runoff=10.13 cfs 1.397 af

Avg. Flow Depth=0.08' Max Vel=0.28 fps Inflow=0.12 cfs 0.031 af \(\mathrm{n}=0.400 \mathrm{~L}=50.0^{\prime} \quad \mathrm{S}=0.1800\) '/' Capacity=169.82 cfs Outflow=0.09 cfs 0.031 af

Reach 2Rb: Flow Through 6S Avg. Flow Depth=0.00' Max Vel=0.28 fps Inflow=0.09 cfs 0.031 af \(\mathrm{n}=0.400 \mathrm{~L}=62.0^{\prime} \mathrm{S}=0.4194 \mathrm{I} / \mathrm{I}\) Capacity=2,470.25 cfs Outflow=0.09 cfs 0.031 af

Reach 2Rc: Flow Through 6S Avg. Flow Depth=0.09' Max Vel=0.10 fps Inflow=0.09 cfs 0.031 af \(\mathrm{n}=0.400 \mathrm{~L}=120.0^{\prime} \mathrm{S}=0.0167^{\prime} / \mathrm{l}\) Capacity=\(=68.83 \mathrm{cfs}\) Outflow=0.08 cfs 0.030 af

Reach 3Ra: Flow Through Avg. Flow Depth=0.15' Max Vel=0.26 fps Inflow=0.81 cfs 0.099 af \(\mathrm{n}=0.400 \mathrm{~L}=131.0^{\prime} \mathrm{S}=0.1069\) // Capacity=201.91 cfs Outflow=0.70 cfs 0.098 af

Reach 3Rb: Flow Through Avg. Flow Depth=0.08' Max Vel=0.26 fps Inflow=0.70 cfs 0.098 af \(\mathrm{n}=0.400 \mathrm{~L}=175.0^{\prime} \mathrm{S}=0.2286 \mathrm{I} / \mathrm{Capacity=573.66cfs} \mathrm{Outflow=0.59} \mathrm{cfs} \mathrm{0.097af}\),

Reach 4Ra: Flow Through Avg. Flow Depth=0.76' Max Vel=0.91 fps Inflow=7.74 cfs 0.976 af \(\mathrm{n}=0.400 \mathrm{~L}=40.0^{\prime} \mathrm{S}=0.1500\) \% Capacity=62.15 cfs Outflow=7.73 cfs 0.975 af

\author{
Reach 4Rb: Flow Through
}

Avg. Flow Depth=0.38' Max Vel=0.79 fps Inflow=7.73 cfs 0.975 af \(\mathrm{n}=0.400 \mathrm{~L}=71.0^{\prime} \mathrm{S}=0.2817^{\prime} \mathrm{f}\) ' Capacity=276.81 cfs Outflow=7.71 cfs 0.974 af

\author{
Reach AP1: Analysis Point 1
}

Inflow=13.67 cfs 1.916 af Outflow=13.67 cfs 1.916 af

\section*{Reach AP2: Analysis Point 2}

Inflow=19.47 cfs 2.664 af Outflow=19.47 cfs 2.664 af

Pond 1P: Low Point

Pond 2P: Depression

Pond 3P: Depression

Peak Elev=199.31' Storage=1,044 cf Inflow=3.50 cfs 0.462 af Discarded \(=0.01\) cfs 0.015 af Primary \(=3.47 \mathrm{cfs} 0.423\) af Outflow \(=3.49 \mathrm{cfs} 0.438\) af

Peak Elev=256.38' Storage=615 cf Inflow=0.80 cfs 0.111 af Outflow=0.81 cfs 0.099 af

Peak Elev=259.08' Storage \(=1,652\) cf Inflow \(=0.65\) cfs 0.069 af Outflow=0.12 cfs 0.031 af

Total Runoff Area \(=32.913\) ac Runoff Volume \(=\mathbf{6 . 1 7 2}\) af Average Runoff Depth \(=2.25\) " \(97.73 \%\) Pervious \(=32.166\) ac \(\quad 2.27 \%\) Impervious \(=0.748\) ac

\section*{Summary for Subcatchment 1S: Subcatchment 1S}
Runoff \(=3.50 \mathrm{cfs} @ 12.45 \mathrm{hrs}\), Volume= \(\quad 0.462\) af, Depth> 2.19"

Routed to Pond 1P : Low Point
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 50-Year 24-Hour Rainfall=6.98"


\section*{Summary for Subcatchment 2S: Subcatchment 2S}

Runoff \(=0.80 \mathrm{cfs} @ 12.49 \mathrm{hrs}\), Volume= \(\quad 0.111\) af, Depth> 2.09" Routed to Pond 2P : Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 50-Year 24-Hour Rainfall=6.98"
\begin{tabular}{rrl} 
Area \((\mathrm{sf})\) & CN & Description \\
\hline 27,810 & 55 & Woods, Good, HSG B \\
\hline 27,810 & & \(100.00 \%\) Pervious Area
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & \[
\begin{aligned}
& \text { Capacity } \\
& \text { (cfs) }
\end{aligned}
\] & Description \\
\hline 29.2 & 100 & 0.0100 & 0.06 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02\) "
\end{tabular} \\
\hline 1.1 & 61 & 0.0330 & 0.91 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.3 & 27 & 0.0740 & 1.36 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.8 & 104 & 0.2100 & 2.29 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.8 & 88 & 0.1400 & 1.87 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline
\end{tabular}

\section*{\(32.2 \quad 380\) Total}

\section*{Summary for Subcatchment 3S: Subcatchment 3S}

Runoff \(=19.47\) cfs @ 12.49 hrs, Volume=
2.664 af, Depth> 2.19"

Routed to Reach AP2 : Analysis Point 2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 50-Year 24-Hour Rainfall=6.98"
\begin{tabular}{rrl} 
Area \((\mathrm{sf})\) & CN & Description \\
\hline 568,855 & 55 & Woods, Good, HSG B \\
18,326 & 70 & Woods, Good, HSG C \\
4,531 & 98 & Roofs, HSG B \\
40,469 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
4,636 & 98 & Paved parking, HSG B \\
\hline 636,817 & 56 & Weighted Average \\
627,650 & & \(98.56 \%\) Pervious Area \\
9,167 & & \(1.44 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope
\[
(\mathrm{ft} / \mathrm{ft})
\] & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description & \\
\hline 5.0 & 37 & 0.0160 & 0.12 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} & \\
\hline 9.0 & 29 & 0.0160 & 0.05 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \[
P 2=3.02^{\prime \prime}
\] \\
\hline 3.2 & 20 & 0.1000 & 0.10 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 3.4 & 14 & 0.0430 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \[
\mathrm{P} 2=3.02^{\prime \prime}
\] \\
\hline 0.5 & 32 & 0.0430 & 1.04 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.2 & 41 & 0.4400 & 3.32 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 2.1 & 132 & 0.0450 & 1.06 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.7 & 55 & 0.0730 & 1.35 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.9 & 132 & 0.2400 & 2.45 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.2 & 100 & 0.0800 & 1.41 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.9 & 64 & 0.0625 & 1.25 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.7 & 102 & 0.2350 & 2.42 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.1 & 8 & 0.1540 & 1.96 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \\
\hline 3.2 & 168 & 0.0300 & 0.87 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.9 & 64 & 0.0300 & 1.21 & & Shallow Concentrated Flow, Short Grass Pasture \(\mathrm{Kv}=7.0 \mathrm{fps}\) & \\
\hline 32.0 & 998 & Total & & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 4S: Subcatchment 4S}
Runoff \(=\quad 7.74\) cfs @ 12.41 hrs, Volume= 0.976 af, Depth> 2.28"

Routed to Reach 4Ra : Flow Through Subcatchment 7S
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"
\begin{tabular}{rrl} 
Area \((\mathrm{sf})\) & CN & Description \\
\hline 197,469 & 55 & Woods, Good, HSG B \\
25,807 & 70 & Woods, Good, HSG C \\
\hline 223,276 & 57 & Weighted Average \\
223,276 & & \(100.00 \%\) Pervious Area
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 3.5 & 23 & 0.1090 & 0.11 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02\) "
\end{tabular} \\
\hline 10.1 & 52 & 0.0380 & 0.09 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 2.4 & 20 & 0.2000 & 0.14 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 1.7 & 5 & 0.0320 & 0.05 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 1.0 & 56 & 0.0320 & 0.89 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.2 & 22 & 0.0910 & 1.51 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps \\
\hline 0.6 & 42 & 0.0480 & 1.10 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.3 & 33 & 0.1210 & 1.74 & & Shallow Concentrated Flow, Woodiand \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 1.0 & 58 & 0.0350 & 0.94 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.9 & 89 & 0.1120 & 1.67 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.3 & 32 & 0.0940 & 1.53 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 5.1 & 256 & 0.0136 & 0.84 & 282.32 & Trap/Vee/Rect Channel Flow, Bot.W=44.00' D=4.00' Z= 10.0 '/' Top.W=124.00' \(\mathrm{n}=0.400\) Sheet flow: Woods+light brush \\
\hline
\end{tabular}

\subsection*{27.1688 Total}

\section*{Summary for Subcatchment 5S: Subcatchment 5S}

Runoff \(=0.65 \mathrm{cfs} @ 12.26 \mathrm{hrs}\), Volume \(=\quad 0.069\) af, Depth> 2.10"
Routed to Pond 3P : Depression
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr \(50-\) Year 24-Hour Rainfall=6.98"


\section*{Summary for Subcatchment 6S: Subcatchment 6S}
Runoff \(=\quad 4.81 \mathrm{cfs} @ 12.23 \mathrm{hrs}\), Volume \(=\quad 0.495 \mathrm{af}\), Depth> 2.10"

Routed to Reach AP3 : Analysis Point 3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 50 -Year 24-Hour Rainfall \(=6.98^{\prime \prime}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\frac{\text { Area (sf) }}{122,925}
\]}} & CN & \multicolumn{3}{|l|}{Description} \\
\hline & & 55 & oods, Good & od, HSG B & \\
\hline \multicolumn{2}{|r|}{122,925} & \multicolumn{3}{|r|}{100.00\% Pervious Area} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 7.7 & 67 & 0.1270 & 0.15 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02\) "
\end{tabular} \\
\hline 2.1 & 20 & 0.3000 & 0.16 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad P 2=3.02 "\)
\end{tabular} \\
\hline 2.5 & 13 & 0.0800 & 0.09 & & Sheet Flow, \\
\hline 0.1 & 12 & 0.0800 & 1.41 & & \begin{tabular}{l}
Woods: Light underbrush \(\mathrm{n}=0.400 \quad \mathrm{P} 2=3.02\) " \\
Shallow Concentrated Flow, \\
Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\)
\end{tabular} \\
\hline 0.2 & 27 & 0.1480 & 1.92 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.4 & 73 & 0.4380 & 3.31 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 2.3 & 120 & 0.0167 & 0.86 & 68.89 & Trap/Vee/Rect Channel Flow, Bot.W=8.00' \(\mathrm{D}=4.00^{\prime} \mathrm{Z}=3.0^{\prime \prime} /{ }^{\prime}\) Top.W=32.00' \(n=0.400\) \\
\hline 15.3 & 332 & Total & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 8S: Subcatchment 8S}
Runoff
Routed to Reach AP1:Analysis Point 1 \(\quad 10.13 \mathrm{cfs}\) @ 12.51 hrs Volume= \(\quad 1.397\) af, Depth> 2.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall \(=6.98^{\prime \prime}\)
\begin{tabular}{rrl} 
Area (sf) & CN & Description \\
\hline 15,363 & 98 & Paved parking, HSG B \\
798 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
6,086 & 98 & Roofs, HSG B \\
10,953 & 85 & Gravel roads, HSG B \\
262,259 & 55 & Woods, Good, HSG B \\
\hline 295,459 & 59 & Weighted Average \\
274,010 & & \(92.74 \%\) Pervious Area \\
21,449 & & \(7.26 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Length \\
(feet)
\end{tabular} & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description & \\
\hline 14.3 & 46 & 0.0125 & 0.05 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & P2 \(=3.02\) " \\
\hline 4.9 & 36 & 0.1110 & 0.12 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 5.4 & 24 & 0.0390 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(P 2=3.02^{\prime \prime}\) \\
\hline 0.5 & 27 & 0.0390 & 0.99 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 26 & 0.0770 & 1.39 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \\
\hline 0.4 & 61 & 0.2290 & 2.39 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \\
\hline 0.3 & 24 & 0.0830 & 1.44 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \\
\hline 3.3 & 127 & 0.0160 & 0.63 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 45 & 0.3110 & 2.79 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 56 & 0.1790 & 2.12 & & Shallow Concentrated Flow, Woodiand \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 48 & 0.2080 & 2.28 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.8 & 80 & 0.1000 & 1.58 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \\
\hline 0.7 & 86 & 0.1860 & 2.16 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.1 & 102 & 0.0490 & 1.55 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 1.0 & 230 & 0.0330 & 3.69 & & Shallow Concentrated Flow, Paved Kv= 20.3 fps & \\
\hline
\end{tabular}
34.1 1,018 Total

\section*{Summary for Reach 2Ra: Flow Through 6S}
[80] Warning: Exceeded Pond 3P by 0.02' @ 18.80 hrs ( 0.20 cfs 0.032 af)
Inflow Area \(=0.392\) ac, \(0.00 \%\) Impervious, Inflow Depth \(>0.94\) " for 50-Year 24-Hour event Inflow \(=0.12\) cfs @ 13.55 hrs, Volume \(=0.031\) af Outflow \(=0.09 \mathrm{cfs} @ 13.68 \mathrm{hrs}\), Volume= 0.031 af , Atten \(=22 \%\), Lag= \(=7.9 \mathrm{~min}\)

Routed to Reach 2Rb : Flow Through 6S
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.28 \mathrm{fps}, \mathrm{Min}\). Travel Time \(=3.0 \mathrm{~min}\)
Avg. Velocity \(=0.20 \mathrm{fps}\), Avg. Travel Time \(=4.1 \mathrm{~min}\)
Peak Storage= 17 cf @ 13.68 hrs
Average Depth at Peak Storage \(=0.08^{\prime}\), Surface Width \(=4.47^{\prime}\)
Bank-Full Depth=4.00' Flow Area= 64.0 sf, Capacity= 169.82 cfs
\(4.00^{\prime} \times 4.00^{\prime}\) deep channel, \(n=0.400\) Sheet flow: Woods+light brush
Side Slope Z-value= 3.0 '/' Top Width= 28.00'
Length=50.0' Slope \(=0.1800\) '/'
Inlet Invert= 259.00', Outlet Invert= 250.00'


\section*{Summary for Reach 2Rb: Flow Through 6S}
\begin{tabular}{lllll} 
Inflow Area \(=\) & 0.392 ac, & \(0.00 \%\) Impervious, Inflow Depth \(>0.94^{\prime \prime} \quad\) for \(50-\) Year 24 -Hour event \\
Inflow & \(=\) & \(0.09 \mathrm{cfs} @\) & 13.68 hrs, Volume= & 0.031 af \\
Outflow \(=\) & \(0.09 \mathrm{cfs} @\) & 13.82 hrs , Volume= & 0.031 af , Atten= \(=3 \%\), Lag= 8.2 min
\end{tabular}

Routed to Reach 2Rc : Flow Through 6S
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.28 \mathrm{fps}\), Min. Travel Time \(=3.7 \mathrm{~min}\)
Avg. Velocity \(=0.28 \mathrm{fps}\), Avg. Travel Time \(=3.7 \mathrm{~min}\)
Peak Storage= 20 cf @ 13.82 hrs
Average Depth at Peak Storage= 0.00 ' , Surface Width= \(100.01^{\prime}\)
Bank-Full Depth=4.00' Flow Area= 432.0 sf, Capacity \(=2,470.25\) cfs
\(100.00^{\prime} \times 4.00^{\prime}\) deep channel, \(n=0.400\) Sheet flow: Woods+light brush
Side Slope Z-value= 2.0 ' 1 ' Top Width= 116.00'
Length=62.0' Slope \(=0.4194{ }^{\prime} / \prime\)
Inlet Invert=250.00', Outlet Invert=224.00'


\section*{Summary for Reach 2Rc: Flow Through 6S}
[62] Hint: Exceeded Reach 2Rb OUTLET depth by 0.09' @ 14.35 hrs
\begin{tabular}{lllll} 
Inflow Area \(=\) & 0.392 ac, & \(0.00 \%\) Impervious, Inflow Depth \(>0.93^{\prime \prime}\) & for \(50-\) Year 24 -Hour event \\
Inflow & \(=\) & \(0.09 \mathrm{cfs} @\) & 13.82 hrs , Volume= & 0.031 af \\
Outflow \(=\) & \(0.08 \mathrm{cfs} @\) & 14.35 hrs , Volume= & 0.030 af , Atten \(=16 \%\), Lag \(=31.8 \mathrm{~min}\)
\end{tabular}

Routed to Reach AP3 : Analysis Point 3

Prepared by Jones \& Beach Engineers Inc

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, \(\mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.10 \mathrm{fps}, \mathrm{Min}\). Travel Time \(=20.4 \mathrm{~min}\)
Avg. Velocity \(=0.07 \mathrm{fps}\), Avg. Travel Time \(=28.3 \mathrm{~min}\)
Peak Storage= 93 cf @ 14.35 hrs
Average Depth at Peak Storage=0.09' , Surface Width=8.56'
Bank-Full Depth \(=4.00\) ' Flow Area \(=80.0\) sf, Capacity= 68.83 cfs
\(8.00^{\prime} \times 4.00^{\prime}\) deep channel, \(n=0.400\) Sheet flow: Woods+light brush
Side Slope Z-value= 3.0 ' \(/\) ' Top Width= 32.00'
Length=120.0' Slope \(=0.0167^{\prime} / \prime\)
Inlet Invert= 224.00', Outlet Invert= 222.00'


\section*{Summary for Reach 3Ra: Flow Through Subcatchment 8S}

Inflow Area \(=0.638\) ac, \(0.00 \%\) Impervious, Inflow Depth \(>1.85^{\prime \prime}\) for 50 -Year 24-Hour event Inflow \(=0.81\) cfs @ 12.51 hrs, Volume \(=\quad 0.099\) af Outflow \(=0.70 \mathrm{cfs}\) @ 12.68 hrs , Volume= 0.098 af , Atten= \(14 \%\), Lag= 10.1 min

Routed to Reach 3Rb: Flow Through Subcatchment 8 S
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.26 \mathrm{fps}\), Min. Travel Time \(=8.5 \mathrm{~min}\)
Avg. Velocity \(=0.13 \mathrm{fps}\), Avg. Travel Time \(=16.7 \mathrm{~min}\)
Peak Storage= 354 cf @ 12.68 hrs
Average Depth at Peak Storage \(=0.15^{\prime}\), Surface Width \(=27.81^{\prime}\)
Bank-Full Depth=2.00' Flow Area= 137.3 sf, Capacity= 201.91 cfs
\(103.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush Length \(=131.0^{\prime}\) Slope \(=0.1069{ }^{\prime} / \prime\) Inlet Invert=256.00', Outlet Invert= 242.00'

\section*{Summary for Reach 3Rb: Flow Through Subcatchment 8S}
[61] Hint: Exceeded Reach 3Ra outlet invert by \(0.08^{\prime}\) @ 12.85 hrs
 Routed to Reach AP1 : Analysis Point 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity= 0.26 fps , Min. Travel Time \(=11.2 \mathrm{~min}\)
Avg. Velocity \(=0.14 \mathrm{fps}\), Avg. Travel Time \(=20.6 \mathrm{~min}\)
Peak Storage= 399 cf @ 12.87 hrs
Average Depth at Peak Storage \(=0.08^{\prime}\), Surface Width \(=40.84^{\prime}\)
Bank-Full Depth= 2.00' Flow Area= 266.7 sf, Capacity= 573.66 cfs
\(200.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush
Length \(=175.0^{\prime}\) Slope \(=0.2286\) '/'
Inlet Invert= 242.00', Outlet Invert= 202.00'


\section*{Summary for Reach 4Ra: Flow Through Subcatchment 7S}


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.91 \mathrm{fps}\), Min. Travel Time \(=0.7 \mathrm{~min}\)
Avg. Velocity \(=0.41 \mathrm{fps}\), Avg. Travel Time \(=1.6 \mathrm{~min}\)
Peak Storage= 339 cf @ 12.42 hrs
Average Depth at Peak Storage \(=0.76^{\prime}\), Surface Width= 16.67'
Bank-Full Depth= \(2.00^{\prime}\) Flow Area \(=36.0\) sf, Capacity= 62.15 cfs
\(27.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush Length \(=40.0^{\prime}\) Slope \(=0.1500\) '/'
Inlet Invert=252.00', Outlet Invert=246.00'


\section*{Summary for Reach 4Rb: Flow Through Subcatchment 7S}
[61] Hint: Exceeded Reach 4Ra outlet invert by 0.38 @ 12.45 hrs


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.79 \mathrm{fps}\), Min. Travel Time \(=1.5 \mathrm{~min}\)
Avg. Velocity \(=0.36 \mathrm{fps}\), Avg. Travel Time \(=3.3 \mathrm{~min}\)

\section*{Peak Storage= 690 cf @ 12.44 hrs}

Average Depth at Peak Storage \(=0.38^{\prime}\), Surface Width \(=38.07^{\prime}\)
Bank-Full Depth \(=2.00^{\prime}\) Flow Area= 116.0 sf, Capacity \(=276.81\) cfs
\(87.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush Length= \(71.0^{\prime}\) Slope \(=0.2817\) '/'
Inlet Invert= 246.00', Outlet Invert= 226.00'


\section*{Summary for Reach AP1: Analysis Point 1}
[40] Hint: Not Described (Outflow=Inflow)
\begin{tabular}{llll} 
Inflow Area & & 9.955 ac, & \(5.40 \%\) \\
Impervious, Inflow Depth \(>\) & \(2.31 " \quad\) for \(50-\) Year 24 -Hour event \\
Inflow & \(=\) & \(13.67 \mathrm{cfs} @\) & 12.51 hrs , Volume \(=\) \\
Outflow & \(=\) & \(13.67 \mathrm{cfs} @\) & 12.51 hrs, Volume \(=\)
\end{tabular}

Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach AP2: Analysis Point 2}
[40] Hint: Not Described (Outflow=Inflow)
\begin{tabular}{lllll} 
Inflow Area \(=\) & 14.619 ac, & \(1.44 \%\) Impervious, Inflow Depth \(>\) & \(2.19^{\prime \prime}\) & for \(50-\) Year \(24-\) Hour event \\
Inflow & \(=\) & \(19.47 \mathrm{cfs} @\) & 12.49 hrs , Volume \(=\) & 2.664 af \\
Outflow & \(=\) & \(19.47 \mathrm{cfs} @\) & 12.49 hrs , Volume \(=\) & 2.664 af , Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\)
\end{tabular}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach AP3: Analysis Point 3}
[40] Hint: Not Described (Outflow=Inflow)


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Pond 1P: Low Point}


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt=0.05 hrs / 9
Peak Elev=199.31' @ 12.20 hrs Surf.Area= 1,663 sf Storage= \(1,044 \mathrm{cf}\)
Plug-Flow detention time \(=36.7\) min calculated for 0.438 af ( \(95 \%\) of inflow)
Center-of-Mass det. time \(=10.1 \mathrm{~min}(891.1-881.0)\)

2.503 .00

Coef. (English) \(2.692 .722 .75 \quad 2.85 \quad 2.98 \quad 3.08 \quad 3.20 \quad 3.28 \quad 3.31\)
3.303 .313 .32

Discarded OutFlow Max=0.01 cfs @ 12.20 hrs HW=199.31' (Free Discharge)
E1=Exfiltration (Controls 0.01 cfs)
Primary OutFlow Max=0.05 cfs @ 12.48 hrs HW=199.31' TW=0.00' (Dynamic Tailwater)
L-2=Broad-Crested Rectangular Weir(Weir Controls \(0.05 \mathrm{cfs} @ 0.27 \mathrm{fps})\)

\section*{Summary for Pond 2P: Depression}
[90] Warning: Qout>Qin may require smaller dt or Finer Routing

\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & 256.35 & \begin{tabular}{l}
\(70.0^{\prime}\) long \(\times 4.0^{\prime}\) breadth Broad-Crested Rectangular Weir \\
\(\begin{array}{llllllllll}\text { Head (feet) } & 0.20 & 0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60 & 1.80 \\ 2.00\end{array}\) \\
\(2.50 \quad 3.003 .504 .004 .505 .005 .50\) \\
Coef. (English) \(2.38 \quad 2.54 \quad 2.69 \quad 2.68 \quad 2.67 \quad 2.67 \quad 2.65 \quad 2.66 \quad 2.66\) \\
\(2.682 .72 \quad 2.732 .762 .792 .883 .073 .32\)
\end{tabular} \\
\hline \multicolumn{4}{|l|}{Primary OutFlow Max=0.80 cfs @ 12.51 hrs HW=256.38' TW=256.12' (Dynamic Tailwater) \(亡_{1=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(W e i r ~ C o n t r o l s ~}^{0.80 ~ c f s ~ @ ~} 0.40 \mathrm{fps}\) )} \\
\hline
\end{tabular}

\section*{Summary for Pond 3P: Depression}
[93] Warning: Storage range exceeded by \(0.07{ }^{\prime}\)
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=102)
Inflow Area \(=0.392 \mathrm{ac}, \quad 0.00 \%\) Impervious, Inflow Depth \(>2.10^{\prime \prime}\) for 50-Year 24-Hour event Inflow = 0.65 cfs @ 12.26 hrs , Volume \(=0.069 \mathrm{af}\) Outflow = \(0.12 \mathrm{cfs} @ 13.55 \mathrm{hrs}\), Volume \(=0.031 \mathrm{af}\), Atten \(=82 \%\), Lag= 77.6 min Primary \(=\quad 0.12\) cfs @ 13.55 hrs, Volume= 0.031 af

Routed to Reach 2Ra : Flow Through 6S
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\) Peak Elev=259.08' @ 13.65 hrs Surf.Area= 2,526 sf Storage= 1,652 cf

Plug-Flow detention time \(=289.1\) min calculated for 0.031 af ( \(\mathbf{4 5 \%}\) of inflow)
Center-of-Mass det. time \(=155.0 \mathrm{~min}(1,028.9-874.0)\)


Time span \(=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 481\) points \(\times 9\)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

\section*{Subcatchment1S: Subcatchment1S}

Subcatchment2S: Subcatchment2S

Subcatchment3S: Subcatchment3S

Subcatchment4S: Subcatchment4S

Subcatchment5S: Subcatchment5S

Subcatchment6S: Subcatchment6S

Subcatchment8S: Subcatchment8S

Reach 2Ra: Flow Through 6S \(\mathrm{n}=0.400\)

Runoff Area=110,362 sf \(1.77 \%\) Impervious Runoff Depth \(>3.12^{\prime \prime}\) Flow Length=667' \(\mathrm{Tc}=29.5 \mathrm{~min} \quad \mathrm{CN}=56\) Runoff=5.15 cfs 0.660 af

Runoff Area=27,810 sf \(0.00 \%\) Impervious Runoff Depth>3.01" Flow Length=380' Tc=32.2 \(\mathrm{min} \mathrm{CN}=55\) Runoff=1.20 cfs 0.160 af

Runoff Area=636,817 sf \(1.44 \%\) Impervious Runoff Depth \(>3.12^{\prime \prime}\) Flow Length \(=998{ }^{\prime} \quad \mathrm{Tc}=32.0 \mathrm{~min} \quad \mathrm{CN}=56\) Runoff \(=28.63 \mathrm{cfs} 3.803\) af

Runoff Area=223,276 sf \(0.00 \%\) Impervious Runoff Depth \(>3.24\) " Flow Length=688' \(\mathrm{Tc}=27.1 \mathrm{~min} \quad \mathrm{CN}=57\) Runoff \(=11.27 \mathrm{cfs} 1.384\) af

Runoff Area \(=17,061\) sf \(0.00 \%\) Impervious Runoff Depth \(>3.02^{\prime \prime}\) Flow Length=100' \(\mathrm{Tc}=16.9 \mathrm{~min} \mathrm{CN}=55\) Runoff=0.96 cfs 0.099 af

Runoff Area \(=122,925\) sf \(0.00 \%\) Impervious Runoff Depth \(>3.02^{\text {" }}\) Flow Length=332' \(\mathrm{Tc}=15.3 \mathrm{~min} \quad \mathrm{CN}=55\) Runoff \(=7.21 \mathrm{cfs} 0.711\) af

Runoff Area=295,459 sf \(\mathbf{7 . 2 6 \%}\) Impervious Runoff Depth \(>3.46^{n}\) Flow Length=1,018' \(\mathrm{Tc}=34.1 \mathrm{~min} \quad \mathrm{CN}=59\) Runoff=14.49 css 1.957 af

Avg. Flow Depth=0.22' Max Vel=0.52 fps Inflow=0.70 cfs 0.061 af \(\mathrm{L}=50.0^{\prime} \mathrm{S}=0.1800 \mathrm{I} /\) ' Capacity \(=169.82 \mathrm{cfs}\) Oufflow \(=0.54 \mathrm{cfs} 0.061\) af

Reach 2Rb: Flow Through 6S Avg. Flow Depth=0.01' Max Vel=0.28 fps Inflow=0.54 cfs 0.061 af \(\mathrm{n}=0.400 \mathrm{~L}=62.0^{\prime} \mathrm{S}=0.4194^{\prime} / \mathrm{I}\) Capacity=2,470.25 cfs Outflow=0.40 cfs 0.060 af

Reach 2Rc: Flow Through 6S Avg. Flow Depth \(=0.20^{\prime}\) Max Vel= \(=0.16 \mathrm{fps}\) Inflow \(=0.40 \mathrm{cfs} 0.060\) af \(\mathrm{n}=0.400 \mathrm{~L}=120.0\) ' \(\mathrm{S}=0.0167\) '/' Capacity \(=68.83 \mathrm{cfs}\) Outflow=0.27 cfs 0.059 af

Reach 3Ra: Flow Through Avg. Flow Depth=0.18' Max Vel=0.30 fps Inflow=1.19 cfs 0.147 af \(\mathrm{n}=0.400 \mathrm{~L}=131 . \mathbf{0}^{\prime} \mathrm{S}=0.1069\) //' Capacity=201.91 cfs Outflow=1.12 cfs 0.146 af

Reach 3Rb: Flow Through
Avg. Flow Depth \(=0.11^{\circ}\) Max Vel \(=0.31\) fps Inflow \(=1.12\) cis 0.146 af


Reach 4Ra: Flow Through Avg. Flow Depth=0.91' Max Vel=1.02 fps Inflow=11.27 cfs 1.384 af \(\mathrm{n}=0.400 \mathrm{~L}=40.0\) ' \(\mathrm{S}=0.1500 \mathrm{f}\) ' Capacity=62.15 cfs Outflow=11.27 cfs 1.383 af

Reach 4Rb: Flow Through Avg. Flow Depth=0.46' Max Vel=0.89 fps Inflow=11.27 cfs 1.383 af \(\mathrm{n}=0.400 \mathrm{~L}=71.0^{\prime} \mathrm{S}=0.2817\) I/ Capacity=276.81 cfs Outflow=11.25 cfs 1.381 af

\section*{Reach AP1: Analysis Point 1}

Reach AP2: Analysis Point 2
Inflow=20.10 cfs 2.722 af Outflow=20.10 cfs 2.722 af

Inflow=28.63 cfs 3.803 af Outflow=28.63 cfs 3.803 af

Reach AP3: Analysis Point 3
Inflow=16.65 cfs 2.152 af Outflow \(=16.65 \mathrm{cfs} 2.152\) af

\author{
Pond 1P: Low Point
}

Peak Elev=199.31' Storage=1,044 cf Inflow=5.15 cfs 0.660 af Discarded \(=0.01\) cfs 0.015 af Primary=5.12 cfs 0.620 af Outflow=5.13 cfs 0.635 af

Pond 2P: Depression
Peak Elev=256.39' Storage=634 cf Inflow=1.20 cfs 0.160 af Outflow=1.19 cfs 0.147 af

Pond 3P: Depression
Peak Elev=259.22' Storage=1,652 cf Inflow=0.96 cfs 0.099 af Outflow=0.70 cfs 0.061 af

Total Runoff Area \(=32.913\) ac Runoff Volume \(=8.773\) af Average Runoff Depth \(=3.2 \mathbf{n}^{\prime \prime}\) 97.73\% Pervious \(=32.166\) ac \(2.27 \%\) Impervious \(=0.748\) ac

\section*{Summary for Subcatchment 1S: Subcatchment 1S}

Runoff \(=5.15 \mathrm{cfs} @ 12.44 \mathrm{hrs}\), Volume= 0.660 af, Depth> 3.12" Routed to Pond 1P : Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Area (sf)} & CN & \multicolumn{4}{|l|}{Description} \\
\hline & \[
\begin{array}{r}
1,957 \\
08,405 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 98 \\
& 55 \\
& \hline
\end{aligned}
\] & Paved parki oods, Good & \[
\begin{aligned}
& \text { ing, HSG B } \\
& \text { od, HSG B }
\end{aligned}
\] & & \\
\hline & \[
\begin{array}{r}
10,362 \\
08,405 \\
1,957
\end{array}
\] & 56 &  & verage vious Area rvious Are & & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description & \\
\hline 24.8 & 100 & 0.0150 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & P2 \(=3.02\) " \\
\hline 1.3 & 163 & 0.1800 & 2.12 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.3 & 129 & 0.1090 & 1.65 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.1 & 101 & 0.0890 & 1.49 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.0 & 174 & 0.3300 & 2.87 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline
\end{tabular}
29.5667 Total

\section*{Summary for Subcatchment 2S: Subcatchment 2S}
Runoff \(=1.20 \mathrm{cfs} @ 12.48 \mathrm{hrs}\), Volume \(=\quad 0.160 \mathrm{af}\), Depth> 3.01"

Routed to Pond 2P : Depression
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100 -Year 24-Hour Rainfall=8.36"
\begin{tabular}{rrl} 
Area (sf) & CN & Description \\
\hline 27,810 & 55 & Woods, Good, HSG B \\
\hline 27,810 & & \(100.00 \%\) Pervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 29.2 & 100 & 0.0100 & 0.06 & & \multirow[t]{2}{*}{\begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400 \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular}} \\
\hline & & & & & \\
\hline 1.1 & 61 & 0.0330 & 0.91 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps \\
\hline 0.3 & 27 & 0.0740 & 1.36 & & \multirow[t]{2}{*}{Shallow Concentrated Flow, Woodland Kv= 5.0 fps} \\
\hline & & & & & \\
\hline 0.8 & 104 & 0.2100 & 2.29 & & \multirow[t]{2}{*}{Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\)} \\
\hline & & & & & \\
\hline 0.8 & 88 & 0.1400 & 1.87 & & Woodland Kv= 5.0 fps Shallow Concentrated Flow, \\
\hline & & & & & Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline
\end{tabular}

\subsection*{32.2380 Total}

Summary for Subcatchment 3S: Subcatchment 3S
Runoff \(=28.63 \mathrm{cfs}\) @ 12.47 hrs , Volume= \(\quad 3.803 \mathrm{af}\), Depth> 3.12" Routed to Reach AP2 : Analysis Point 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{rrl} 
Area \((\mathrm{sf})\) & CN & Description \\
\hline 568,855 & 55 & Woods, Good, HSG B \\
18,326 & 70 & Woods, Good, HSG C \\
4,531 & 98 & Roofs, HSG B \\
40,469 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
4,636 & 98 & Paved parking, HSG B \\
\hline 636,817 & 56 & Weighted Average \\
627,650 & & \(98.56 \%\) Pervious Area \\
9,167 & & \(1.44 \%\) Impervious Area
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description & \\
\hline 5.0 & 37 & 0.0160 & 0.12 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} & \\
\hline 9.0 & 29 & 0.0160 & 0.05 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & P2 \(=3.02\) " \\
\hline 3.2 & 20 & 0.1000 & 0.10 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 3.4 & 14 & 0.0430 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.5 & 32 & 0.0430 & 1.04 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.2 & 41 & 0.4400 & 3.32 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 2.1 & 132 & 0.0450 & 1.06 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.7 & 55 & 0.0730 & 1.35 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.9 & 132 & 0.2400 & 2.45 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.2 & 100 & 0.0800 & 1.41 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.9 & 64 & 0.0625 & 1.25 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \\
\hline 0.7 & 102 & 0.2350 & 2.42 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.1 & 8 & 0.1540 & 1.96 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 3.2 & 168 & 0.0300 & 0.87 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.9 & 64 & 0.0300 & 1.21 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 4S: Subcatchment 4S}

Runoff = 11.27 cfs @ 12.40 hrs, Volume= 1.384 af, Depth> 3.24"
Routed to Reach 4Ra : Flow Through Subcatchment 7S
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{rrl} 
Area (sf) & CN & Description \\
\hline 197,469 & 55 & Woods, Good, HSG B \\
25,807 & 70 & Woods, Good, HSG C \\
\hline 223,276 & 57 & Weighted Average \\
223,276 & & \(100.00 \%\) Pervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description & \\
\hline 3.5 & 23 & 0.1090 & 0.11 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 10.1 & 52 & 0.0380 & 0.09 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \[
\mathrm{P} 2=3.02^{\prime \prime}
\] \\
\hline 2.4 & 20 & 0.2000 & 0.14 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 1.7 & 5 & 0.0320 & 0.05 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400\)
\end{tabular} & \[
P 2=3.02^{\prime \prime}
\] \\
\hline 1.0 & 56 & 0.0320 & 0.89 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.2 & 22 & 0.0910 & 1.51 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.6 & 42 & 0.0480 & 1.10 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 33 & 0.1210 & 1.74 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.0 & 58 & 0.0350 & 0.94 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.9 & 89 & 0.1120 & 1.67 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 32 & 0.0940 & 1.53 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \\
\hline 5.1 & 256 & 0.0136 & 0.84 & 282.32 & Trap/Vee/Rect Channel Flow, Bot.W=44.00' D=4.00' Z= 10.0 '/' T \(\mathrm{n}=0.400\) Sheet flow: Woods+light br & \[
\text { p. } W=124.00^{\prime}
\]
ush \\
\hline
\end{tabular}
27.1688 Total

\section*{Summary for Subcatchment 5S: Subcatchment 5S}
Runoff \(=0.96\) cfs @ 12.25 hrs, Volume= 0.099 af, Depth> 3.02"
Routed to Pond 3P : Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 100-Year 24-Hour Rainfall=8.36"


\section*{Summary for Subcatchment 6S: Subcatchment 6S}

Runoff \(=7.21\) cfs @ 12.22 hrs, Volume \(=\)
Routed to Reach AP3 : Analysis Point 3
0.711 af, Depth> 3.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100 -Year 24 -Hour Rainfall \(=8.36^{\prime \prime}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Area (sf) CN Description} \\
\hline \multicolumn{2}{|r|}{122,925} & \multicolumn{3}{|l|}{55 Woods, Good, HSG B} & \\
\hline \multicolumn{2}{|r|}{122,925} & \multicolumn{3}{|r|}{100.00\% Pervious Area} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & Slope
(ft/ft) & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 7.7 & 67 & 0.1270 & 0.15 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400 \quad \mathrm{P} 2=3.02\) "
\end{tabular} \\
\hline 2.1 & 20 & 0.3000 & 0.16 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02{ }^{\prime \prime}\)
\end{tabular} \\
\hline 2.5 & 13 & 0.0800 & 0.09 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400 \quad \mathrm{P} 2=3.02^{\text {n }}\)
\end{tabular} \\
\hline 0.1 & 12 & 0.0800 & 1.41 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.2 & 27 & 0.1480 & 1.92 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.4 & 73 & 0.4380 & 3.31 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 2.3 & 120 & 0.0167 & 0.86 & 68.89 & ```
Trap/Vee/Rect Channel Flow,
Bot.W=8.00' D=4.00' Z=3.0'/' Top.W=32.00'
n=0.400
``` \\
\hline
\end{tabular}

\subsection*{15.3332 Total}

\section*{Summary for Subcatchment 8S: Subcatchment 8S}

Runoff \(=14.49\) cfs @ 12.50 hrs , Volume \(=\)
1.957 af, Depth> 3.46"

Routed to Reach AP1 : Analysis Point 1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\)
Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 15,363 & 98 & Paved parking, HSG B \\
798 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
6,086 & 98 & Roofs, HSG B \\
10,953 & 85 & Gravel roads, HSG B \\
262,259 & 55 & Woods, Good, HSG B \\
\hline 295,459 & 59 & Weighted Average \\
274,010 & & \(92.74 \%\) Pervious Area \\
21,449 & & \(7.26 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & \[
\begin{gathered}
\text { Length } \\
\text { (feet) }
\end{gathered}
\] & Slope
\[
(\mathrm{ft} / \mathrm{ft})
\] & Velocity (ft/sec) & \[
\begin{gathered}
\text { Capacity } \\
(\mathrm{cfs})
\end{gathered}
\] & Description & \\
\hline 14.3 & 46 & 0.0125 & 0.05 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 4.9 & 36 & 0.1110 & 0.12 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \[
\mathrm{P} 2=3.02^{\prime \prime}
\] \\
\hline 5.4 & 24 & 0.0390 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.5 & 27 & 0.0390 & 0.99 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 26 & 0.0770 & 1.39 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 61 & 0.2290 & 2.39 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 24 & 0.0830 & 1.44 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 3.3 & 127 & 0.0160 & 0.63 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 45 & 0.3110 & 2.79 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 56 & 0.1790 & 2.12 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 48 & 0.2080 & 2.28 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.8 & 80 & 0.1000 & 1.58 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.7 & 86 & 0.1860 & 2.16 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.1 & 102 & 0.0490 & 1.55 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 1.0 & 230 & 0.0330 & 3.69 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) & \\
\hline
\end{tabular}
34.1 1,018 Total

\section*{Summary for Reach 2Ra: Flow Through 6S}
[80] Warning: Exceeded Pond 3P by 0.09' @ 13.40 hrs (1.05 cfs 0.164 af)
Inflow Area \(=\quad 0.392 \mathrm{ac}, \quad 0.00 \%\) Impervious, Inflow Depth \(>1.86^{\prime \prime}\) for 100-Year 24-Hour event Inflow \(=0.70\) cfs @ 12.56 hrs, Volume= 0.061 af
Outflow = \(0.54 \mathrm{cfs} @ 12.61 \mathrm{hrs}\), Volume= 0.061 af , Atten \(=23 \%\), Lag= \(=3.1 \mathrm{~min}\)
Routed to Reach 2Rb : Flow Through 6S
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.52 \mathrm{fps}, \mathrm{Min}\). Travel Time \(=1.6 \mathrm{~min}\)
Avg. Velocity \(=0.23 \mathrm{fps}\), Avg. Travel Time \(=3.6 \mathrm{~min}\)
Peak Storage= 52 cf @ 12.61 hrs
Average Depth at Peak Storage= 0.22' , Surface Width= 5.33'
Bank-Full Depth=4.00' Flow Area= 64.0 sf, Capacity= 169.82 cfs
\(4.00^{\prime} \times 4.00^{\prime}\) deep channel, \(n=0.400\) Sheet flow: Woods+light brush
Side Slope Z-value= 3.0 '/' Top Width= 28.00'
Length=50.0' Slope \(=0.1800 \mathrm{I} /\)
Inlet Invert=259.00', Outlet Invert=250.00'

\section*{Summary for Reach 2Rb: Flow Through 6S}
[61] Hint: Exceeded Reach 2Ra outlet invert by 0.01 ' @ 12.70 hrs
\begin{tabular}{llll}
Inflow Area \(=\) & 0.392 ac, & \(0.00 \%\) & Impervious, Inflow Depth \(>1.86 "\) for \(100-\) Year 24 -Hour event \\
Inflow & \(=\) & \(0.54 \mathrm{cfs} @ 12.61 \mathrm{hrs}\), Volume= & 0.061 af \\
Outflow & \(=\) & \(0.40 \mathrm{cfs} @ 12.68 \mathrm{hrs}\), Volume \(=\) & 0.060 af , Atten \(=26 \%\), Lag \(=4.0 \mathrm{~min}\)
\end{tabular}

Routed to Reach 2Rc: Flow Through 6S
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.28 \mathrm{fps}\), Min. Travel Time \(=3.7 \mathrm{~min}\)
Avg. Velocity \(=0.28 \mathrm{fps}\), Avg. Travel Time \(=3.7 \mathrm{~min}\)
Peak Storage= 88 cf @ 12.68 hrs
Average Depth at Peak Storage \(=0.01^{\prime}\), Surface Width= 100.06'
Bank-Full Depth=4.00' Flow Area= 432.0 sf, Capacity \(=2,470.25\) cfs
\(100.00^{\prime} \times 4.00^{\prime}\) deep channel, \(n=0.400\) Sheet flow: Woods+light brush
Side Slope Z-value= 2.0 ' \(/\) ' Top Width= \(116.00^{\prime}\)
Length=62.0' Slope \(=0.4194{ }^{\prime \prime} /\)
Inlet Invert= 250.00', Outlet Invert=224.00'
\(\ddagger\)

\section*{Summary for Reach 2Rc: Flow Through 6S}
[62] Hint: Exceeded Reach 2Rb OUTLET depth by 0.19 ' @ 12.90 hrs

Routed to Reach AP3 : Analysis Point 3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.16 \mathrm{fps}\), Min. Travel Time \(=12.8 \mathrm{~min}\)
Avg. Velocity \(=0.09 \mathrm{fps}\), Avg. Travel Time \(=23.3 \mathrm{~min}\)
Peak Storage= 207 cf @ 12.89 hrs
Average Depth at Peak Storage= \(0.20^{\prime}\), Surface Width= 9.20'
Bank-Full Depth \(=4.00^{\prime}\) Flow Area= 80.0 sf, Capacity \(=68.83\) cfs
\(8.00^{\prime} \times 4.00^{\prime}\) deep channel, \(n=0.400\) Sheet flow: Woods+light brush
Side Slope Z-value= 3.0 '/' Top Width= 32.00'
Length \(=120.0^{\prime}\) Slope \(=0.0167^{\prime} / /\)
Inlet Invert= 224.00', Outlet Invert= 222.00'

\section*{Summary for Reach 3Ra: Flow Through Subcatchment 8S}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt=0.05 hrs / 9
Max. Velocity \(=0.30 \mathrm{fps}\), Min. Travel Time \(=7.3 \mathrm{~min}\)
Avg. Velocity \(=0.14 \mathrm{fps}\), Avg. Travel Time \(=15.1 \mathrm{~min}\)
Peak Storage= 493 cf @ 12.60 hrs
Average Depth at Peak Storage \(=0.18^{\prime}\), Surface Width \(=31.05^{\prime}\)
Bank-Full Depth= 2.00' Flow Area= 137.3 sf, Capacity= 201.91 cfs
\(103.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush
Length= 131.0' Slope= 0.1069 ' \(/\)
Inlet Invert=256.00', Outlet Invert= 242.00'

\section*{Summary for Reach 3Rb: Flow Through Subcatchment 8S}
[61] Hint: Exceeded Reach 3Ra outlet invert by 0.11 ' @ 12.75 hrs
Inflow Area \(=0.638 \mathrm{ac}, 0.00 \%\) Impervious, Inflow Depth > 2.75" for 100-Year 24-Hour event Inflow \(=1.12 \mathrm{cfs} @ 12.60 \mathrm{hrs}\), Volume \(=\quad 0.146 \mathrm{af}\) Outflow = \(1.01 \mathrm{cfs} @ 12.75 \mathrm{hrs}\), Volume \(=0.145 \mathrm{af}\), Atten \(=10 \%\), Lag \(=8.8 \mathrm{~min}\)

Routed to Reach AP1 : Analysis Point 1
Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.31 \mathrm{fps}\), Min. Travel Time \(=9.5 \mathrm{~min}\)
Avg. Velocity \(=0.16 \mathrm{fps}\), Avg. Travel Time \(=18.6 \mathrm{~min}\)
Peak Storage \(=576\) cf @ 12.75 hrs
Average Depth at Peak Storage=0.11' , Surface Width=46.17'
Bank-Full Depth= 2.00' Flow Area= 266.7 sf, Capacity= 573.66 cfs
\(200.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush
Length \(=175.0^{\prime}\) Slope \(=0.2286\) '/'
Inlet Invert=242.00', Outlet Invert= 202.00'

\section*{Summary for Reach 4Ra: Flow Through Subcatchment 7S}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=1.02 \mathrm{fps}\), Min. Travel Time \(=0.7 \mathrm{~min}\)
Avg. Velocity \(=0.44 \mathrm{fps}\), Avg. Travel Time \(=1.5 \mathrm{~min}\)
Peak Storage= 440 cf @ 12.41 hrs
Average Depth at Peak Storage \(=0.91^{\prime}\), Surface Width \(=18.18^{\prime}\)
Bank-Full Depth \(=2.00^{\prime}\) Flow Area= 36.0 sf, Capacity \(=62.15 \mathrm{cfs}\)
\(27.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush
Length= \(40.0^{\prime}\) Slope= 0.1500 '/'
Inlet Invert=252.00', Outlet Invert= 246.00'

\section*{Summary for Reach 4Rb: Flow Through Subcatchment 7S}
[61] Hint: Exceeded Reach 4Ra outlet invert by 0.45 ' @ 12.40 hrs
\begin{tabular}{lrrr}
Inflow Area & \(=\) & 5.126 ac, & \(0.00 \%\) Impervious, Inflow Depth \(>3.24\) " for \(100-\) Year 24 -Hour event \\
Inflow & \(=\) & \(11.27 \mathrm{cfs} @\) & 12.41 hrs , Volume \(=\) \\
Outflow & \(=\) & \(11.25 \mathrm{cfs} @\) & 12.42 hrs , Volume \(=\)
\end{tabular}

Routed to Reach AP3 : Analysis Point 3
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.89 \mathrm{fps}\), Min. Travel Time \(=1.3 \mathrm{~min}\)
Avg. Velocity \(=0.39 \mathrm{fps}\), Avg. Travel Time \(=3.1 \mathrm{~min}\)
Peak Storage= 896 cf @ 12.42 hrs
Average Depth at Peak Storage \(=0.46^{\prime}\), Surface Width \(=41.54^{\prime}\)
Bank-Full Depth= 2.00' Flow Area= 116.0 sf, Capacity= 276.81 cfs
\(87.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(\mathrm{n}=0.400\) Sheet flow: Woods+light brush
Length= 71.0' Slope= 0.2817 ' \(/\) '
Inlet Invert=246.00', Outlet Invert=226.00'

\section*{Summary for Reach AP1: Analysis Point 1}
[40] Hint: Not Described (Outflow=Inflow)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach AP2: Analysis Point 2}
[40] Hint: Not Described (Outflow=Inflow)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach AP3: Analysis Point 3}
[40] Hint: Not Described (Outflow=Inflow)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, \(\mathrm{dt}=0.05 \mathrm{hrs} / 9\)

\section*{Summary for Pond 1P: Low Point}
\begin{tabular}{|c|c|c|c|c|}
\hline Inflow Area \(=\) & 2.534 ac, & 1.77\% Impervious, & 3.12 & 2" for 100-Year 24-Hour event \\
\hline Inflow & 5.15 cfs @ & 12.44 hrs , Volume= & 0.660 af & \\
\hline Outflow & 5.13 cfs @ & 12.46 hrs , Volume= & 0.635 af, A & Atten \(=0 \%\), Lag \(=1.5 \mathrm{~min}\) \\
\hline Discarded & 0.01 cfs @ & 12.00 hrs , Volume= & 0.015 af & \\
\hline Primary & 5.12 cfs @ & 12.46 hrs , Volume= & 0.620 af & \\
\hline
\end{tabular} Routed to Reach AP1 : Analysis Point 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=199.31' @ 12.00 hrs Surf.Area= 1,663 sf Storage= \(1,044 \mathrm{cf}\)
Plug-Flow detention time \(=27.2 \mathrm{~min}\) calculated for 0.635 af (\(96 \%\) of inflow)
Center-of-Mass det. time \(=7.8 \mathrm{~min}(878.2-870.3\))

2.503 .00

Coef. (English) \(2.692 .722 .752 .852 .983 .083 .20 \quad 3.28 \quad 3.31\)
3.303 .313 .32

Discarded OutFlow Max=0.01 cfs @ 12.00 hrs HW=199.31' (Free Discharge)
L1=Exfiltration (Controls 0.01 cfs)
Primary OutFlow Max=0.05 cfs @ 12.46 hrs HW=199.31' TW=0.00' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir(Weir Controls 0.05 cfs @ 0.27 fps)

\section*{Summary for Pond 2P: Depression}

Routed to Reach 3Ra : Flow Through Subcatchment 8S
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev= 256.39' @ 12.49 hrs Surf.Area= 2,263 sf Storage= 634 cf
Plug-Flow detention time \(=53.6\) min calculated for 0.147 af (\(92 \%\) of inflow)
Center-of-Mass det. time= 15.1 min (889.8-874.7)
\begin{tabular}{|c|c|c|c|}
\hline Volume & \multirow[t]{2}{*}{Invert Ava} & Storage Stora & scription \\
\hline \#1 & & 1,682 of Cus & ge Data (Prismatic) Listed below (Recalc) \\
\hline \begin{tabular}{l}
Elevation \\
(feet)
\end{tabular} & Surf.Area (sq-ft) & Inc.Store (cubic-feet) & Cum.Store (cubic-feet) \\
\hline 256.00 & 882 & 0 & 0 \\
\hline 256.35 & 2,263 & 550 & 550 \\
\hline 256.85 & 2,263 & 1,132 & 1,682 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{5}{*}{\#1} & Primary & 256.35' & 70.0' long x 4.0' breadth Broad-Crested Rectangular Weir \\
\hline & & & Head (feet) \(\begin{aligned} & 0.20 \\ & 0.40\end{aligned}\) \\
\hline & & & \(\begin{array}{llllllllll}2.50 & 3.00 & 3.50 & 4.00 & 4.50 & 5.005 .50\end{array}\) \\
\hline & & & Coef. (English) 2.382 .542 .692 .682 .672 .672 .6512 .662 .66 \\
\hline & & & \(\begin{array}{lllllllllll}2.68 & 2.72 & 2.73 & 2.76 & 2.79 & 2.88 & 3.07 & 3.32\end{array}\) \\
\hline
\end{tabular}

Primary OutFlow Max=1.19 cfs @ 12.49 hrs \(H W=256.39^{\prime}\) TW=256.17' (Dynamic Tailwater)
—1=Broad-Crested Rectangular Weir(Weir Controls 1.19 cfs @ 0.46 fps)

\section*{Summary for Pond 3P: Depression}
[93] Warning: Storage range exceeded by 0.21 '
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=112)

Prepared by Jones \& Beach Engineers Inc

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=259.22' @ 12.61 hrs Surf.Area= 2,526 sf Storage \(=1,652 \mathrm{cf}\)
Plug-Flow detention time \(=196.5 \mathrm{~min}\) calculated for 0.061 af (\(61 \%\) of inflow)
Center-of-Mass det. time \(=82.5 \mathrm{~min}(945.4-862.9)\)

Primary OutFlow Max=0.69 cfs @ 12.56 hrs HW=259.17' TW=259.17' (Dynamic Tailwater)
—1=Broad-Crested Rectangular Weir(Weir Controls \(0.69 \mathrm{cfs} @ 0.29 \mathrm{fps})\)

APPENDIX II

\title{
PROPOSED CONDITIONS DRAINAGE ANALYSIS
}

\author{
Summary 2 YEAR \\ Complete 10 YEAR \\ Complete 25 YEAR \\ Complete 50 YEAR \\ Complete 100 YEAR
}

\section*{Area Listing (all nodes)}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{r}
\text { Area } \\
\text { (acres) }
\end{array}
\] & CN & Description (subcatchment-numbers) \\
\hline 6.710 & 61 & \(>75 \%\) Grass cover, Good, HSG B (1S, 10S, 11S, 12S, 20S, 21S, 22S, 23S, 24S, 25S, 30S, 31S, 32S, 101S, 102S, 103S, 104S, 105S, 106S, 107S, 108S, 109S, 110S, 111S, 114S, 115S, 116S, 117S, 118S, 119S, 120S, 204S, 205S, 207S, 211S, 305S) \\
\hline 0.251 & 85 & Gravel roads, HSG B (1S) \\
\hline 3.831 & 98 & Paved parking, HSG B (1S, 10S, 12S, 22S, 23S, 25S, 101S, 102S, 103S, 104S 105S, 106S, 107S, 108S, 109S, 110S, 113S, 114S, 115S, 116S, 117S, 118S, 119S, 120S) \\
\hline 1.200 & 98 & Roofs, HSG B (1S, 20S, 21S, 23S, 24S, 114S, 115S, 116S, 117S, 118S, 119S, 120S, ROOF 1, ROOF 2, ROOF 3) \\
\hline 19.907 & 55 & Woods, Good, HSG B (1S, 10S, 12S, 20S, 21S, 22S, 24S, 25S, 30S, 31S, 110S, 204S, 205S, 207S, 211S, 305S) \\
\hline 1.013 & 70 & Woods, Good, HSG C (20S, 21S, 31S) \\
\hline 32.913 & 63 & TOTAL AREA \\
\hline
\end{tabular}

\section*{Soil Listing (all nodes)}
\begin{tabular}{|c|c|c|}
\hline Area
(acres) & Soil Group & Subcatchment Numbers \\
\hline 0.000 & HSG A & \\
\hline 31.899 & HSG B & 1S, 10S, 11S, 12S, 20S, 21S, 22S, 23S, 24S, 25S, 30S, 31S, 32S, 101S, 102S, 103S, 104S, 105S, 106S, 107S, 108S, 109S, 110S, 111S, 113S, 114S, 115S, 116S, 117S, 118S, 119S, 120S, 204S, 205S, 207S, 211S, 305S, ROOF 1, ROOF 2, ROOF 3 \\
\hline 1.013 & HSG C & 20S, 21S, 31 S \\
\hline 0.000 & HSG D & \\
\hline 0.000 & Other & \\
\hline 32.913 & & TOTAL AREA \\
\hline
\end{tabular}

Time span \(=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 481\) points \(\times 9\)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment1S: SUBCATCHMENT1S Runoff Area=279,376 sf \(7.68 \%\) Impervious Runoff Depth \(>0.31^{\text {" }}\) Flow Length \(=1,018\) ' \(\mathrm{Tc}=34.1 \mathrm{~min} \quad \mathrm{CN}=59\) Runoff \(=0.72 \mathrm{cfs} 0.167\) af

Subcatchment10S: SUBCATCHMENT10S Runoff Area=3,917 sf \(19.30 \%\) Impervious Runoff Depth>0.56" Flow Length \(=79^{\prime}\) Tc=9.6 min CN=66 Runoff=0.04 cfs 0.004 af

Subcatchment11S: Subcatchment11S

Subcatchment12S: Subcatchment12S

Subcatchment20S: Subcatchment20S
Runoff Area=207,863 sf \(0.54 \%\) Impervious Runoff Depth \(>0.26^{\prime \prime}\) Flow Length=341' Tc=25.2 min CN=57 Runoff=0.42 cfs 0.102 af

Subcatchment21S: SUBCATCHMENT21S Runoff Area=154,653 sf 0.53\% Impervious Runoff Depth>0.23" Flow Length \(=358^{\prime}\) Tc \(=24.0 \mathrm{~min} \mathrm{CN}=56\) Runoff \(=0.26 \mathrm{cfs} 0.068\) af

Subcatchment22S: SUBCATCHMENT22S Runoff Area=83,939 sf 9.07\% Impervious Runoff Depth>0.41" Flow Length=348' Tc=17.4 \(\mathrm{min} \mathrm{CN}=62\) Runoff=0.42 cfs 0.066 af

Subcatchment23S: SUBCATCHMENT23S Runoff Area=11,755 sf 64.56\% Impervious Runoff Depth>1.62" Flow Length=39' Slope \(=0.0200\) '/' Tc=6.0 min \(\mathrm{CN}=85\) Runoff \(=0.50 \mathrm{cfs} 0.036\) af

Subcatchment24S: SUBCATCHMENT24S Runoff Area=24,222 sf \(0.91 \%\) Impervious Runoff Depth \(>0.29^{\prime \prime}\) Flow Length \(=204\) ' \(\mathrm{Tc}=12.8 \mathrm{~min} \mathrm{CN}=58\) Runoff \(=0.07 \mathrm{cfs} 0.013\) af

Subcatchment25S: SUBCATCHMENT25S Runoff Area=64,195 sf \(11.59 \%\) Impervious Runoff Depth \(>0.45\) " Flow Length \(=368^{\prime}\) Tc=16.5 \(\mathrm{min} \quad \mathrm{CN}=63\) Runoff \(=0.38 \mathrm{cfs} 0.055\) af

Subcatchment30S: Subcatchment30S Runoff Area=73,162 sf \(0.00 \%\) Impervious Runoff Depth \(>0.23^{\prime \prime}\) Flow Length=299' Tc=14.2 min CN=56 Runoff=0.14 cfs 0.032 af

Subcatchment31S: Subcatchment31S Runoff Area=159,045 sf \(0.00 \%\) Impervious Runoff Depth \(>0.28^{\prime \prime}\) Flow Length=593' Tc=22.7 min CN=58 Runoff=0.40 cfs 0.086 af

Subcatchment32S: SUBCATCHMENT32S Runoff Area \(=6,935\) sf \(0.00 \%\) Impervious Runoff Depth \(>0.38^{\prime \prime}\) Flow Length \(=83\) ' \(\mathrm{Tc}=8.0 \mathrm{~min} \mathrm{CN}=61\) Runoff \(=0.04 \mathrm{cfs} 0.005\) af

Subcatchment101S: SUBCATCHMENT101SRunoff Area=3,062 sf \(63.65 \%\) Impervious Runoff Depth>1.62" Flow Length \(=149^{\prime} \quad \mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=85\) Runoff \(=0.13 \mathrm{cfs} 0.009\) af

Subcatchment102S: SUBCATCHMENT
Runoff Area=10,426 sf \(20.31 \%\) Impervious Runoff Depth>0.69" Flow Length=202 Tc=6.0 min CN=69 Runoff=0.16 cfs 0.014 af

Subcatchment103S: SUBCATCHMENT

Runoff Area=10,615 sf 20.41\% Impervious Runoff Depth>0.69" Flow Length=210' \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=69\) Runoff \(=0.17 \mathrm{cfs} 0.014\) af

Subcatchment104S: SUBCATCHMENT104SRunoff Area=8,563 sf \(24.45 \%\) Impervious Runoff Depth \(>0.74^{\text {" }}\) Flow Length \(=192^{\prime} \quad \mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=70\) Runoff \(=0.15 \mathrm{cfs} 0.012\) af

Subcatchment105S: SUBCATCHMENT105SRunoff Area=7,685 sf \(24.66 \%\) Impervious Runoff Depth \(>0.74^{\prime \prime}\) Flow Length \(=198{ }^{\prime} \quad \mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=70\) Runoff \(=0.13 \mathrm{cfs} 0.011\) af

Subcatchment106S: SUBCATCHMENT106SRunoff Area \(=8,480\) sf \(24.96 \%\) Impervious Runoff Depth \(>0.7^{\prime \prime}\) Flow Length=150' Tc=6.0 min CN=70 Runoff=0.15 cfs 0.012 af

Subcatchment107S: SUBCATCHMENT107SRunoff Area \(=9,158\) sf \(22.21 \%\) Impervious Runoff Depth \(>0.69^{\prime \prime}\) Flow Length \(=200^{\prime} \quad \mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=69\) Runoff \(=0.14 \mathrm{cfs} 0.012\) af

Subcatchment108S: SUBCATCHMENT108SRunoff Area=5,109 sf \(41.03 \%\) Impervious Runoff Depth>1.04" Flow Length \(=108^{\prime} \quad \mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=76\) Runoff \(=0.14 \mathrm{cfs} \quad 0.010\) af

Subcatchment109S: SUBCATCHMENT109SRunoff Area=4,591 sf \(85.25 \%\) Impervious Runoff Depth>2.29" Flow Length=322 \(\quad\) Tc \(=6.0 \mathrm{~min} \quad \mathrm{CN}=93\) Runoff \(=0.27 \mathrm{cfs} 0.020\) af

Subcatchment110S: SUBCATCHMENT110SRunoff Area \(=8,954\) sf \(45.07 \%\) Impervious Runoff Depth>1.04" Flow Length=193' \(\mathrm{Tc}=10.4 \mathrm{~min} \mathrm{CN}=76\) Runoff= 0.20 cfs 0.018 af

Subcatchment111S: SUBCATCHMENT111SRunoff Area \(=10,066\) sf \(0.00 \%\) Impervious Runoff Depth \(>0.38^{\text {" }}\) Flow Length \(=37\) ' Slope \(=0.5000 \%\) Tc=6.0 \(\mathrm{min} \mathrm{CN}=61\) Runoff \(=0.06 \mathrm{cfs} 0.007\) af

Subcatchment113S: SUBCATCHMENT Runoff Area=4,154 sf \(\mathbf{1 0 0 . 0 0 \%}\) Impervious Runoff Depth \(>2.81\) " Flow Length \(=144\) ' Slope \(=0.0330\) ' \(\%\) Tc \(=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=0.27 \mathrm{cfs} 0.022\) af

Subcatchment114S: SUBCATCHMENT Runoff Area=21,297 sf \(\mathbf{8 3 . 9 7 \%}\) Impervious Runoff Depth>2.20" Flow Length=251' \(\mathrm{Tc}=9.0 \mathrm{~min} \quad \mathrm{CN}=92\) Runoff=1.10 cfs 0.089 af

Subcatchment115S: SUBCATCHMENT Runoff Area=15,683 sf \(94.57 \%\) Impervious Runoff Depth \(>2.59\) " Flow Length \(=264^{\prime} \quad \mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96\) Runoff \(=1.00 \mathrm{cfs} 0.078\) af

Subcatchment117S: SUBCATCHMENT Runoff Area=22,327 sf \(61.68 \%\) Impervious Runoff Depth \(>1.55\) " Flow Length=172' Tc=14.1 min CN=84 Runoff= 0.72 cfs 0.066 af

Subcatchment118S: SUBCATCHMENT Runoff Area=22,171 sf \(84.69 \%\) Impervious Runoff Depth \(>2.20^{\prime \prime}\) Flow Length=120' Slope \(=0.0500 \%\) Tc=6.0 \(\mathrm{min} \mathrm{CN}=92\) Runoff \(=1.26 \mathrm{cfs} 0.093 \mathrm{af}\)

Subcatchment119S: SUBCATCHMENT Runoff Area=13,601 sf 92.54\% Impervious Runoff Depth \(>2.49^{\prime \prime}\) Flow Length=218' \(\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=95\) Runoff \(=0.84 \mathrm{cfs} 0.065\) af

Subcatchment 120S: SUBCATCHMENT Runoff Area=19,113 sf \(\mathbf{8 9 . 1 2 \%}\) Impervious Runoff Depth \(>\) 2.39" Flow Length \(=124^{\prime} \quad\) Tc=6.0 \(\mathrm{min} \quad \mathrm{CN}=94\) Runoff=1.15 cfs 0.087 af

Subcatchment204S: SUBCATCHMENT204SRunoff Area=19,442 sf \(0.00 \%\) Impervious Runoff Depth \(>0.26\) " Flow Length=379' \(\mathrm{Tc}=23.2 \mathrm{~min} \mathrm{CN}=57\) Runoff \(=0.04 \mathrm{cfs} 0.010\) af
Subcatchment205S: SUBCATCHMENT205S Runoff Area=4,627 sf \(0.00 \%\) Impervious Runoff Depth \(>0.38\) " Flow Length=92' Slope=0.5000 '/' Tc=6.0 min CN=61 Runoff=0.03 cfs 0.003 af
Subcatchment207S: SUBCATCHMENT207SRunoff Area \(=15,002\) sf \(0.00 \%\) Impervious Runoff Depth \(>0.28^{\prime \prime}\) Flow Length=329' \(\mathrm{Tc}=22.8 \mathrm{~min} \mathrm{CN}=58\) Runoff= 0.04 cfs 0.008 af
Subcatchment211S: SUBCATCHMENT211SRunoff Area \(=28,592 \mathrm{sf} \quad 0.00 \%\) Impervious Runoff Depth \(>0.23^{\prime \prime}\) Flow Length \(=328^{\prime}\) Tc=19.3 \(\mathrm{min} \quad \mathrm{CN}=56\) Runoff \(=0.05 \mathrm{cfs} 0.013\) af
Subcatchment305S: SUBCATCHMENT305S Runoff Area \(=1,541\) sf \(0.00 \%\) Impervious Runoff Depth \(>0.21^{\prime \prime}\) Flow Length=46' \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=55\) Runoff= 0.00 cfs 0.001 af

\section*{SubcatchmentROOF 1: Back of Roof}
SubcatchmentROOF 2: Back of Roof
SubcatchmentROOF 3: Back of Roof

\section*{Reach 4Ra: Flow Through}
Runoff Area=7,416 sf \(100.00 \%\) Impervious Runoff Depth \(>2.81^{\prime \prime}\) \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=0.49 \mathrm{cfs} 0.040\) af
Runoff Area=7,416 sf \(100.00 \%\) Impervious Runoff Depth \(>2.81\) " \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=0.49 \mathrm{cfs} 0.040\) af
Runoff Area=7,416 sf \(100.00 \%\) Impervious Runoff Depth \(>2.81\) " \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=0.49 \mathrm{cfs} 0.040\) af
Avg. Flow Depth \(=0.19^{\prime} \quad\) Max Vel \(=0.37 \mathrm{fps} \quad\) Inflow \(=0.40 \mathrm{cfs} 0.086\) af \(\mathrm{n}=0.400 \mathrm{~L}=40.0^{\prime} \mathrm{S}=0.1500 \mathrm{l}\) / Capacity=62.15 cfs Outflow=0.40 cfs 0.086 af
Reach 4Rb: Flow Through
Avg. Flow Depth=0.10' Max Vel=0.32 fps Inflow=0.40 cfs 0.086 af \(\mathrm{n}=0.400 \mathrm{~L}=71.0^{\prime} \mathrm{S}=0.2817 \mathrm{f} / \mathrm{C}\) Capacity=\(=276.81 \mathrm{cfs} \quad\) Outflow=0.40 cfs 0.086 af

\section*{Reach AP1: Analysis Point 1}

\section*{Reach AP2: Analysis Point 2}

\section*{Reach AP3: Analysis Point 3}

Inflow \(=0.72\) cfs 0.179 af Outflow=0.72 cfs 0.179 af

Inflow=0.69 cfs 0.169 af Outflow=0.69 cfs 0.169 af

Inflow \(=0.57 \mathrm{cfs} 0.190\) af Outflow=0.57 cfs 0.190 af

Reach B1R: BENCH \(\mathrm{n}=0.150 \mathrm{~L}=173.0^{\prime} \mathrm{S}=0.0809\) '/f Capacity= 6.92 cfs Outflow= \(=0.04 \mathrm{cfs} 0.008\) af Overflow= 0.00 cfs 0.000 af \(\mathrm{n}=0.150 \mathrm{~L}=173.0^{\prime} \mathrm{S}=0.0809 \mathrm{I} /\) Capacity=\(=6.9 \mathrm{cfs}\) Outflow= 0.04 cfs 0.008 af Overflow=0.00 cfs 0.000 af

Reach B2R: BENCH \(\mathrm{n}=0.150 \mathrm{~L}=116.0^{\prime} \mathrm{S} 0.1207\) ' \({ }^{\prime}\) A \(\mathrm{S}=0.1207\) '/ Capacity \(=8.45 \mathrm{cfs}\) Outflow= 0.05 cfs 0.011 af Overflow \(=0.00 \mathrm{cfs} 0.000\) af

Reach B3R: BENCH \(\mathrm{n}=0.150 \mathrm{~L}=103.0^{\prime} \mathrm{S}=0.1165 \mathrm{I} /\) Capacity \(=8.30 \mathrm{cfs}\) Outflow=0.09 cfs 0.021 af Overflow=0.00 cfs 0.000 af

Reach B4R: BENCH \(\mathrm{n}=0.150 \quad \mathrm{~L}=232.0^{\prime}\)

Avg. Flow Depth \(=0.14^{\prime} \quad\) Max Vel \(=0.47 \mathrm{fps}\) Inflow=0.04 cfs 0.008 af

ReachB2R. BEN1 \(0^{\prime}\) . Capacity \(=8.30 \mathrm{cfs}\) Outflow \(=0.09 \mathrm{cfs} 0.021\) af Overflow \(=0.00\) cfs 0.000 af

Avg. Flow Depth=0.26' Max Vel=0.58 fps Inflow=0.16 cfs 0.041 af \(\mathrm{S}=0.0560 \mathrm{f} /\) Capacity \(=5.76 \mathrm{cfs}\) Outflow \(=0.15 \mathrm{cfs} 0.041\) af Overflow \(=0.00 \mathrm{cfs} 0.000\) af

\section*{Reach B5R: BENCH} \(\mathrm{n}=0.150 \mathrm{~L}=12.0^{\prime} \mathrm{S}=0.0833\) '/ Capacity=\(=7.02 \mathrm{cfs}\) Outflow=0.00 cfs 0.001 af Overflow=0.00 cfs 0.000 af

Reach B6R: BENCH

Reach RD1: RD 1 Reach RD1: RD \({ }^{\prime \prime}\) Round Pipe \(\mathrm{n}=0.013 \mathrm{~L}=264.0^{\prime} \mathrm{S}=0.0417^{\prime \prime} / \mathrm{l}\) ' Capacity \(=2.47 \mathrm{cfs}\) Outflow=0.49 cfs 0.040 af

\section*{Reach RD2: RD 2} \(8.0^{\prime \prime}\) Round Pipe \(\mathrm{n}=0.013 \mathrm{~L}=110.0^{\prime} \quad \mathrm{S}=0.0491\) ' r ' Capacity \(=2.68 \mathrm{cfs}\) Outflow=0.49 cfs 0.040 af

\section*{Reach RD3: RD 3}

Avg. Flow Depth=0.24' Max Vel=4.23 fps Inflow=0.49 cfs 0.040 af 8.0" Round Pipe \(\mathrm{n}=0.013 \mathrm{~L}=100.0^{\prime} \mathrm{S}=0.0200^{\prime \prime}\) ' Capacity \(=1.71 \mathrm{cfs}\) Outflow \(=0.49 \mathrm{cfs} 0.040\) af

Pond 1P: Infiltration Pocket

Avg. Flow Depth=0.17' Max Vel=0.43 fps Inflow=0.05 cfs 0.013 af \(\mathrm{n}=0.150 \mathrm{~L}=165.0^{\prime} \mathrm{S}=0.0545^{\prime} \mathrm{I}\) ' Capacity=5.68 cfs Outflow=0.05 cfs 0.012 af

Avg. Flow Depth=0.20' Max Vel=5.51 fps Inflow=0.49 cfs 0.040 af

Avg. Flow Depth=0.19' Max Vel=5.84 fps Inflow=0.49 cfs 0.040 af Peak Elev=198.81' Storage=618 cf Inflow=0.32 cfs 0.120 af

\section*{Pond 2P: Stormwater Pond}

Peak Elev=199.89' Storage=15,676 cf Inflow=1.73 cfs 0.189 af Primary \(=0.10\) cfs 0.091 af Secondary \(=0.00\) cfs 0.000 af Outflow \(=0.10\) cfs 0.091 af

Pond 3P: Stormfilter

Pond 5P: StormTech

Pond 6P: Focal Point

Pond 9P: 18" HDPE

Pond 10P: Bioretention
Discarded=0.52 cfs 0.120 af
Pond 11P: EcoRaster

Pond 12P: Dry Well

Peak Elev=198.81' Storage=64 cf Inflow=0.20 cfs 0.026 af Primary \(=0.23\) cfs 0.025 af Secondary \(=0.00\) cfs 0.000 af Outflow \(=0.23\) cfs 0.025 af

Peak Elev=261.64' Storage=0.660 af Inflow=8.99 cfs 0.727 af Outflow=0.10 cfs 0.067 af

Peak Elev=253.76' Storage=1 cf Inflow=0.10 cfs 0.072 af Outflow=0.10 cfs 0.072 af

Peak Elev=201.51' Storage=37 cf Inflow=0.38 cfs 0.055 af Primary \(=0.38\) cfs 0.055 af Secondary \(=0.00 \mathrm{cfs} 0.000\) af Outflow \(=0.38\) cfs 0.055 af

Peak Elev=198.18' Storage \(=645\) cf Inflow=0.80 cfs 0.121 af Primary \(=0.00 \mathrm{cfs} 0.000\) af Secondary \(=0.00 \mathrm{cfs} 0.000\) af Outflow=0.52 cfs 0.120 af Discarded \(=0.18\) cfs 0.036 af Primary \(=0.00\) cfs 0.000 af Outflow \(=0.18\) cfs 0.036 af

Peak Elev=197.88' Storage=321 cf Inflow=0.07 cfs 0.013 af Discarded \(=0.01\) cfs 0.006 af Primary \(=0.00\) cfs 0.000 af Outflow \(=0.01\) cfs 0.006 af

Pond CB1: Catch Basin \(1 \quad\) Peak Elev=200.87' Inflow=0.13 cfs 0.009 af 15.0" Round Culvert \(n=0.013 \mathrm{~L}=19.0^{\prime} \mathrm{S}=0.0053\) ' \(/\) ' Outflow=0.13 cfs 0.009 af

\section*{Pond CB10: Catch Basin 10}

Peak Elev=252.37' Inflow=0.20 cfs 0.018 af 15.0" Round Culvert \(n=0.013 \mathrm{~L}=19.0^{\prime} \mathrm{S}=0.0053 \mathrm{I} \%\) Outflow=0.20 cfs 0.018 af

Pond CB11: Catch Basin 11
Peak Elev=208.20' Inflow=0.15 cfs 0.041 af
15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=57.0^{\prime} \mathrm{S}=0.1316 \mathrm{l} / \mathrm{Cutflow}=0.15 \mathrm{cfs} 0.041 \mathrm{af}\)

\section*{Pond CB12: Catch Basin 12}

Peak Elev=263.03' Storage=1 cf Inflow=0.26 cfs 0.068 af
Primary \(=0.26\) cfs 0.068 af Secondary \(=0.00\) cfs 0.000 af Outflow \(=0.26 \mathrm{cfs} 0.068\) af

\section*{Pond CB13: Catch Basin 13}

Peak Elev=264.67' Inflow=0.76 cfs 0.062 af 18.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=73.0^{\prime} \mathrm{S}=0.0110\) ' \(\%\) Outflow=0.76 cfs 0.062 af

\section*{Pond CB14: Catch Basin 14 \\ Pond CB15: Catch Basin 15 \\ Pond CB16: Catch Basin 16}

Peak Elev=264.25' Inflow=2.32 cfs 0.191 af
18.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=68.0^{\prime} \mathrm{S}=0.0059\) ' \(/ \mathrm{\prime}\) Outflow=2.32 cfs 0.191 af

Peak Elev=263.85' Inflow=3.31 cfs 0.269 af 18.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=156.0^{\prime} \mathrm{S}=0.0051\) /" Outflow=3.31 cfs 0.269 af

Peak Elev=262.95' Inflow=4.72 cfs 0.376 af \(24.0^{\prime \prime}\) Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=124.0^{\prime} \mathrm{S}=0.0048\) '/ Outflow=4.72 cfs 0.376 af

\section*{Pond CB17: Catch Basin 17}

Peak Elev=262.57' Inflow=5.75 cfs 0.482 af 24.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=57.0^{\prime} \mathrm{S}=0.0053 \mathrm{~F}\) ' Outflow=5.75 cfs 0.482 af

\section*{Pond CB18: Catch Basin 18}

Pond CB19: Catch Basin 19
Peak Elev=262.31' Inflow=7.00 cfs 0.575 af 24.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=11.0^{\prime} \mathrm{S}=0.0091^{\prime \prime} \%\) Outflow=7.00 cfs 0.575 af 24.0" Round Culvert \(n=0.013 \mathrm{~L}=151.0^{\prime} \mathrm{S}=0.0053^{\prime}{ }^{\prime}\) ' Outflow=2.00 cfs 0.152 af

\section*{Pond CB2: Catch Basin 2}

\section*{Pond CB20: Catch Basin 20}

\section*{Pond CB3: Catch Basin 3}

Pond CB4: Catch Basin 4

Pond CB5: Catch Basin 5

\section*{Pond CB6: Catch Basin 6}

Pond CB7: Catch Basin 7

Pond CB8: Catch Basin 8

Pond CB9: Catch Basin 9
Peak Elev=200.81' Inflow=0.31 cfs 0.064 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=84.0^{\prime} \mathrm{S}=0.0048\) '/ Outflow=\(=0.31 \mathrm{cfs} 0.064\) af
2. Peak Elev=262.54' Inflow=1.15 cfs 0.087 af 24.0 Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=70.0^{\prime} \mathrm{S}=0.0057^{\prime} /\) ' Outflow=1.15 cfs 0.087 af

Peak Elev=208.83' Inflow=1.32 cfs 0.109 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=65.0^{\prime} \mathrm{S}=0.1262\) '/' Outlow=1.32 cfs 0.109 af

Peak Elev=208.84' Inflow=0.15 cfs 0.012 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=19.0^{\prime} \mathrm{S}=0.0053\) '/' Outflow=0.15 cfs 0.012 af

Peak Elev=224.84' Inflow=1.00 cfs 0.083 af \(15.0^{\prime \prime}\) Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=82.0^{\prime} \mathrm{S}=0.0817\) ' \(/\) ' Outflow=1.00 cfs 0.083 af

Peak Elev=224.86' Inflow=0.15 cfs 0.012 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=19.0^{\prime} \mathrm{S}=0.0053\) ' \(/\) Outflow=0.15 cfs 0.012 af

Peak Elev=239.17' Inflow=0.14 cfs 0.012 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=19.0^{\prime} \mathrm{S}=0.0053\) '/' Outflow=0.14 cfs 0.012 af

Peak Elev=239.10' Inflow \(=0.73\) cfs 0.060 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=63.0^{\prime} \mathrm{S}=0.0889\) '/' Outflow=0.73 cfs 0.060 af

Peak Elev=252.25' Inflow=0.45 cfs 0.038 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=163.0^{\prime} \mathrm{S}=0.0804\) '/" Outflow=0.45 cfs 0.038 af

Pond DMH 3: Drain Manhole 3
Peak Elev=233.45' Inflow=0.73 cfs 0.060 af 15.0" Round Culvert \(n=0.013 \mathrm{~L}=104.0^{\prime} \mathrm{S}=0.0827\) ' I ' Outflow=0.73 cfs 0.060 af

Time span \(=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 481\) points \(\times 9\)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment1S: SUBCATCHMENT1S Runoff Area=279,376 sf 7.68\% Impervious Runoff Depth>1.00" Flow Length=1,018' Tc=34.1 min CN=59 Runoff=3.45 cfs 0.536 af

Subcatchment10S: SUBCATCHMENT10S Runoff Area=3,917 sf 19.30\% Impervious Runoff Depth \(>1.46\) " Flow Length=79' \(\mathrm{Tc}=9.6 \mathrm{~min} \mathrm{CN}=66\) Runoff \(=0.13 \mathrm{cfs} 0.011 \mathrm{af}\)

Subcatchment11S: Subcatchment11S

Subcatchment12S: Subcatchment12S

Subcatchment20S: Subcatchment20S
Runoff Area \(=207,863\) sf \(0.54 \%\) Impervious Runoff Depth \(>0.89\) " Flow Length=341' Tc=25.2 min CN=57 Runoff=2.47 cfs 0.354 af

Subcatchment21S: SUBCATCHMENT21S Runoff Area=154,653 sf 0.53\% Impervious Runoff Depth>0.84" Flow Length \(=358^{\prime} \quad \mathrm{Tc}=24.0 \mathrm{~min} \quad \mathrm{CN}=56\) Runoff \(=1.70\) cfs 0.247 af

Subcatchment22S: SUBCATCHMENT22S Runoff Area=83,939 sf 9.07\% Impervious Runoff Depth>1.19" Flow Length=348' Tc=17.4 min CN=62 Runoff=1.71 cfs 0.191 af

Subcatchment23S: SUBCATCHMENT23S Runoff Area=11,755 sf 64.56\% Impervious Runoff Depth>3.00" Flow Length \(=39^{\prime}\) Slope \(=0.0200\) '/' Tc=6.0 min \(\mathrm{CN}=85\) Runoff \(=0.92 \mathrm{cfs} 0.067\) af

Subcatchment24S: SUBCATCHMENT24S Runoff Area=24,222 sf 0.91\% Impervious Runoff Depth>0.95" Flow Length=204' Tc=12.8 min CN=58 Runoff=0.40 cfs 0.044 af

Subcatchment25S: SUBCATCHMENT25S Runoff Area=64,195 sf \(11.59 \%\) Impervious Runoff Depth \(>1.26^{\prime \prime}\) Flow Length=368' \(\quad \mathrm{Cc}=16.5 \mathrm{~min} \quad \mathrm{CN}=63\) Runoff=1.43 cfs 0.154 af

Subcatchment30S: Subcatchment30S Runoff Area=73,162 sf \(0.00 \%\) Impervious Runoff Depth>0.84" Flow Length=299' Tc=14.2 \(\mathrm{min} \mathrm{CN}=56\) Runoff=0.97 cfs 0.117 af

Subcatchment31S: Subcatchment31S Runoff Area=159,045 sf 0.00\% Impervious Runoff Depth>0.95" Flow Length=593' Tc=22.7 min CN=58 Runoff=2.14 cfs 0.289 af

Subcatchment32S: SUBCATCHMENT32S Runoff Area \(=6,935\) sf \(0.00 \%\) Impervious Runoff Depth \(>1.13^{\prime \prime}\) Flow Length=83' Tc=8.0 min \(\quad \mathrm{CN}=61\) Runoff \(=0.17 \mathrm{cfs} 0.015\) af

Subcatchment101S: SUBCATCHMENT101SRunoff Area=3,062 sf \(63.65 \%\) Impervious Runoff Depth \(>3.00^{\prime \prime}\) Flow Length=149' \(\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=85\) Runoff \(=0.24 \mathrm{cfs} 0.018\) af

Subcatchment102S: SUBCATCHMENT
Runoff Area=10,426 sf 20.31\% Impervious Runoff Depth>1.67" Flow Length=202 Tc=6.0 min CN=69 Runoff \(=0.45 \mathrm{cfs} 0.033\) af

Subcatchment103S: SUBCATCHMENT
Runoff Area=10,615 sf 20.41\% Impervious Runoff Depth>1.67" Flow Length=210' \(\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=69\) Runoff \(=0.45 \mathrm{cfs} 0.034\) af

Subcatchment104S: SUBCATCHMENT104SRunoff Area \(=8,563\) sf \(24.45 \%\) Impervious Runoff Depth \(>1.74^{\text {" }}\) Flow Length=192' \(\quad \mathrm{C}=6.0 \mathrm{~min} \mathrm{CN}=70\) Runoff \(=0.38 \mathrm{cfs} 0.029 \mathrm{af}\)

Subcatchment105S: SUBCATCHMENT105SRunoff Area=7,685 sf \(24.66 \%\) Impervious Runoff Depth>1.74" Flow Length=198' Tc=6.0 min CN=70 Runoff=0.35 cfs 0.026 af

Subcatchment106S: SUBCATCHMENT106SRunoff Area \(=8,480\) sf \(24.96 \%\) Impervious Runoff Depth \(>1.74^{\text {n }}\) Flow Length=150' \(\quad\) cc=6.0 \(\mathrm{min} \quad \mathrm{CN}=70\) Runoff \(=0.38 \mathrm{cfs} 0.028\) af

Subcatchment107S: SUBCATCHMENT107SRunoff Area \(=9,158\) sf \(22.21 \%\) Impervious Runoff Depth>1.67" Flow Length \(=200^{\circ} \quad \mathrm{T} C=6.0 \mathrm{~min} \quad \mathrm{CN}=69\) Runoff \(=0.39 \mathrm{cfs} 0.029\) af

Subcatchment108S: SUBCATCHMENT108SRunoff Area=5,109 sf \(41.03 \%\) Impervious Runoff Depth \(>2.21^{n}\) Flow Length \(=108^{\prime} \quad \mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=76\) Runoff \(=0.30 \mathrm{cfs} 0.022\) af

Subcatchment109S: SUBCATCHMENT109SRunoff Area=4,591 sf \(85.25 \%\) Impervious Runoff Depth \(>3.80^{\prime \prime}\) Flow Length=322' Tc=6.0 \(\mathrm{min} \quad \mathrm{CN}=93\) Runoff \(=0.43 \mathrm{cfs} 0.033\) af

Subcatchment110S: SUBCATCHMENT110SRunoff Area=8,954 sf \(45.07 \%\) Impervious Runoff Depth>2.21" Flow Length=193' Tc=10.4 min CN=76 Runoff=0.45 cfs 0.038 af

Subcatchment111S: SUBCATCHMENT111SRunoff Area=10,066 sf \(0.00 \%\) Impervious Runoff Depth>1.13" Flow Length=37' Slope \(=0.5000\) ' \(/\) Tc \(=6.0 \mathrm{~min} \mathrm{CN}=61\) Runoff \(=0.27 \mathrm{cfs} 0.022\) af

Subcatchment113S: SUBCATCHMENT Runoff Area=4,154 sf \(100.00 \%\) Impervious Runoff Depth>4.36" Flow Length=144' Slope \(=0.0330 \%\) Tc= \(=6.0 \mathrm{~min} \quad \mathrm{CN}=98\) Runoff \(=0.42 \mathrm{cfs} 0.035 \mathrm{af}\)

Subcatchment114S: SUBCATCHMENT Runoff Area=21,297 sf \(83.97 \%\) Impervious Runoff Depth \(>3.69\) " Flow Length=251' Tc=9.0 min \(\mathrm{CN}=92\) Runoff \(=1.80 \mathrm{cfs} 0.151\) af

Subcatchment115S: SUBCATCHMENT Runoff Area=15,683 sf 94.57\% Impervious Runoff Depth>4.13" Flow Length=264' \(\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=96\) Runoff \(=1.55 \mathrm{cfs} 0.124\) af

Subcatchment116S: SUBCATCHMENT Runoff Area=23,505 sf \(89.38 \%\) Impervious Runoff Depth \(>3.91^{17}\) Flow Length \(=38^{\prime}\) Tc=6.0 min CN=94 Runoff=2.26 cfs 0.176 af

Subcatchment117S: SUBCATCHMENT Runoff Area=22,327 sf 61.68\% Impervious Runoff Depth>2.90" Flow Length=172' \(\mathrm{Tc}=14.1 \mathrm{~min} \quad \mathrm{CN}=84\) Runoff=1.34 cfs 0.124 af

Subcatchment118S: SUBCATCHMENT Runoff Area=22,171 sf 84.69\% Impervious Runoff Depth>3.70" Flow Length=120' Slope \(=0.0500\) ' \(/ \mathrm{lc}=6.0 \mathrm{~min} \quad \mathrm{CN}=92\) Runoff= 2.06 cfs 0.157 af

Subcatchment119S: SUBCATCHMENT Runoff Area=13,601 sf \(92.54 \%\) Impervious Runoff Depth \(>4.02^{\prime \prime}\) Flow Length=218' \(\quad\) Tc=6.0 \(\mathrm{min} \quad \mathrm{CN}=95\) Runoff \(=1.33 \mathrm{cfs} 0.105\) af

Subcatchment120S: SUBCATCHMENT Runoff Area=19,113 sf \(89.12 \%\) Impervious Runoff Depth \(>3.91\) " Flow Length=124' \(\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=94\) Runoff=1.84 cfs 0.143 af

Subcatchment204S: SUBCATCHMENT204SRunoff Area=19,442 sf 0.00\% Impervious Runoff Depth>0.89" Flow Length=379' \(\mathrm{Tc}=23.2 \mathrm{~min} \mathrm{CN}=57\) Runoff= 0.24 cfs 0.033 af

Subcatchment205S: SUBCATCHMENT205S Runoff Area \(=4,627\) sf \(0.00 \%\) Impervious Runoff Depth \(>1.13^{\prime \prime}\) Flow Length \(=92^{\prime}\) Slope \(=0.5000 \mathrm{I} / \mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=61\) Runoff \(=0.12 \mathrm{cfs} 0.010\) af

Subcatchment207S: SUBCATCHMENT207SRunoff Area=15,002 sf \(0.00 \%\) Impervious Runoff Depth>0.95"
Flow Length=329' \(\mathrm{Tc}=22.8 \mathrm{~min} \mathrm{CN}=58\) Runoff= 0.20 cfs 0.027 af
Subcatchment211S: SUBCATCHMENT211SRunoff Area=28,592 sf \(0.00 \%\) Impervious Runoff Depth \(>0.84^{\prime \prime}\) Flow Length \(=328^{\prime}\) Tc=19.3 min \(\mathrm{CN}=56\) Runoff \(=0.34 \mathrm{cfs} 0.046\) af

Subcatchment305S: SUBCATCHMENT305S Runoff Area=1,541 sf \(0.00 \%\) Impervious Runoff Depth>0.79" Flow Length \(=46\) ' \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=55\) Runoff \(=0.02 \mathrm{cfs} 0.002\) af

\section*{SubcatchmentROOF 1: Back of Roof}

\section*{SubcatchmentROOF 2: Back of Roof}

\section*{SubcatchmentROOF 3: Back of Roof}

Runoff Area=7,416 sf \(100.00 \%\) Impervious Runoff Depth>4.36" \(\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=98\) Runoff \(=0.75 \mathrm{cfs} 0.062 \mathrm{af}\)

Runoff Area=7,416 sf \(100.00 \%\) Impervious Runoff Depth \(>4.36^{\prime \prime}\) \(\mathrm{T}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=0.75 \mathrm{cfs} 0.062\) af

Runoff Area \(=7,416 \mathrm{sf} \quad 100.00 \%\) Impervious Runoff Depth \(>4.36\) " \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=0.75 \mathrm{cfs} 0.062\) af

\section*{Reach 4Ra: Flow Through}

Reach 4Rb: Flow Through

Avg. Flow Depth \(=0.42^{\prime} \quad\) Max Vel=0.62 fps Inflow=2.14 cfs 0.289 af \(\mathrm{n}=0.400 \mathrm{~L}=40.0^{\prime} \quad \mathrm{S}=0.1500 \mathrm{I} / \mathrm{Capacity=62.15cfs} \mathrm{\quad} \mathrm{Outflow=2.14} \mathrm{cfs} \mathrm{0.288af}\).

Avg. Flow Depth=0.21' Max Vel=0.53 fps Inflow=2.14 cfs 0.288 af \(\mathrm{n}=0.400 \mathrm{~L}=71.0^{\prime} \quad \mathrm{S}=0.2817\) '/' Capacity=276.81 cfs Outflow=2.13 cfs 0.288 af

\section*{Reach AP1: Analysis Point 1}

\section*{Reach AP2: Analysis Point 2}

\section*{Reach AP3: Analysis Point 3}
\[
\begin{array}{r}
\text { Inflow=4.53 } \mathrm{cfs} \\
\text { Outflow=}=4.53 \mathrm{cfs} \\
0.857 \mathrm{af} \\
\text { Inflow }=4.17 \mathrm{cfs} \\
\text { Outflow }=4.602 \mathrm{af} \\
\text { Inflow }=3.30 \mathrm{cfs} \\
\hline
\end{array}
\]

\section*{Reach B1R: BENCH}

Avg. Flow Depth=0.26' Max Vel=0.71 fps Inflow=0.20 cfs 0.027 af \(\mathrm{n}=0.150 \mathrm{~L}=173.0^{\prime} \mathrm{S}=0.0809\) ' \(/\) Capacity \(=6.92 \mathrm{cfs}\) Outflow=0.20 cfs 0.027 af Overflow=0.00 cfs 0.000 af

\section*{Reach B2R: BENCH}
\(\mathrm{n}=0.150 \quad \mathrm{~L}=116.0^{\circ}\)
Reach B3R: BENCH
\(\mathrm{n}=0.150 \mathrm{~L}=103.0^{\prime} \mathrm{S}=0.1165 \mathrm{f} /\) Capacity \(=8.30 \mathrm{cfs}\) Outflow \(=0.49 \mathrm{cfs} 0.073\) af Overflow \(=0.00 \mathrm{cfs} 0.000\) af
Reach B4R: BENCH
\(\mathrm{n}=0.150 \mathrm{~L}=232.0^{\prime} \mathrm{S}=0.0560 \mathrm{f}\) Capacity \(=5.76\) cfs Outflow=0.92 cfs 0.139 af Overflow=0.00 cfs 0.000 af
Reach B5R: BENCH Avg. Flow Depth=0.12' Max Vel=0.42 fps Inflow=0.02 cfs 0.002 af \(\mathrm{n}=0.150 \mathrm{~L}=12.0^{\prime} \mathrm{S}=0.0833 \mathrm{f} / \mathrm{Capacity=} 7.02 \mathrm{cfs}\) Outflow=\(=0.02 \mathrm{cfs} 0.002\) af Overflow= 0.00 cfs 0.000 af
\begin{tabular}{lr}
Prepared by Jones \& Beach Engineers Inc & Printed \(3 / 20 / 2023\) \\
HydroCAD® 10.20-2g \(\mathrm{s} / \mathrm{n} 00762\) © 2022 HydroCAD Software Solutions LLC & Page 13 \\
\hline
\end{tabular}

Reach B6R: BENCH Avg. Flow Depth \(=0.34^{\prime}\) Max Vel= 0.70 fps Inflow=0.34 cfs 0.046 af \(\mathrm{n}=0.150 \mathrm{~L}=165.0^{\prime} \mathrm{S}=0.0545 \mathrm{I} /\) Capacity=5.68 cfs Outflow=0.33 cfs 0.046 af

Reach RD1: RD 1
Avg. Flow Depth=0.25' Max Vel=6.19 fps Inflow=0.75 cfs 0.062 af 8.0" Round Pipe \(\mathrm{n}=0.013 \mathrm{~L}=264.0^{\prime} \mathrm{S}=0.0417{ }^{\prime \prime} /{ }^{\prime \prime}\) Capacity \(=2.47 \mathrm{cfs}\) Outflow= 0.75 cfs 0.062 af

\section*{Reach RD2: RD 2}

Avg. Flow Depth=0.24' Max Vel=6.57 fps Inflow=0.75 cfs 0.062 af 8.0" Round Pipe \(n=0.013 \mathrm{~L}=110.0^{\prime} \mathrm{S}=0.0491^{\prime \prime} / \mathrm{l}\) Capacity \(=2.68 \mathrm{cfs}\) Outflow=0.75 cfs 0.062 af

Reach RD3: RD 3
Avg. Flow Depth \(=0.31\) ' Max Vel \(=4.73 \mathrm{fps}\) Inflow=0.75 cfs 0.062 af \(8.0^{n}\) Round Pipe \(\mathrm{n}=0.013 \mathrm{~L}=100.0^{\prime} \mathrm{S}=0.0200\) 'r Capacity=1.71 cfs Outflow=0.75 cfs 0.062 af

\section*{Pond 1P: Infiltration Pocket}

Peak Elev=198.81' Storage=619 cf Inflow=1.19 cfs 0.432 af Discarded \(=0.10 \mathrm{cfs} 0.098\) af Primary \(=1.08 \mathrm{cfs} 0.320\) af Outflow=1.17 cfs 0.418 af

\section*{Pond 2P: Stormwater Pond}

Peak Elev=200.44' Storage=19,214 cf Inflow=4.63 cfs 0.476 af Primary \(=0.91\) cfs 0.357 af Secondary \(=0.00\) cfs 0.000 af Outlow \(=0.91\) cfs 0.357 af

Pond 3P: Stormfilter

Pond 5P: StormTech

Pond 6P: Focal Point

Pond 9P: 18" HDPE

Pond 10P: Bioretention
Discarded=1.96 cfs 0.344 af
Pond 11P: EcoRaster

Pond 12P: Dry Well

Peak Elev=198.83' Storage=69 cf Inflow=0.60 cfs 0.066 af Primary \(=0.68\) cfs 0.065 af Secondary \(=0.00\) cfs 0.000 af Outflow \(=0.68\) cfs 0.065 af

Peak Elev=262.20' Storage=0.829 af Inflow=14.43 cfs 1.199 af Outflow \(=0.77 \mathrm{cfs} 0.503\) af

Peak Elev=253.94' Storage=23 cf Inflow=0.79 cfs 0.518 af Outflow=0.79 cfs 0.518 af

Peak Elev=201.83' Storage=79 cf Inflow=1.43 cfs 0.154 af Primary \(=1.43\) cfs 0.154 af Secondary \(=0.00\) cfs 0.000 af Outflow=1.43 cfs 0.154 af

Peak Elev=200.30' Storage=2,228 cf Inflow=3.14 cfs 0.345 af Primary \(=0.00 \mathrm{cfs} 0.000\) af Secondary \(=0.00 \mathrm{cfs} 0.000\) af Outflow \(=1.96 \mathrm{cfs} 0.344\) af

Peak Elev=195.85' Storage=864 of Inflow=0.92 cfs 0.094 af Discarded \(=0.36 \mathrm{cfs} 0.094\) af Primary \(=0.00 \mathrm{cfs} 0.000\) af Outflow \(=0.36 \mathrm{cfs} 0.094\) af

Peak Elev=199.31' Storage=359 cf Inflow=0.40 cfs 0.044 af Discarded \(=0.01\) cfs 0.010 af Primary \(=0.53 \mathrm{cfs} 0.026\) af Outflow \(=0.54 \mathrm{cfs} 0.036\) af

\section*{Pond CB1: Catch Basin 1}

\section*{Pond CB10: Catch Basin 10}

\section*{Pond CB11: Catch Basin 11}

Peak Elev=208.51' Inflow=0.92 cfs 0.139 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=57.0^{\prime} \mathrm{S}=0.1316\) ' f ' Outflow=0.92 cfs 0.139 af

\section*{Pond CB12: Catch Basin 12}
20564-PRPond CB13: Catch Basin 13
Pond CB14: Catch Basin 14Pond CB15: Catch Basin 15Pond CB16: Catch Basin 16Pond CB17: Catch Basin 17
Pond CB18: Catch Basin 18
Pond CB19: Catch Basin 19
Pond CB2: Catch Basin 2
Pond CB20: Catch Basin 20
Pond CB3: Catch Basin 3
Pond CB4: Catch Basin 4
Pond CB5: Catch Basin 5
Pond CB6: Catch Basin 6
Pond CB7: Catch Basin 7
Pond CB8: Catch Basin 8
Pond CB9: Catch Basin 9

Peak Elev=265.61' Inflow=1.17 cfs 0.097 af 18.0" Round Culvert \(n=0.013 \mathrm{~L}=73.0^{\prime} \mathrm{S}=0.0110\) '/' Outflow=1.17 cfs 0.097 af

Peak Elev=265.58' Inflow=3.67 cfs 0.309 af 18.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=68.0^{\prime} \mathrm{S}=0.0059\) '/' Outflow=3.67 cfs 0.309 af

Peak Elev=265.28' Inflow=5.21 cfs 0.433 af 18.0" Round Culvert \(n=0.013 \quad L=156.0^{\prime} \quad S=0.0051\) '/' Outflow=5.21 cfs 0.433 af

Peak Elev=264.64' Inflow=7.46 cfs 0.609 af \(24.0^{\prime \prime}\) Round Culvert \(n=0.013 \mathrm{~L}=124.0^{\prime} \mathrm{S}=0.0048 \mathrm{I} /\) Outflow=7.46 cfs 0.609 af

Peak Elev=264.25' Inflow=9.24 cfs 0.794 af 24.0" Round Culvert \(n=0.013 \mathrm{~L}=57.0^{\prime} \mathrm{S}=0.0053 \mathrm{l} / \mathrm{\prime}\) ' Outflow=9.24 cfs 0.794 af

Peak Elev=263.65' Inflow=11.28 cfs 0.951 af 24.0" Round Culvert \(n=0.013 \mathrm{~L}=11.0^{\prime} \mathrm{S}=0.0091 \mathrm{f} / \mathrm{\prime}\) Outflow=11.28 cfs 0.951 af

Peak Elev=262.98' Inflow=3.17 cfs 0.248 af 24.0" Round Culvert \(n=0.013\) L=151.0' \(S=0.0053\) ' \(/\) ' Outflow=3.17 cfs 0.248 af

Peak Elev=201.38' Inflow=1.15 cfs 0.190 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=84.0\) ' \(\mathrm{S}=0.0048\) ' \(f\) ' Outflow=1.15 cfs 0.190 af

Peak Elev=263.06' Inflow=1.84 cfs 0.143 af 24.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=70.0^{\prime} \mathrm{S}=0.0057 \mathrm{I}^{\prime \prime}\) ' Outflow=1.84 cfs 0.143 af

Peak Elev=209.27' Inflow=3.09 cfs 0.238 af 15.0" Round Culvert \(n=0.013\) L=65.0' \(\mathrm{S}=0.1262\) '/' Outflow=3.09 cfs 0.238 af

Peak Elev=209.28' Inflow=0.38 cfs 0.029 af \(15.0^{\prime \prime}\) Round Culvert \(n=0.013\) L=19.0'S=0.0053 '/' Outflow=0.38 cfs 0.029 af

Peak Elev=225.16' Inflow=2.25 cfs 0.176 af 15.0" Round Culvert \(n=0.013\) L=82.0' \(\mathrm{S}=0.0817^{\prime \prime} /\) Outflow=2.25 cfs 0.176 af

Peak Elev=225.19' Inflow=0.38 cfs 0.028 af 15.0" Round Culvert \(n=0.013 \mathrm{~L}=19.0^{\prime} \mathrm{S}=0.0053 \mathrm{I} /\) ' Outflow=0.38 cfs 0.028 af

Peak Elev=239.37' Inflow=0.39 cfs 0.029 af 15.0" Round Culvert \(n=0.013 \mathrm{~L}=19.0^{\prime} \mathrm{S}=0.0053 \mathrm{I} / \mathrm{Outflow=0.39}\) cfs 0.029 af

Peak Elev=239.30' Inflow=1.53 cfs 0.122 af 15.0" Round Culvert \(n=0.013 \quad L=63.0^{\prime} S=0.0889\) ' \(/ \prime\) Outflow=1.53 cfs 0.122 af

Peak Elev=252.39' Inflow=0.84 cfs 0.071 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=163.0\) ' \(\mathrm{S}=0.0804\) 'f' Outflow=0.84 cfs 0.071 af
Peak Elev=233.68' Inflow=1.53 cfs 0.122 af \(15.0^{\prime \prime}\) Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=104.0^{\prime} \mathrm{S}=0.0827^{\prime} / \mathrm{\prime}\) Outflow=1.53 cfs 0.122 af

\section*{Summary for Subcatchment 1S: SUBCATCHMENT 1S}

Runoff \(=3.45 \mathrm{cfs} @ 12.56 \mathrm{hrs}\), Volume= \(\quad 0.536\) af, Depth> 1.00"
Routed to Reach AP1 : Analysis Point 1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\)
Type III 24-hr 10-Year 24-Hour Rainfall=4.60"

\footnotetext{
34.1 1,018 Total
}

Prepared by Jones \& Beach Engineers Inc

\section*{Summary for Subcatchment 10S: SUBCATCHMENT 10 S}
Runoff \(=0.13 \mathrm{cfs} @ 12.15 \mathrm{hrs}\), Volume= 0.011 af, Depth> 1.46"

Routed to Pond 1P : Infiltration Pocket
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Area (sf) & CN D & \multicolumn{4}{|l|}{Description} \\
\hline & \[
\begin{array}{r}
756 \\
1,961 \\
1,200 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 98 \\
& 61 \\
& 55 \\
& \hline
\end{aligned}
\] & \multicolumn{4}{|l|}{Paved parking, HSG B >75\% Grass cover, Good, HSG B Woods, Good, HSG B} \\
\hline & \[
\begin{array}{r}
3,917 \\
3,161 \\
756
\end{array}
\] & 66 & \multicolumn{4}{|l|}{Weighted Average 80.70\% Pervious Area 19.30\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description & \\
\hline 3.6 & 38 & 0.2630 & 0.17 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 5.0 & 33 & 0.0910 & 0.11 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 1.0 & 8 & 0.0400 & 0.13 & & Sheet Flow, Grass: Short \(n=0.150 \quad P 2=3.02^{\prime \prime}\) & \\
\hline 9.6 & 79 & Total & & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 11S: Subcatchment 11S}

Runoff \(=0.57\) cfs @ 12.11 hrs , Volume= \(\quad 0.047\) af, Depth> 1.13"
Routed to Pond 2P : Stormwater Pond
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Area (sf) CN Description} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \frac{21,833}{21,833}
\end{aligned}
\]}} & \multicolumn{4}{|l|}{61 >75\% Grass cover, Good, HSG B} \\
\hline & & \multicolumn{4}{|c|}{100.00\% Pervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 1.6 & 50 & 0.5000 & 0.52 & & Sheet Flow,
Grass: Short \(\mathrm{n}=0.150 \quad \mathrm{P} 2=3.02\) " \\
\hline 5.0 & 50 & 0.0290 & 0.17 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.1 & 37 & 0.5000 & 4.95 & & Shallow Concentrated Flow, Short Grass Pasture \(\mathrm{Kv}=7.0 \mathrm{fps}\) \\
\hline 6.7 & 137 & Total & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 12S: Subcatchment 12 S}

Runoff \(=\quad 0.60 \mathrm{cfs} @ 12.30 \mathrm{hrs}\), Volume= \(\quad 0.066 \mathrm{af}\), Depth> 1.52"
Routed to Pond 3P : Stormfilter
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\)
Type III 24-hr 10-Year 24-Hour Rainfall=4.60"

\section*{Summary for Subcatchment 20S: Subcatchment 20S}
Runoff \(=\quad 2.47\) cfs @ 12.43 hrs , Volume= \(\quad 0.354\) af, Depth> 0.89"
Routed to Reach AP2 : Analysis Point 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 1,115 & 98 & Roofs, HSG B \\
27,727 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
166,599 & 55 & Woods, Good, HSG B \\
12,422 & 70 & Woods, Good, HSG C \\
\hline 207,863 & 57 & Weighted Average \\
206,748 & & \(99.46 \%\) Pervious Area \\
1,115 & & \(0.54 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 0.4 & 10 & 0.5000 & 0.38 & & Sheet Flow,
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 19.6 & 90 & 0.0220 & 0.08 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.4 & 30 & 0.0670 & 1.29 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps \\
\hline 1.6 & 78 & 0.0256 & 0.80 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 1.2 & 62 & 0.0320 & 0.89 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 2.0 & 71 & 0.0140 & 0.59 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline
\end{tabular}
25.2341 Total

\section*{Summary for Subcatchment 21S: SUBCATCHMENT 21S}

Runoff \(=1.70 \mathrm{cfs} @ 12.42 \mathrm{hrs}\), Volume= \(\quad 0.247\) af, Depth> 0.84"
Routed to Pond CB12 : Catch Basin 12
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\)
Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 9,648 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
819 & 98 & Roofs, HSG B \\
138,282 & 55 & Woods, Good, HSG B \\
5,904 & 70 & Woods, Good, HSG C \\
\hline 154,653 & 56 & Weighted Average \\
153,834 & & \(99.47 \%\) Pervious Area \\
819 & & \(0.53 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ftft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description & \\
\hline 5.0 & 37 & 0.0160 & 0.12 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} & \\
\hline 9.0 & 29 & 0.0160 & 0.05 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \[
\mathrm{P} 2=3.02^{\prime \prime}
\] \\
\hline 3.2 & 20 & 0.1000 & 0.10 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 3.4 & 14 & 0.0430 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02\) " \\
\hline 0.5 & 32 & 0.0430 & 1.04 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.2 & 41 & 0.4400 & 3.32 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 2.1 & 132 & 0.0450 & 1.06 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.6 & 53 & 0.0800 & 1.41 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 24.0 & 358 & Total & & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 22S: SUBCATCHMENT 22S}

Runoff \(=\quad 1.71\) cfs @ 12.27 hrs, Volume= \(\quad 0.191\) af, Depth> 1.19"
Routed to Pond 10P : Bioretention
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 7,612 & 98 & Paved parking, HSG B \\
39,991 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
36,336 & 55 & Woods, Good, HSG B \\
\hline 83,939 & 62 & Weighted Average \\
76,327 & & \(90.93 \%\) Pervious Area \\
7,612 & & \(9.07 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & Slope
(ft/ft) & Velocity (ft/sec) & Capacity
(cfs) & Description & \\
\hline 4.3 & 37 & 0.1620 & 0.14 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & P2=3.02" \\
\hline 3.5 & 43 & 0.3720 & 0.21 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & P2 \(=3.02\) " \\
\hline 5.1 & 20 & 0.0310 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & P2 \(=3.02\) " \\
\hline 0.8 & 44 & 0.0310 & 0.88 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 51 & 0.2350 & 2.42 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.8 & 83 & 0.0240 & 0.77 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \\
\hline 1.5 & 70 & 0.0229 & 0.76 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline
\end{tabular}
17.4348 Total

\section*{Summary for Subcatchment 23S: SUBCATCHMENT 23S}

Runoff \(=0.92\) cfs @ 12.09 hrs, Volume \(=0.067\) af, Depth> 3.00"
Routed to Pond 11P : EcoRaster
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\)
Type III 24-hr 10-Year 24-Hour Rainfall=4.60"

\section*{Summary for Subcatchment 24S: SUBCATCHMENT 24S}

Runoff \(=0.40 \mathrm{cfs} @ 12.21 \mathrm{hrs}\), Volume \(=\quad 0.044\) af, Depth> 0.95"
Routed to Pond 12P : Dry Well
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\)
Type III 24-hr 10-Year 24-Hour Rainfall=4.60"

\section*{Summary for Subcatchment 25S: SUBCATCHMENT 25S}

Runoff \(=\quad 1.43 \mathrm{cfs} @ 12.26 \mathrm{hrs}\), Volume= \(\quad 0.154\) af, Depth> \(1.26^{\prime \prime}\)
Routed to Pond 9P : 18" HDPE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 23,000 & 55 & Woods, Good, HSG B \\
33,757 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
7,438 & 98 & Paved parking, HSG B \\
\hline 64,195 & 63 & Weighted Average \\
56,757 & & \(88.41 \%\) Pervious Area \\
7,438 & & \(11.59 \%\) Impervious Area
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
(\mathrm{cfs})
\end{array}
\] & Description & \\
\hline 6.9 & 30 & 0.0330 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 2.9 & 23 & 0.1740 & 0.13 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 2.0 & 25 & 0.4800 & 0.20 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 2.7 & 22 & 0.1820 & 0.13 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.2 & 46 & 0.5000 & 4.95 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 1.8 & 222 & 0.0880 & 2.08 & & Shallow Concentrated Flow, Short Grass Pasture \(\mathrm{Kv}=7.0 \mathrm{fps}\) & \\
\hline
\end{tabular}
16.5368 Total

\section*{Summary for Subcatchment 30S: Subcatchment 30 S}

Runoff \(=0.97\) cfs @ 12.25 hrs, Volume \(=0.117\) af, Depth> 0.84"
Routed to Reach AP3 : Analysis Point 3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"

\footnotetext{
14.2299 Total
}

\section*{Summary for Subcatchment 31S: Subcatchment 31S}

Runoff \(=2.14 \mathrm{cfs} @ 12.38 \mathrm{hrs}\), Volume \(=\quad 0.289\) af, Depth> 0.95"
Routed to Reach 4Ra: Flow Through Subcatchment 30S
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\)
Type III 24-hr 10-Year 24-Hour Rainfall=4.60"

\section*{Summary for Subcatchment 32S: SUBCATCHMENT 32S}
Runoff \(=\quad 0.17 \mathrm{cfs} @ 12.13 \mathrm{hrs}\), Volume= \(\quad 0.015\) af, Depth> 1.13"

Routed to Pond 6P : Focal Point
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{rrl}
Area \((\mathrm{sf})\) & CN & Description \\
\hline 6,935 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
\hline 6,935 & & \(100.00 \%\) Pervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description & & \\
\hline 4.4 & 44 & 0.0310 & 0.17 & & Sheet Flow, Grass: Short & \(\mathrm{n}=0.150\) & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 3.0 & 27 & 0.0310 & 0.15 & & Sheet Flow, Grass: Short & \(n=0.150\) & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.6 & 12 & 0.3300 & 0.33 & & Sheet Flow, Grass: Short & \(n=0.150\) & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 8.0 & 83 & Total & & & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 101S: SUBCATCHMENT 101S}

Runoff \(=0.24\) cfs @ 12.09 hrs , Volume \(=0.018 \mathrm{af}\), Depth> 3.00"
Routed to Pond CB1 : Catch Basin 1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 10-Year 24-Hour Rainfall=4.60"

\footnotetext{
3.6210 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)
}

\section*{Summary for Subcatchment 104S: SUBCATCHMENT 104S}

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ftfft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 1.3 & 40 & 0.5000 & 0.50 & & Sheet Flow,
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 2.1 & 28 & 0.0800 & 0.22 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 32 & 0.0800 & 1.85 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(\mathrm{n}=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 98 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved Kv= 20.3 fps \\
\hline
\end{tabular}
4.0198 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

Summary for Subcatchment 106S: SUBCATCHMENT 106S
Runoff \(=\quad 0.38 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume= \(\quad 0.028 \mathrm{af}\), Depth> \(1.74^{\prime \prime}\) Routed to Pond CB6 : Catch Basin 6

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"

2.7108 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

Prepared by Jones \& Beach Engineers Inc

\section*{Summary for Subcatchment 109S: SUBCATCHMENT 109S}

\author{
Runoff \(=0.43 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.033 \mathrm{af}\), Depth> 3.80" Routed to Pond CB9 : Catch Basin 9
}

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & \multicolumn{3}{|l|}{Description} \\
\hline & \[
\begin{array}{r}
3,914 \\
677 \\
\hline
\end{array}
\] & & \multicolumn{3}{|l|}{Paved parking, HSG B >75\% Grass cover, Good, HSG B} \\
\hline & \[
\begin{array}{r}
4,591 \\
677 \\
3,914
\end{array}
\] & 93 & \multicolumn{3}{|l|}{Weighted Average 14.75\% Pervious Area 85.25\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 4.4 & 35 & 0.0200 & 0.13 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.7 & 65 & 0.0380 & 1.58 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.2 & 47 & 0.0430 & 4.21 & & Shallow Concentrated Flow, Paved Kv= 20.3 fps \\
\hline 0.1 & 35 & 0.0570 & 4.85 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline 0.4 & 140 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
5.8322 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 110S: SUBCATCHMENT 110 S}
Runoff \(=\quad 0.45 \mathrm{cfs} @ 12.15 \mathrm{hrs}\), Volume= \(\quad 0.038\) af, Depth> 2.21" Routed to Pond CB10 : Catch Basin 10

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 4,036 & 98 & Paved parking, HSG B \\
3,001 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
1,917 & 55 & Woods, Good, HSG B \\
\hline 8,954 & 76 & Weighted Average \\
4,918 & & \(54.93 \%\) Pervious Area \\
4,036 & & \(45.07 \%\) Impervious Area
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tc \\
(min)
\end{tabular} & Length (feet) & \begin{tabular}{l}
Slope \\
(ftft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description & \\
\hline 4.7 & 40 & 0.1500 & 0.14 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 5.3 & 60 & 0.2500 & 0.19 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.1 & 15 & 0.2500 & 2.50 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.1 & 23 & 0.5000 & 4.95 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 0.1 & 14 & 0.0800 & 1.98 & & Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps & \\
\hline 0.1 & 41 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved Kv= 20.3 fps & \\
\hline
\end{tabular}

\subsection*{10.4193 Total}

\section*{Summary for Subcatchment 111S: SUBCATCHMENT 111S}
Runoff \(=0.27\) cfs @ 12.11 hrs, Volume= 0.022 af, Depth> 1.13"

Routed to Reach B4R : BENCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"

Area (sf) CN Description
10,066 61 >75\% Grass cover, Good, HSG B
10,066 100.00\% Pervious Area
\begin{tabular}{rrrrll}
\begin{tabular}{r}
Tc \\
\((\mathrm{min})\)
\end{tabular} & \begin{tabular}{r}
Length \\
(feet) \()\)
\end{tabular} & \begin{tabular}{r}
Slope \\
\((\mathrm{ft} / \mathrm{ft})\)
\end{tabular} & \begin{tabular}{r}
Velocity \\
\((\mathrm{ft} / \mathrm{sec})\)
\end{tabular} & \begin{tabular}{r}
Capacity \\
\((\mathrm{cfs})\)
\end{tabular} & Description \\
\hline 1.3 & 37 & 0.5000 & 0.49 & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(\mathrm{n}=0.150 \quad \mathrm{P2}=3.02^{\prime \prime}\)
\end{tabular} \\
\hline
\end{tabular}
1.337 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 113S: SUBCATCHMENT 1135}
Runoff \(=0.42 \mathrm{cfs} @ 12.09\) hrs, Volume \(=0.035\) af, Depth> 4.36"

Routed to Pond CB13 : Catch Basin 13
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 4,154 & 98 & Paved parking, HSG B \\
\hline 4,154 & & \(100.00 \%\) Impervious Area
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { Length } \\
\text { (feet) } \\
\hline
\end{gathered}
\] & Slope (ft/ft) & Velocity (ft/sec) & Capacity
(cfs) & Description \\
\hline 1.0 & 100 & 0.0330 & 1.63 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.2 & 44 & 0.0330 & 3.69 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
1.2144 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 114S: SUBCATCHMENT 114 S}
Runoff \(=\quad 1.80 \mathrm{cfs} @ 12.12 \mathrm{hrs}\), Volume= \(\quad 0.151\) af, Depth> 3.69" Routed to Pond CB14 : Catch Basin 14

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 10-Year 24-Hour Rainfall=4.60"

\section*{Summary for Subcatchment 115S: SUBCATCHMENT 115S}
Runoff \(=\quad 1.55 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.124\) af, Depth> 4.13"

Routed to Pond CB15 : Catch Basin 15
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN D & Description & & \\
\hline & \[
\begin{array}{r}
3,294 \\
11,537 \\
852 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 98 \\
& 98 \\
& 61 \\
& \hline
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
Roofs, HSG B \\
Paved parking, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{array}{r}
\hline 15,683 \\
852 \\
14,831
\end{array}
\] & 96 & \multicolumn{3}{|l|}{Weighted Average 5.43\% Pervious Area 94.57\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 0.8 & 40 & 0.0100 & 0.84 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 2.1 & 10 & 0.0100 & 0.08 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.5 & 50 & 0.0500 & - 1.68 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.6 & 164 & 0.0500 & - 4.54 & & Shallow Concentrated Flow, Paved Kv= 20.3 fps \\
\hline
\end{tabular}
4.0264 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 116S: SUBCATCHMENT 116 S}

Runoff \(=2.26\) cfs @ 12.09 hrs, Volume= 0.176 af, Depth> 3.91" Routed to Pond CB16 : Catch Basin 16

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"

4.038 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 117S: SUBCATCHMENT 1175}
Runoff =
1.34 cfs @ 12.20 hrs, Volume=
0.124 af, Depth> 2.90" Routed to Pond CB17 : Catch Basin 17

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{|c|c|c|c|c|}
\hline & Area (sf) & CN & \multicolumn{2}{|l|}{Description} \\
\hline & \[
\begin{array}{r}
323 \\
13,448 \\
8,556
\end{array}
\] & 98
98
61 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Roofs, HSG B \\
Paved parking, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{array}{r}
22,327 \\
8,556 \\
13,771
\end{array}
\] & 84 & \multicolumn{2}{|l|}{Weighted Average 38.32\% Pervious Area 61.68\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity
(ft/sec) \begin{tabular}{r}
Capacity \\
(cfs)
\end{tabular} & Description \\
\hline 9.1 & 62 & 0.0100 & 0.11 & Sheet Flow,
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.1 & 5 & 0.0100 & 0.56 & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 4.1 & 25 & 0.0120 & 0.10 & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.2 & 8 & 0.0110 & 0.63 & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.6 & 72 & 0.0110 & 2.13 & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline 14.1 & 172 & Total & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 118S: SUBCATCHMENT 1185}
Runoff \(=\)
Routed to Pond CB18: Catch Basin 18

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{rrl}
Area \((\mathrm{sf})\) & CN & Description \\
\hline 4,495 & 98 & Roofs, HSG B \\
14,282 & 98 & Paved parking, HSG B \\
3,394 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
\hline 22,171 & 92 & Weighted Average \\
3,394 & & \(15.31 \%\) Pervious Area \\
18,777 & & \(84.69 \%\) Impervious Area
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{rrrrll}
\begin{tabular}{r}
Tc \\
\((\mathrm{min})\)
\end{tabular} & \begin{tabular}{r}
Length \\
\((\mathrm{feet})\)
\end{tabular} & \begin{tabular}{r}
Slope \\
\((\mathrm{ft/ft})\)
\end{tabular} & \begin{tabular}{r}
Velocity \\
\((\mathrm{ft} / \mathrm{sec})\)
\end{tabular} & \begin{tabular}{r}
Capacity \\
\((\mathrm{cfs})\)
\end{tabular} & Description \\
\hline 4.6 & 60 & 0.0500 & 0.22 & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(\mathrm{n}=0.150 \quad\) P2=
\end{tabular} \\
0.4 & 40 & 0.0500 & 1.61 & \begin{tabular}{l}
Sheet Flow,
\end{tabular} \\
0.1 & 20 & 0.0500 & 4.54 & \begin{tabular}{l}
Smooth surfaces n=0.011 \\
Shallow Concentrated Flow, \\
Paved Kv=20.3 fps
\end{tabular} \\
\hline
\end{tabular}
5.1120 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 119S: SUBCATCHMENT 119 S}

Runoff \(=\quad 1.33 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume \(=\quad 0.105\) af, Depth> 4.02"
Routed to Pond CB19: Catch Basin 19
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type Ill 24-hr 10-Year 24-Hour Rainfall=4.60"

5.0218 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 120S: SUBCATCHMENT 120 S}

Runoff \(=1.84\) cfs @ 12.09 hrs , Volume=
0.143 af, Depth> 3.91"

Routed to Pond CB20 : Catch Basin 20
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 10-Year 24-Hour Rainfall=4.60"

4.3124 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 204S: SUBCATCHMENT 204S}
Runoff \(=0.24 \mathrm{cfs} @ 12.40 \mathrm{hrs}\), Volume \(=\quad 0.033 \mathrm{af}\), Depth> 0.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Area (sf)} & CN & \multicolumn{4}{|l|}{Description} \\
\hline & \[
\begin{array}{r}
13,879 \\
5,563
\end{array}
\] & \[
\begin{aligned}
& 55 \\
& 61
\end{aligned}
\] & oods, Good \(75 \%\) Gras & d, HSG B cover, Go & od, HSG B & \\
\hline & \[
\begin{aligned}
& 19,442 \\
& 19,442
\end{aligned}
\] & \[
57
\] & eighted A
\[
00.00 \% \mathrm{Pe}
\] & verage rvious Area & & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description & \\
\hline 21.0 & 100 & 0.0227 & 0.08 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.2 & 10 & 0.0292 & 0.85 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 32 & 0.0630 & 1.25 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.5 & 77 & 0.2340 & 2.42 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 56 & 0.1790 & 2.12 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.6 & 72 & 0.1390 & 1.86 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.1 & 32 & 0.5000 & 4.95 & & Shallow Concentrated Flow, Short Grass Pasture \(K v=7.0 \mathrm{fps}\) & \\
\hline 23.2 & 379 & Total & & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 205S: SUBCATCHMENT 205S}
Runoff \(=0.12 \mathrm{cfs} @ 12.11 \mathrm{hrs}\), Volume \(=\quad 0.010\) af, Depth> \(1.13^{\prime \prime}\)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Area (sf) & \multicolumn{3}{|l|}{CN Description} & & \\
\hline & \[
\begin{array}{r}
4,339 \\
288
\end{array}
\] & \[
\begin{aligned}
& \hline 61 \\
& 55 \\
& \hline
\end{aligned}
\] & \multicolumn{4}{|l|}{\(>75 \%\) Grass cover, Good, HSG B Woods, Good, HSG B} \\
\hline & \[
\begin{aligned}
& 4,627 \\
& 4,627
\end{aligned}
\] & 61 & \multicolumn{2}{|l|}{Weighted Average 100.00\% Pervious Area} & & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope
(ft/ft) & Velocity (ft/sec) & Capacity
(cfs) & Description & \\
\hline 1.8 & 22 & 0.5000 & 0.20 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(P 2=3.02{ }^{\prime \prime}\) \\
\hline 2.1 & 70 & 0.5000 & 0.56 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} & \\
\hline
\end{tabular}
3.992 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 207S: SUBCATCHMENT 207S}

Runoff \(=0.20 \mathrm{cfs} @ 12.38 \mathrm{hrs}\), Volume \(=0.027 \mathrm{af}\), Depth> 0.95"
Routed to Reach B1R : BENCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{rrl}
Area \((\mathrm{sf})\) & CN & Description \\
\hline 6,840 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
8,162 & 55 & Woods, Good, HSG B \\
\hline 15,002 & 58 & Weighted Average \\
15,002 & & \(100.00 \%\) Pervious Area
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity
(cfs) & Description & \\
\hline 20.2 & 100 & 0.0250 & 0.08 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.2 & 10 & 0.0250 & 0.79 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.7 & 56 & 0.0710 & 1.33 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.9 & 66 & 0.0610 & 1.23 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.6 & 57 & 0.1050 & 1.62 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.2 & 40 & 0.5000 & 3.54 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 211S: SUBCATCHMENT 211S}

Runoff \(=0.34\) cfs @ 12.34 hrs, Volume \(=\quad 0.046\) af, Depth> 0.84" Routed to Reach B6R : BENCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"

\section*{Summary for Subcatchment 305S: SUBCATCHMENT 305S}
Runoff \(=0.02 \mathrm{cfs} @ 12.12 \mathrm{hrs}\), Volume= 0.002 af , Depth> 0.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Area (sf) CN Description} \\
\hline & \[
\begin{array}{r}
86 \\
1,455
\end{array}
\] & \[
\begin{aligned}
& 61 \\
& 55
\end{aligned}
\] & \multicolumn{3}{|l|}{>75\% Grass cover, Good, HSG B Woods, Good, HSG B} \\
\hline & \[
\begin{aligned}
& 1,541 \\
& 1,541
\end{aligned}
\] & 55 Weighted Average 100.00\% Pervious Area & \multicolumn{3}{|l|}{Weighted Average 100.00\% Pervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 0.9 & 6 & 0.2000 & 0.11 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02\) "
\end{tabular} \\
\hline 1.3 & 40 & 0.5000 & 0.50 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline
\end{tabular}
2.246 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment ROOF 1: Back of Roof}
```

Runoff = 0.75 cfs @ 12.09 hrs, Volume= 0.062 af, Depth> 4.36"

```
 Routed to Reach RD1 : RD 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year 24-Hour Rainfall=4.60"

\section*{Summary for Reach 4Ra: Flow Through Subcatchment 30 S}

Inflow Area \(=\quad 3.651 \mathrm{ac}, 0.00 \%\) Impervious, Inflow Depth \(>0.95\) " for 10-Year 24-Hour event Inflow \(=2.14\) cfs @ 12.38 hrs, Volume= 0.289 af
Outflow \(=\quad 2.14 \mathrm{cfs} @ 12.40 \mathrm{hrs}\), Volume \(=\quad 0.288 \mathrm{af}\), Atten= \(=0 \%\), Lag= 0.9 min
Routed to Reach 4Rb: Flow Through Subcatchment 30S
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.62 \mathrm{fps}\), Min. Travel Time \(=1.1 \mathrm{~min}\)
Avg. Velocity \(=0.30 \mathrm{fps}\), Avg. Travel Time \(=2.2 \mathrm{~min}\)
Peak Storage= 139 cf @ 12.40 hrs
Average Depth at Peak Storage= \(0.42^{\prime}\), Surface Width= 12.39'
Bank-Full Depth= 2.00' Flow Area= 36.0 sf, Capacity= 62.15 cfs
\(27.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush
Length \(=40.0^{\prime}\) Slope \(=0.1500{ }^{\prime} / /\)
Inlet Invert= 252.00', Outlet Invert= 246.00'

Prepared by Jones \& Beach Engineers Inc

\section*{Summary for Reach 4Rb: Flow Through Subcatchment 30S}
[61] Hint: Exceeded Reach 4Ra outlet invert by 0.21 @ 12.40 hrs
Inflow Area \(=\quad 3.651\) ac, \(0.00 \%\) Impervious, Inflow Depth \(>0.95^{\prime \prime}\) for 10-Year 24-Hour event Inflow \(=\quad 2.14\) cfs @ 12.40 hrs , Volume \(=0.288 \mathrm{af}\) Outflow \(=\quad 2.13 \mathrm{cfs} @ 12.42 \mathrm{hrs}\), Volume= 0.288 af , Atten= \(0 \%\), Lag= 1.6 min

Routed to Reach AP3 : Analysis Point 3
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.53 \mathrm{fps}\), Min. Travel Time \(=2.2 \mathrm{~min}\)
Avg. Velocity \(=0.26 \mathrm{fps}\), Avg. Travel Time \(=4.5 \mathrm{~min}\)
Peak Storage= 283 cf @ 12.42 hrs
Average Depth at Peak Storage \(=0.21^{\prime}\), Surface Width= \(28.28^{\prime}\)
Bank-Full Depth=2.00' Flow Area= 116.0 sf, Capacity= 276.81 cfs
\(87.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush Length \(=71.0^{\prime}\) Slope \(=0.2817\) '/'
Inlet Invert= 246.00', Outlet Invert= 226.00'

Summary for Reach AP1: Analysis Point 1
[40] Hint: Not Described (Outflow=Inflow)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach AP2: Analysis Point 2}
[40] Hint: Not Described (Outflow=Inflow)
\begin{tabular}{llll}
Inflow Area & \(=\) & 12.549 ac, & \(4.54 \%\) \\
Impervious, Inflow Depth \(>0.58 "\) & for \(10-\) Year 24 -Hour event \\
Inflow & \(=\) & \(4.17 \mathrm{cfs} @\) & 12.43 hrs, Volume \(=\) \\
Outflow & \(=\) & \(4.17 \mathrm{cfs} @\) & 12.43 hrs , Volume=
\end{tabular}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, \(\mathrm{dt}=0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach AP3: Analysis Point 3}
[40] Hint: Not Described (Outflow=Inflow)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach B1R: BENCH}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.71 \mathrm{fps}\), Min. Travel Time \(=4.1 \mathrm{~min}\)
Avg. Velocity \(=0.39 \mathrm{fps}\), Avg. Travel Time \(=7.3 \mathrm{~min}\)
Peak Storage= 48 cf @ 12.45 hrs
Average Depth at Peak Storage \(=0.26^{\prime}\), Surface Width= \(2.11^{\prime}\)
Bank-Full Depth=1.00' Flow Area= 4.0 sf, Capacity= 6.92 cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= 6.02 .0 ' \(/\) ' Top Width= 8.00'
Length= \(173.0^{\prime}\) Slope \(=0.0809{ }^{\prime} / \prime\)
Inlet Invert= 278.00', Outlet Invert= 264.00'

\section*{Summary for Reach B2R: BENCH}
[62] Hint: Exceeded Reach B1R OUTLET depth by \(0.08^{\prime} @ 12.10 \mathrm{hrs}\)
Inflow Area \(=0.451\) ac, \(0.00 \%\) Impervious, Inflow Depth \(>0.99\) " for 10-Year 24-Hour event Inflow = \(0.25 \mathrm{cfs} @ 12.41 \mathrm{hrs}\), Volume \(=0.037 \mathrm{af}\)
Outflow \(=\quad 0.25 \mathrm{cfs}\) @ 12.43 hrs , Volume \(=\quad 0.037 \mathrm{af}\), Atten= \(=1 \%\), Lag= 1.7 min
Routed to Reach B3R : BENCH
Overflow \(=0.00\) cfs @ 0.00 hrs , Volume \(=0.000\) af
Routed to Pond CB5 : Catch Basin 5

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.87 \mathrm{fps}\), Min. Travel Time \(=2.2 \mathrm{~min}\)
Avg. Velocity \(=0.49 \mathrm{fps}\), Avg. Travel Time \(=3.9 \mathrm{~min}\)
Peak Storage= 33 cf @ 12.43 hrs
Average Depth at Peak Storage= \(0.27^{\prime}\), Surface Width= 2.13'
Bank-Full Depth \(=1.00^{\prime}\) Flow Area= 4.0 sf, Capacity= 8.45 cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= \(6.02 .01 /\) Top Width= 8.00'
Length \(=116.0^{\prime}\) Slope \(=0.1207 \mathrm{I} / \prime\)
Inlet Invert= 264.00', Outlet Invert= 250.00'

\section*{Summary for Reach B3R: BENCH}
[62] Hint: Exceeded Reach B2R OUTLET depth by 0.08' @ 12.45 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=1.02 \mathrm{fps}\), Min. Travel Time \(=1.7 \mathrm{~min}\)
Avg. Velocity \(=0.57 \mathrm{fps}\), Avg. Travel Time \(=3.0 \mathrm{~min}\)
Peak Storage= 50 cf @ 12.44 hrs
Average Depth at Peak Storage \(=0.35^{\prime}\), Surface Width= 2.78'
Bank-Full Depth \(=1.00^{\prime}\) Flow Area= 4.0 sf , Capacity= 8.30 cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= 6.02 .0 ' \(f\) ' Top Width= 8.00'
Length \(=103.0^{\prime}\) Slope \(=0.1165 \mathrm{I} / \prime\)
Inlet Invert=250.00', Outlet Invert= 238.00'

\section*{Summary for Reach B4R: BENCH}
[62] Hint: Exceeded Reach B3R OUTLET depth by 0.16 ' @ 12.50 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.91 \mathrm{fps}\), Min. Travel Time \(=4.3 \mathrm{~min}\)
Avg. Velocity \(=0.51 \mathrm{fps}\), Avg. Travel Time \(=7.5 \mathrm{~min}\)
Peak Storage= 234 cf @ 12.46 hrs
Average Depth at Peak Storage \(=0.50^{\prime}\), Surface Width=4.02'
Bank-Full Depth= 1.00' Flow Area= 4.0 sf , Capacity= 5.76 cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= 6.02 .0 '/' Top Width= 8.00'
Length \(=232.0^{\prime}\) Slope \(=0.0560\) '/'
Inlet Invert= 238.00', Outlet Invert= 225.00'

\section*{Summary for Reach B5R: BENCH}

Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Max. Velocity= 0.42 fps , Min. Travel Time \(=0.5 \mathrm{~min}\)
Avg. Velocity \(=0.22 \mathrm{fps}\), Avg. Travel Time \(=0.9 \mathrm{~min}\)
Peak Storage= 1 cf @ 12.12 hrs
Average Depth at Peak Storage= \(0.12^{\prime}\), Surface Width= \(0.95^{\prime}\)
Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 7.02 cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(\mathrm{n}=0.150\) Sheet flow over Short Grass
Side Slope Z-value= \(6.02 .0{ }^{\prime} / \prime\) ' Top Width= 8.00'
Length \(=12.0^{\prime}\) Slope \(=0.08331 / \prime\)
Inlet Invert \(=274.00^{\prime}\), Outlet Invert= 273.00'

\section*{Summary for Reach B6R: BENCH}

Inflow Area \(=0.656 \mathrm{ac}, \quad 0.00 \%\) Impervious, Inflow Depth \(>0.84\) " for 10-Year 24-Hour event
Inflow \(=0.34\) cfs @ 12.34 hrs, Volume \(=0.046\) af Outflow \(=0.33 \mathrm{cfs} @ 12.40 \mathrm{hrs}\), Volume \(=0.046 \mathrm{af}\), Atten \(=3 \%\), Lag \(=3.8 \mathrm{~min}\)

Routed to Reach B4R : BENCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.70 \mathrm{fps}\), Min. Travel Time \(=3.9 \mathrm{~min}\)
Avg. Velocity \(=0.39 \mathrm{fps}\), Avg. Travel Time \(=7.1 \mathrm{~min}\)
Peak Storage= 78 cf @ 12.40 hrs
Average Depth at Peak Storage= 0.34' , Surface Width= 2.75'
Bank-Full Depth \(=1.00^{\prime}\) Flow Area= 4.0 sf, Capacity= 5.68 cfs
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= 6.02 .0 ' \(/\) Top Width= 8.00'
Length \(=165.0^{\prime}\) Slope \(=0.0545\) '/'
Inlet Invert= 259.00', Outlet Invert= 250.00'

\section*{Summary for Reach RD1: RD 1}
[52] Hint: Inlet/Outlet conditions not evaluated
Inflow Area \(=\quad 0.170 \mathrm{ac}, 100.00 \%\) Impervious, Inflow Depth \(>4.36\) " for 10 -Year 24-Hour event Inflow \(=0.75\) cfs @ 12.09 hrs , Volume= 0.062 af
Outflow \(=0.75 \mathrm{cfs}\) @ 12.10 hrs , Volume \(=\quad 0.062 \mathrm{af}\), Atten \(=0 \%\), Lag= 0.6 min
Routed to Pond CB13 : Catch Basin 13

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=6.19 \mathrm{fps}, \mathrm{Min}\). Travel Time \(=0.7 \mathrm{~min}\)
Avg. Velocity \(=2.08 \mathrm{fps}\), Avg. Travel Time \(=2.1 \mathrm{~min}\)
Peak Storage= 32 cf @ 12.10 hrs
Average Depth at Peak Storage \(=0.25^{\prime}\), Surface Width= \(0.65^{\prime}\)
Bank-Full Depth \(=0.67^{\prime}\) Flow Area= 0.3 sf , Capacity \(=2.47 \mathrm{cfs}\)
8.0" Round Pipe
\(\mathrm{n}=0.013\) Corrugated PE, smooth interior
Length \(=264.0^{\prime}\) Slope \(=0.0417{ }^{\prime} / \prime\)
Inlet Invert= 276.00', Outlet Invert= 265.00'

\section*{Summary for Reach RD2: RD 2}
[52] Hint: Inlet/Outlet conditions not evaluated
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
Inflow Area = \(\quad 0.170 \mathrm{ac}, 100.00 \%\) Impervious, Inflow Depth \(>4.36\) " for 10 -Year 24-Hour event
Inflow \(=0.75 \mathrm{cfs}\) @ 12.09 hrs , Volume \(=0.062 \mathrm{af}\)
Outflow \(=\quad 0.75 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume \(=\quad 0.062 \mathrm{af}\), Atten \(=0 \%\), Lag \(=0.3 \mathrm{~min}\)
Routed to Pond CB14 : Catch Basin 14
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=6.57 \mathrm{fps}\), Min. Travel Time \(=0.3 \mathrm{~min}\)
Avg. Velocity \(=2.21 \mathrm{fps}\), Avg. Travel Time \(=0.8 \mathrm{~min}\)
Peak Storage= 13 cf @ 12.09 hrs
Average Depth at Peak Storage \(=0.24^{\prime}\), Surface Width= \(0.64^{\prime}\)
Bank-Full Depth \(=0.67\) ' Flow Area= 0.3 sf, Capacity= 2.68 cfs
8.0" Round Pipe
\(\mathrm{n}=0.013\) Corrugated PE , smooth interior
Length \(=110.0^{\prime}\) Slope \(=0.0491^{\prime} / \prime\)
Inlet Invert= 269.00', Outlet Invert= 263.60'

\section*{Summary for Reach RD3: RD 3}
[52] Hint: Inlet/Outlet conditions not evaluated
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
\begin{tabular}{lll}
Inflow Area & \(=\) & 0.170 ac, \(100.00 \%\) Impervious, Inflow Depth \(>4.36 "\) for \(10-\) Year 24 -Hour event \\
Inflow & \(=\) & \(0.75 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume \(=\) \\
Outflow & \(=\) & \(0.75 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume \(=\)
\end{tabular}

Routed to Pond CB17 : Catch Basin 17
Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=4.73 \mathrm{fps}\), Min. Travel Time \(=0.4 \mathrm{~min}\)
Avg. Velocity \(=1.61 \mathrm{fps}\), Avg. Travel Time \(=1.0 \mathrm{~min}\)
Peak Storage= 16 cf @ 12.09 hrs
Average Depth at Peak Storage \(=0.31^{\prime}\), Surface Width \(=0.66^{\prime}\)
Bank-Full Depth \(=0.67\) ' Flow Area= 0.3 sf , Capacity= 1.71 cfs
8.0" Round Pipe
\(\mathrm{n}=0.013\) Corrugated PE, smooth interior
Length \(=100.0^{\prime}\) Slope \(=0.0200{ }^{\prime} / \prime\)
Inlet Invert= 268.00', Outlet Invert= 266.00'

\section*{Summary for Pond 1P: Infiltration Pocket}
[80] Warning: Exceeded Pond 3P by 0.93 @ 11.20 hrs (0.00 cfs 0.000 af)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev= 198.81' @ 12.30 hrs Surf.Area= 393 sf Storage= 619 cf
Plug-Flow detention time \(=24.2\) min calculated for 0.417 af (\(97 \%\) of inflow)
Center-of-Mass det. time \(=8.7 \mathrm{~min}\) (956.6 -947.9)
\begin{tabular}{crrr}
Volume & Invert & Avail.Storage & Storage Description \\
\hline\(\# 1\) & \(195.84^{\prime}\) & 619 cf & Custom Stage Data (Prismatic)Listed below (Recalc)
\end{tabular}
\begin{tabular}{rrrrr}
\begin{tabular}{r}
Elevation \\
\((\) feet \()\)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
\((\) sq-ft)
\end{tabular} & \begin{tabular}{r}
Voids \\
\((\%)\)
\end{tabular} & \begin{tabular}{r}
Inc. Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 195.84 & 43 & 0.0 & 0 & 0 \\
195.85 & 43 & 40.0 & 0 & 0 \\
195.99 & 43 & 40.0 & 2 & 3 \\
196.00 & 43 & 100.0 & 0 & 3 \\
197.00 & 197 & 100.0 & 120 & 123 \\
198.00 & 263 & 100.0 & 230 & 353 \\
198.80 & 393 & 100.0 & 262 & 615 \\
198.81 & 393 & 100.0 & 4 & 619
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \#0 & Primary & 198.81' & Automatic Storage Overflow (Discharged without head) \\
\hline \#1 & Discarded & 195.84' & \(0.300 \mathrm{in} / \mathrm{hr}\) Exfiltration over Surface area \\
\hline & \multirow{6}{*}{Primary} & & Conductivity to Groundwater Elevation = 195.83' Phase-In=0.01' \\
\hline \multirow[t]{5}{*}{\#2} & & \multirow[t]{5}{*}{198.80'} & 20.0' long x 1.0' breadth Broad-Crested Rectangular Weir \\
\hline & & & \\
\hline & & & 2.503 .00 \\
\hline & & & Coef. (English) \(2.692 .72 \quad 2.75 \quad 2.85 \quad 2.983 .083 .203 .283 .31\) \\
\hline & & & 3.303 .313 .32 \\
\hline
\end{tabular}

Discarded OutFlow Max=0.10 cfs @ 12.30 hrs HW=198.81' (Free Discharge)
\(L_{1=E x f i l t r a t i o n ~(C o n t r o l s ~}^{0.10 ~ c f s) ~}\)
Primary OutFlow Max=0.05 cfs @ 12.59 hrs HW=198.81' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Weir Controls \(0.05 \mathrm{cfs} @ 0.27 \mathrm{fps}\))

\section*{Summary for Pond 2P: Stormwater Pond}

Inflow Area = \(\quad 4.080 \mathrm{ac}, 13.74 \%\) Impervious, Inflow Depth \(>1.40\) " for 10-Year 24-Hour event
Inflow =
4.63 cfs @ 12.11 hrs, Volume=
0.476 af

Outflow = 0.91 cfs @ 13.01 hrs , Volume=
0.357 af, Atten= \(80 \%\), Lag= 54.4 min

Primary =
0.91 cfs @ 13.01 hrs, Volume=
0.357 af

Routed to Pond 1P : Infiltration Pocket
Secondary \(=\quad 0.00\) cfs @ 0.00 hrs , Volume= \(\quad 0.000\) af
Routed to Pond 1P : Infiltration Pocket
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Starting Elev=199.00' Surf.Area=4,795 sf Storage=10,800 cf
Peak Elev= 200.44' @ 13.01 hrs Surf.Area=6,735 sf Storage= 19,214 cf (8,415 cf above start)
Plug-Flow detention time= 500.4 min calculated for 0.109 af (\(23 \%\) of inflow)
Center-of-Mass det. time= \(101.4 \mathrm{~min}(963.9\) - 862.6)
\begin{tabular}{crrr}
Volume & Invert & Avail.Storage & Storage Description \\
\hline\(\# 1\) & \(196.00^{\prime}\) & 37,985 cf & Custom Stage Data (Prismatic)Listed below (Recalc)
\end{tabular}
\begin{tabular}{rrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 196.00 & 2,494 & 0 & 0 \\
197.00 & 3,194 & 2,844 & 2,844 \\
198.00 & 3,961 & 3,578 & 6,422 \\
199.00 & 4,795 & 4,378 & 10,800 \\
199.49 & 5,237 & 2,458 & 13,257 \\
199.50 & 5,818 & 55 & 13,313 \\
200.00 & 6,296 & 3,029 & 16,341 \\
201.00 & 7,292 & 6,794 & 23,135 \\
202.00 & 8,346 & 7,819 & 30,954 \\
202.80 & 9,005 & 6,940 & 37,895 \\
202.81 & 9,005 & 90 & 37,985
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & \multirow[t]{4}{*}{Primary} & \multirow[t]{4}{*}{199.00'} & 12.0" Round Culvert \\
\hline & & & \(\mathrm{L}=26.0^{\prime} \mathrm{CPP}\), projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert= 199.00' \(/ 198.80^{\prime} \mathrm{S}=0.0077 / / / \mathrm{Cc}=0.900\) \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 0.79 \\
\hline \#2 & Device 1 & 199.00' & 2.0" Vert. Orifice/Grate \(\mathrm{C}=0.600\) Limited to weir flow at low heads \\
\hline \#3 & Device 1 & 199.85' & 7.5" Vert. Orifice/Grate \(\mathrm{C}=0.600\) Limited to weir flow at low heads \\
\hline \multirow[t]{2}{*}{\#4} & \multirow[t]{2}{*}{Device 1} & \multirow[t]{2}{*}{201.70'} & 48.0" \(\times 48.0\) ' Horiz. Orifice/Grate \(C=0.600\) \\
\hline & & & Limited to weir flow at low heads \\
\hline \multirow[t]{5}{*}{\#5} & \multirow[t]{5}{*}{Secondary} & \multirow[t]{5}{*}{201.80'} & 6.0' long x 6.0' breadth Broad-Crested Rectangular Weir \\
\hline & & & Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80 \\
\hline & & & 2.503 .003 .504 .004 .505 .005 .50 \\
\hline & & & Coef. (English) 2.372 .512 .702 .682 .682 .6712 .6512 .6512 .65 \\
\hline & & & 2.652 .662 .662 .672 .692 .722 .762 .83 \\
\hline
\end{tabular}

Primary OutFlow Max=0.91 cfs @ 13.01 hrs HW=200.44' TW=198.81' (Dynamic Tailwater)
L-1=Culvert (Passes 0.91 cfs of 2.90 cfs potential flow)
-2 \(2=\) Orifice/Grate (Orifice Controls 0.12 cfs @ 5.61 fps)
-3=Orifice/Grate (Orifice Controls 0.79 cfs @ 2.62 fps)
4=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ \(0.00 \mathrm{hrs} \mathrm{HW}=199.00^{\prime}\) TW=195.84' (Dynamic Tailwater)
\(\Psi_{5=\text { Broad-Crested Rectangular Weir (Controls } 0.00 \mathrm{cfs} \text {) }}\)

\section*{Summary for Pond 3P: Stormfilter}
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=24)

Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs} / 9\)

Peak Elev= 198.83' @ 12.30 hrs Surf.Area= 227 sf Storage= 69 cf
Plug-Flow detention time \(=15.7\) min calculated for 0.065 af (\(98 \%\) of inflow)
Center-of-Mass det. time \(=3.5 \mathrm{~min}(874.0-870.5\))
\begin{tabular}{crrl}
Volume & Invert & Avail.Storage & Storage Description \\
\hline\(\# 1\) & \(195.00^{\prime}\) & 7 cf & \(1.00^{\prime} \mathrm{W} \times 2.00^{\prime} \mathrm{L} \times 3.40^{\prime} \mathrm{H}\) Prismatoid \\
\(\# 2\) & \(191.75^{\prime}\) & 13 cf & \(1.00^{\prime} \mathrm{W} \times 2.00^{\prime} \mathrm{L} \times 6.65^{\prime} \mathrm{H}\) Prismatoid \\
\(\# 3\) & \(198.40^{\prime}\) & 97 cf & Custom Stage Data (Prismatic)Listed below (Recalc) \\
\hline & & 117 cf & Total Available Storage
\end{tabular}
\begin{tabular}{rrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 198.40 & 4 & 0 & 0 \\
199.00 & 310 & 94 & 94 \\
199.01 & 310 & 3 & 97
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & \multirow[t]{4}{*}{Primary} & \multirow[t]{4}{*}{196.10'} & 15.0" Round Culvert \\
\hline & & & \(\mathrm{L}=10.0^{\prime}\) CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert= 196.10' / 196.00' S=0.0100 '/' Cc= 0.900 \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf \\
\hline \multirow[t]{5}{*}{\#2} & \multirow[t]{5}{*}{Secondary} & \multirow[t]{5}{*}{199.00'} & 20.0' long \(\times 1 . \mathbf{0}^{\prime}\) breadth Broad-Crested Rectangular Weir \\
\hline & & & Head (feet) \(\begin{array}{lllllllllllll} & 0.20 & 0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60 & 1.80 & 2.00\end{array}\) \\
\hline & & & 2.503 .00 \\
\hline & & & Coef. (English) \(2.692 .72 \quad 2.75 \quad 2.85 \quad 2.983 .083 .203 .283 .31\) \\
\hline & & & 3.303 .313 .32 \\
\hline
\end{tabular}

Primary OutFlow Max=0.64 cfs @ 12.31 hrs HW=198.83' TW=198.81' (Dynamic Tailwater)
_1=Culvert (Inlet Controls \(0.64 \mathrm{cfs} @ 0.52 \mathrm{fps}\))
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=191.75' TW=0.00' (Dynamic Tailwater)
L2-Broad-Crested Rectangular Weir (Controls 0.00 cfs) \(^{2}\)

\section*{Summary for Pond 5P: StormTech}

\begin{tabular}{lr}
Prepared by Jones \& Beach Engineers Inc & Printed \(3 / 20 / 2023\) \\
HydroCAD® 10.20-2g s/n 00762 © 2022 HydroCAD Software Solutions LLC & Page 51 \\
\hline
\end{tabular}

\section*{Summary for Pond 6P: Focal Point}

\begin{tabular}{rrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 256.00 & 620 & 0 & 0 \\
258.00 & 1,345 & 1,965 & 1,965
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & \multirow[t]{4}{*}{Primary} & \multirow[t]{4}{*}{252.75'} & 15.0" Round Culvert \\
\hline & & & \(\mathrm{L}=60.0^{\prime} \mathrm{CPP}\), projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert= 252.75' \(/ 252.00^{\prime} \mathrm{S}=0.0125 / / \mathrm{Cc}=0.900\) \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf \\
\hline \#2 & Device 3 & 253.75' & \(100.000 \mathrm{in} / \mathrm{hr}\) Exfiltration over Surface area Phase-In=0.10' \\
\hline \#3 & Device 1 & 253.25' & 6.0 " W x 6.0" H Vert. Orifice/Grate \(\mathrm{C}=0.600\) \\
\hline & & & Limited to weir flow at low heads \\
\hline \#4 & Device 1 & 257.00' & 18.0' Horiz. Orifice/Grate C= 0.600 \\
\hline & & & Limited to weir flow at low heads \\
\hline
\end{tabular}

\section*{Summary for Pond 9P: 18" HDPE}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev= 201.83' @ 12.27 hrs Surf.Area= 153 sf Storage= 79 cf
Plug-Flow detention time \(=2.7\) min calculated for 0.154 af (\(100 \%\) of inflow)
Center-of-Mass det. time \(=1.3 \mathrm{~min}(880.7-879.5\))

Prepared by Jones \& Beach Engineers Inc

Inlet / Outlet Invert=201.20'/201.00'S=0.0053 '/' Cc= 0.900 \(n=0.013\) Corrugated \(P E\), smooth interior, Flow Area \(=1.77 \mathrm{sf}\)
\#2 Secondary 202.50' \(36.0^{\prime}\) long \(\times 1.0^{\prime}\) breadth Broad-Crested Rectangular Weir Head (feet) \(\begin{array}{lllllllllll}0.20 & 0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60 & 1.80 & 2.00\end{array}\) 2.503 .00

Coef. (English) \(2.692 .72 \quad 2.75 \quad 2.852 .983 .083 .203 .28 \quad 3.31\)
3.303 .313 .32

Primary OutFlow Max=1.41 cfs @ 12.27 hrs HW=201.83' TW=199.92' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 1.41 cfs @ 2.97 fps)
Secondary OutFlow Max=0.00 cfs @ \(0.00 \mathrm{hrs} \mathrm{HW}=201.00^{\prime}\) TW=0.00' (Dynamic Tailwater)
4-2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

\section*{Summary for Pond 10P: Bioretention}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, \(\mathrm{dt}=0.05 \mathrm{hrs} / 9\) Peak Elev=200.30' @ 12.55 hrs Surf.Area= 2,550 sf Storage= 2,228 cf

Plug-Flow detention time \(=17.5\) min calculated for 0.344 af (\(100 \%\) of inflow)
Center-of-Mass det. time \(=14.8 \mathrm{~min}(896.9-882.1)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Volume & \multicolumn{2}{|l|}{Invert Avail.Storage} & \multicolumn{4}{|l|}{Storage Description} \\
\hline \#1 & 197.49' & 10,895 cf & Custom & age Data (Ir & Listed belo & calc) \\
\hline \begin{tabular}{l}
Elevation \\
(feet)
\end{tabular} & Surf.Area
\[
(\mathrm{sq}-\mathrm{ft})
\] & Perim. (feet) & \begin{tabular}{l}
Voids \\
(\%)
\end{tabular} & Inc.Store (cubic-feet) & Cum.Store (cubic-feet) & Wet.Area
\[
(\mathrm{sq}-\mathrm{ft})
\] \\
\hline 197.49 & 2,341 & 224.0 & 0.0 & 0 & 0 & 2,341 \\
\hline 197.50 & 2,341 & 224.0 & 40.0 & 9 & 9 & 2,343 \\
\hline 198.49 & 2,341 & 224.0 & 40.0 & 927 & 936 & 2,565 \\
\hline 198.50 & 2,341 & 224.0 & 15.0 & 4 & 940 & 2,567 \\
\hline 199.99 & 2,341 & 224.0 & 15.0 & 523 & 1,463 & 2,901 \\
\hline 200.00 & 2,341 & 224.0 & 100.0 & 23 & 1,487 & 2,903 \\
\hline 200.99 & 3,056 & 251.0 & 100.0 & 2,664 & 4,150 & 3,951 \\
\hline 201.00 & 3,826 & 265.0 & 100.0 & 34 & 4,185 & 4,525 \\
\hline 202.00 & 4,646 & 284.0 & 100.0 & 4,229 & 8,414 & 5,400 \\
\hline 202.50 & 5,079 & 293.0 & 100.0 & 2,430 & 10,844 & 5,837 \\
\hline 202.51 & 5,079 & 293.0 & 100.0 & 51 & 10,895 & 5,840 \\
\hline
\end{tabular}

\begin{tabular}{rrrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Voids \\
(\%)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 195.07 & 3,707 & 0.0 & 0 & 0 \\
195.08 & 3,707 & 30.0 & 11 & 11 \\
196.08 & 3,707 & 30.0 & 1,112 & 1,123 \\
196.09 & 3,707 & 15.0 & 6 & 1,129 \\
196.33 & 3,707 & 15.0 & 133 & 1,262 \\
196.34 & 3,707 & 5.0 & 2 & 1,264 \\
197.33 & 3,707 & 5.0 & 183 & 1,448 \\
197.34 & 3,707 & 30.0 & 11 & 1,459 \\
197.99 & 3,707 & 30.0 & 723 & 2,182 \\
198.00 & 3,707 & 100.0 & 37 & 2,219 \\
198.01 & 3,707 & 100.0 & 37 & 2,256
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & 198.00' & \(100 . \mathbf{0}^{\prime}\) long \(\times 50.0^{\prime}\) breadth Broad-Crested Rectangular Weir Head (feet) \(0.200 .400 .60 \quad 0.801 .001 .201 .401 .60\) \\
\hline & & & Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63 \\
\hline \#2 & Discarded & 195.07' & \(1.000 \mathrm{in} / \mathrm{hr}\) Exfiltration over Surface area \\
\hline
\end{tabular}

Discarded OutFlow Max=0.36 cfs @ 12.58 hrs HW=195.84' (Free Discharge)
L2=Exfiltration (Controls 0.36 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=195.07' TW=0.00' (Dynamic Tailwater)
\(廿_{1=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~}^{0.00} \mathrm{cfs}\))

\section*{Summary for Pond 12P: Dry Well}
[93] Warning: Storage range exceeded by \(0.10^{\prime}\)
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=48)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=199.31' @ 12.35 hrs Surf.Area= 287 sf Storage= 359 cf
Plug-Flow detention time \(=116.1\) min calculated for 0.036 af (\(81 \%\) of inflow)
Center-of-Mass det. time \(=37.6 \mathrm{~min}(930.9-893.3)\)

Discarded OutFlow Max=0.01 cfs @ 12.35 hrs HW=199.31' (Free Discharge)
\(1=\) Exfiltration (Controls 0.01 cfs)
Primary OutFlow Max=0.51 cfs @ 12.35 hrs HW=199.31' TW=195.73' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Weir Controls 0.51 cfs @ 0.93 fps)

\section*{Summary for Pond CB1: Catch Basin 1}

Primary OutFlow Max=0.24 cfs @ 12.09 hrs HW=201.35' TW=201.34' (Dynamic Tailwater)
\({ }^{4}-1=\) Culvert (Outlet Controls 0.24 cfs @ 0.45 fps)

\section*{Summary for Pond CB10: Catch Basin 10}

Primary OutFlow Max=0.45 cfs @ 12.15 hrs HW=252.52' TW=252.37' (Dynamic Tailwater)
\(\leftarrow_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~}^{0.45} \mathrm{cfs}\) @ 1.85 fps)

\section*{Summary for Pond CB11: Catch Basin 11}

\footnotetext{
Primary OutFlow Max=0.91 cfs @ 12.46 hrs HW=208.51' TW=201.11' (Dynamic Tailwater)
—1 \(_{1=\text { Culvert }}\) (Inlet Controls \(0.91 \mathrm{cfs} @ 1.93 \mathrm{fps}\))
}

\section*{Summary for Pond CB12: Catch Basin 12}

Routed to Pond CB10 : Catch Basin 10
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=263.10' @ 12.42 hrs Surf.Area= 49 sf Storage= 5 cf
Plug-Flow detention time= 0.1 min calculated for 0.247 af (\(100 \%\) of inflow)
Center-of-Mass det. time \(=0.0 \mathrm{~min}\) (909.3-909.3)

\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \#0 & Secondary & 264.01' & Automatic Storage Overflow (Discharged without head) \\
\hline \#1 & Primary & \(259.70^{\prime}\) & 15.0" Round Culvert \\
\hline & & & \(\mathrm{L}=50.0^{\prime} \mathrm{CPP}\), square edge headwall, \(\mathrm{Ke}=0.500\) \\
\hline & & & Inlet / Outlet Invert=259.70'/259.00' \(\mathrm{S}=0.0140\) '/' \(\mathrm{Cc}=0.900\) \\
\hline \#2 & Device 1 & 263.00' & 48.0" \(\times 48.0\) " Horiz. Orifice/Grate \(\mathrm{C}=0.600\) \\
\hline & & & Limited to weir flow at low heads \\
\hline \#3 & Secondary & 264.00' & 8.0' long \(\times 1.0\) ' breadth Broad-Crested Rectangular Weir \\
\hline & & & Head (feet) \(0.200 .400 .600 .801 .001 .201 .401 .601 .80 \quad 2.00\) \\
\hline & & & 2.503 .00 (\\
\hline & & & Coef. (English) \(2.692 .72 \quad 2.75 \quad 2.852 .983 .083 .203 .283 .31\) \\
\hline & & & 3.303 .313 .32 \\
\hline
\end{tabular}

\footnotetext{
Primary OutFlow Max=1.70 cfs @ 12.42 hrs HW=263.10' TW=0.00' (Dynamic Tailwater)
\&1=Culvert (Passes 1.70 cfs of 9.85 cfs potential flow)
L2=Orifice/Grate (Weir Controls 1.70 cfs @ 1.04 fps)
}

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=263.00' TW=252.10' (Dynamic Tailwater)
43=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

\section*{Summary for Pond CB13: Catch Basin 13}
[62] Hint: Exceeded Reach RD1 OUTLET depth by \(0.36^{\prime}\) @ 12.10 hrs

Routed to Pond CB14 : Catch Basin 14
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=265.61' @ 12.10 hrs
Flood Elev= 270.70'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & Primary & 264.20' & 18.0" Round Culvert \\
\hline & & & \(\mathrm{L}=73.0^{\circ}\) CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert=264.20' \(263.40^{\prime} \mathrm{S}=0.0110^{\prime \prime} / \mathrm{l}\) Cc= 0.900 \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.77 sf \\
\hline
\end{tabular}

Primary OutFlow Max=1.38 cfs @ 12.09 hrs HW=265.51' TW=265.45' (Dynamic Tailwater)
L1=Culvert (Outlet Controls 1.38 cfs @ 1.12 fps)

\section*{Summary for Pond CB14: Catch Basin 14}
[62] Hint: Exceeded Reach RD2 OUTLET depth by 1.74' @ 12.10 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=265.58' @ 12.10 hrs
Flood Elev= 270.00'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(263.30^{\prime}\) & \(18.0^{\prime \prime}\) Round Culvert \\
& & \(L=68.0^{\prime}\) CPP, projecting, no headwall, Ke=0.900 \\
& & Inlet \(/\) Outlet Invert \(=263.30^{\prime} / 262.90^{\prime} \mathrm{S}=0.0059^{\prime} / \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE , smooth interior, Flow Area \(=1.77 \mathrm{sf}\)
\end{tabular}

Primary OutFlow Max=3.67 cfs @ 12.10 hrs HW=265.49' TW=265.19' (Dynamic Tailwater)
¿1=Culvert (Inlet Controls 3.67 cfs @ 2.08 fps)

\section*{Summary for Pond CB15: Catch Basin 15}

Primary OutFlow Max=5.20 cfs @ 12.10 hrs HW=265.27' TW=264.63' (Dynamic Tailwater) —1=Culvert (Outlet Controls 5.20 cfs @ 2.94 fps)

\section*{Summary for Pond CB16: Catch Basin 16}

Primary OutFlow Max=7.38 cfs @ 12.10 hrs HW=264.58' TW=264.19' (Dynamic Tailwater)
_1=Culvert (Inlet Controls \(7.38 \mathrm{cfs} @ 2.35 \mathrm{fps}\))

\section*{Summary for Pond CB17: Catch Basin 17}
 Routed to Pond CB18 : Catch Basin 18

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

Peak Elev= 264.25' @ 12.10 hrs
Flood Elev=269.00'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(260.80^{\prime}\) & \(24.0^{\prime \prime}\) Round Culvert \\
& & \(L=57.0^{\prime}\) CPP, projecting, no headwall, Ke \(=0.900\) \\
& & Inlet \(/\) Outlet Invert \(=260.80^{\prime} / 260.50^{\prime} \mathrm{S}=0.00533^{\prime} / \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= \(=3.14 \mathrm{sf}\)
\end{tabular}

Primary OutFlow Max=9.22 cfs @ 12.10 hrs HW=264.24' TW=263.64' (Dynamic Tailwater)
\&-1=Culvert (Inlet Controls 9.22 cfs @ 2.94 fps)

\section*{Summary for Pond CB18: Catch Basin 18}

Routed to Pond DMH 5 : Drain Manhole 5
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=263.65' @ 12.10 hrs
Flood Elev=268.70'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & \(260.40^{\prime}\) & \(24.0^{\prime \prime}\) Round Culvert \\
& & \(L=11.0^{\prime}\) CPP, projecting, no headwall, Ke= 0.900 \\
& & Inlet \(/\) Outlet Invert \(=260.40^{\prime} / 260.30^{\prime} \mathrm{S}=0.0091^{\prime \prime} / \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 3.14 sf
\end{tabular}

Primary OutFlow Max=11.24 cfs @ 12.10 hrs HW=263.63' TW=262.75' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 11.24 cfs @ 3.58 fps)

\section*{Summary for Pond CB19: Catch Basin 19}

Primary OutFlow Max=3.12 cfs @ 12.09 hrs HW=262.91' TW=262.75' (Dynamic Tailwater)
t-1=Culvert (Outlet Controls 3.12 cfs @ 1.70 fps)

\section*{Summary for Pond CB2: Catch Basin 2}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=201.38' @ 12.11 hrs
Flood Elev=203.90'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(200.40^{\prime}\) & \(15.0^{\prime \prime}\) Round Culvert \\
& & L=84.0' CPP, projecting, no headwall, Ke= \(=0.900 \quad\) \\
& & Inlet / Outlet Invert= \(200.40^{\prime} / 200.00^{\prime} \quad \mathrm{S}=0.0048 \quad \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf
\end{tabular}

Primary OutFlow Max=1.14 cfs @ 12.41 hrs HW=201.14' TW=200.83' (Dynamic Tailwater) —1=Culvert (Outlet Controls 1.14 cfs @ 2.19 fps)

\section*{Summary for Pond CB20: Catch Basin 20}

Primary OutFlow Max=1.82 cfs @ 12.09 hrs HW=263.01' TW=262.91' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 1.82 cfs @ 1.47 fps)

\section*{Summary for Pond CB3: Catch Basin 3}

Primary OutFlow Max=3.08 cfs @ 12.10 hrs HW=209.26' TW=201.28' (Dynamic Tailwater)
——1=Culvert (Inlet Controls \(3.08 \mathrm{cfs} @ 2.77 \mathrm{fps}\))

\section*{Summary for Pond CB4: Catch Basin 4}

Routed to Pond CB3 : Catch Basin 3
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, \(\mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Peak Elev=209.28' @ 12.10 hrs
Flood Elev=216.40'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(208.40^{\prime}\) & \(15.0^{\prime \prime}\) Round Culvert \\
& & \(L=19.0^{\prime}\) CPP, projecting, no headwall, Ke=0.900 \\
& & Inlet / Outlet Invert= \(208.40^{\prime} / 208.30^{\prime} \quad \mathrm{S}=0.0053^{\prime} / \prime^{\prime} \quad \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf
\end{tabular}

Primary OutFlow Max=0.38 cfs @ 12.10 hrs HW=209.27' TW=209.26' (Dynamic Tailwater) \(廿_{1=C u l v e r t ~(O u t l e t ~ C o n t r o l s ~}^{0.38} \mathrm{cfs} @ 0.59 \mathrm{fps}\))

\section*{Summary for Pond CB5: Catch Basin 5}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

Peak Elev=225.16' @ 12.10 hrs
Flood Elev=229.70'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(224.30^{\prime}\) & \(15.0^{\prime \prime}\) Round Culvert \\
& & \(L=82.0^{\prime}\) CPP, projecting, no headwall, Ke=0.900 \\
& & Inlet \(/\) Outlet Invert= \(224.30^{\prime} / 217.60^{\prime} \mathrm{S}=0.0817 \mathrm{Cl} \quad \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area=1.23 sf
\end{tabular}

Primary OutFlow Max=2.24 cfs @ 12.10 hrs HW=225.16' TW=218.36' (Dynamic Tailwater)
——1=Culvert (Inlet Controls 2.24 cfs @ 2.49 fps)

\section*{Summary for Pond CB6: Catch Basin 6}

Primary OutFlow Max=0.38 cfs @ 12.10 hrs HW=225.18' TW=225.16' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 0.38 cfs @ 0.80 fps)

\section*{Summary for Pond CB7: Catch Basin 7}
\begin{tabular}{|c|c|c|c|c|}
\hline Inflow & \multicolumn{4}{|l|}{\(0.210 \mathrm{ac}, 22.21 \%\) Impervious, Inflow Depth > 1.67" for 10-Year 24-Hour event} \\
\hline Inflow & 0.39 cfs @ & 12.10 hrs , Volume= & 0.029 af & \\
\hline Outflow & 0.39 cfs @ & 12.10 hrs , Volume= & 0.029 af, & Atten \(=0 \%, L a g=0.0 \mathrm{~min}\) \\
\hline Primary & 0.39 cfs @ & 12.10 hrs , Volume= & 0.029 af & \\
\hline
\end{tabular}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=239.37' @ 12.10 hrs
Flood Elev= 242.80'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & Primary & 238.90' & 15.0" Round Culvert \\
\hline & & & L= 19.0' CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert= 238.90' / 238.80' S=0.0053 \({ }^{\prime} / \mathrm{Cc}=0.900\) \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf \\
\hline
\end{tabular}

Primary OutFlow Max=0.39 cfs @ 12.10 hrs HW=239.37' TW=239.30' (Dynamic Tailwater) \(廿_{1}=\) Culvert (Outlet Controls \(0.39 \mathrm{cfs} @ 1.36 \mathrm{fps}\))

\section*{Summary for Pond CB8: Catch Basin 8}

Primary OutFlow Max=1.51 cfs @ 12.10 hrs HW=239.29' TW=233.68' (Dynamic Tailwater)
_-1=Culvert (Inlet Controls 1.51 cfs @ 2.63 fps)

\section*{Summary for Pond CB9: Catch Basin 9}
Inflow Area = \(\quad 0.311 \mathrm{ac}, 58.69 \%\) Impervious, Inflow Depth > 2.75" for 10-Year 24-Hour event
\begin{tabular}{lll}
Inflow \(=\) & \(0.84 \mathrm{cfs} @ 12.11 \mathrm{hrs}\), Volume \(=\) & 0.071 af \\
Outflow \(=\) & \(0.84 \mathrm{cfs} @ 12.11 \mathrm{hrs}\), Volume \(=\) & 0.071 af, Atten= \(=0 \%\), Lag= \(=0.0 \mathrm{~min}\) \\
Primary \(=\) & \(0.84 \mathrm{cfs} @ 12.11 \mathrm{hrs}\), Volume \(=\) & 0.071 af
\end{tabular} Routed to Pond cb8: Catch Basin 8

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev= 252.39' @ 12.11 hrs
Flood Elev= 256.10'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & 251.90' & 15.0" Round Culvert \(\mathrm{L}=163.0^{\prime}\) CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\) Inlet / Outlet Invert \(=251.90^{\prime} / 238.80^{\prime} \quad \mathrm{S}=0.0804 / /{ }^{\prime} \mathrm{Cc}=0.900\) \(n=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf \\
\hline
\end{tabular}

Primary OutFlow Max=0.83 cfs @ 12.11 hrs HW=252.39' TW=239.29' (Dynamic Tailwater)
—1=Culvert (Inlet Controls \(0.83 \mathrm{cfs} @ 1.87 \mathrm{fps}\))

\section*{Summary for Pond DMH 3: Drain Manhole 3}

Primary OutFlow Max=1.51 cfs @ 12.10 hrs HW=233.68' TW=225.16' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 1.51 cfs @ 2.22 fps)

\section*{Summary for Pond DMH 4: Drain Manhole 4}
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=57)

Primary OutFlow Max=3.09 cfs @ 12.09 hrs HW=262.75' TW=262.68' (Dynamic Tailwater) —1=Culvert (Inlet Controls 3.09 cfs @ 0.98 fps)

\section*{Summary for Pond DMH 5: Drain Manhole 5}
[80] Warning: Exceeded Pond DMH 4 by 1.39' @ 19.50 hrs (6.27 cfs 1.147 af)
\begin{tabular}{|c|c|c|c|c|}
\hline w Area \(=\) & \multicolumn{4}{|l|}{\(3.767 \mathrm{ac}, 86.71 \%\) Impervious, Inflow Depth > 3.82" for 10-Year 24-Hour event} \\
\hline Inflow & 14.43 cfs @ & 12.10 hrs , Volume \(=\) & 1.199 af & \\
\hline Outflow & 14.43 cfs @ & 12.10 hrs , Volume= & 1.199 af , & Atten \(=0 \%, L a g=0.0 \mathrm{~min}\) \\
\hline Primary & 14.43 cfs @ & 12.10 hrs , Volume= & 1.199 af & \\
\hline
\end{tabular}

Routed to Pond 5P : StormTech
Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Peak Elev=262.76' @ 12.10 hrs
Flood Elev=268.60'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & \(260.30^{\prime}\) & \(24.0^{\prime \prime}\) Round Culvert \\
& & L=14.0' CPP, projecting, no headwall, Ke= \(=0.900\) \\
& & Inlet \(/\) Outlet Invert= \(260.30^{\prime} / 260.10^{\prime} \mathrm{S}=0.0143^{\prime} / \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area=3.14 sf
\end{tabular}

Primary OutFlow Max=14.29 cfs @ 12.10 hrs HW=262.73' TW=261.10' (Dynamic Tailwater) —1=Culvert (Inlet Controls \(14.29 \mathrm{cfs} @ 4.55 \mathrm{fps}\))

\section*{Summary for Pond DMH1: Drain Manhole 1}

Primary OutFlow Max=4.02 cfs @ \(12.11 \mathrm{hrs} H W=201.27^{\prime}\) TW=199.67' (Dynamic Tailwater)
——1=Culvert (Inlet Controls \(4.02 \mathrm{cfs} @ 3.27 \mathrm{fps}\))

\section*{Summary for Pond DMH2: Drain Manhole 2}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

Peak Elev=218.36' @ 12.10 hrs
Flood Elev=223.30'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(217.50^{\prime}\) & \(15.0^{\prime \prime}\) Round Culvert \\
& & \(L=84.0^{\prime}\) CPP, projecting, no headwall, Ke=0.900 \\
& & Inlet \(/\) Outlet Invert \(=217.50^{\prime} / 208.30^{\prime} \quad \mathrm{S}=0.1095 \quad \mathrm{~V} \quad \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf
\end{tabular}

Primary OutFlow Max=2.24 cfs @ 12.10 hrs HW=218.36' TW=209.26' (Dynamic Tailwater)
廿1=Culvert (Inlet Controls 2.24 cfs @ 2.49 fps)

Time span \(=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 481\) points \(\times 9\)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment1S: SUBCATCHMENT1S Runoff Area=279,376 sf \(7.68 \%\) impervious Runoff Depth>1.71" Flow Length=1,018' \(\mathrm{Tc}=34.1 \mathrm{~min} \quad \mathrm{CN}=59\) Runoff=6.42 cfs 0.916 af

Subcatchment10S: SUBCATCHMENT10S Runoff Area \(=3,917\) sf \(19.30 \%\) Impervious Runoff Depth \(>2.31^{\prime \prime}\) Flow Length=79' Tc=9.6 min CN=66 Runoff=0.21 cfs 0.017 af

\section*{Subcatchment11S: Subcatchment11S}

Subcatchment12S: Subcatchment12S

Subcatchment20S: Subcatchment20S
Runoff Area=207,863 sf \(0.54 \%\) Impervious Runoff Depth \(>1.56\) " Flow Length=341' \(\mathrm{Tc}=25.2 \mathrm{~min} \mathrm{CN}=57\) Runoff=4.85 cfs 0.621 af

Subcatchment21S: SUBCATCHMENT21S Runoff Area=154,653 sf \(0.53 \%\) Impervious Runoff Depth \(>1.49\) " Flow Length=358' Tc=24.0 min CN=56 Runoff=3.45 cfs 0.440 af

Subcatchment22S: SUBCATCHMENT22S Runoff Area \(=83,939\) sf \(9.07 \%\) Impervious Runoff Depth \(>1.97^{\prime \prime}\) Flow Length=348' Tc=17.4 min CN=62 Runoff=3.01 cfs 0.316 af

Subcatchment23S: SUBCATCHMENT23S Runoff Area=11,755 sf \(64.56 \%\) Impervious Runoff Depth \(>4.14\) " Flow Length=39' Slope \(=0.0200\) //' Tc=6.0 min \(\mathrm{CN}=85\) Runoff=1.26 cfs 0.093 af

Subcatchment24S: SUBCATCHMENT24S Runoff Area=24,222 sf \(0.91 \%\) Impervious Runoff Depth \(>1.65^{\prime \prime}\) Flow Length=204' Tc=12.8 \(\mathrm{min} \quad \mathrm{CN}=58\) Runoff=0.78 cfs 0.076 af

Subcatchment25S: SUBCATCHMENT25S Runoff Area=64,195 sf 11.59\% Impervious Runoff Depth \(>2.05^{\prime \prime}\) Flow Length=368' Tc=16.5 min CN=63 Runoff=2.47 cfs 0.252 af

Subcatchment30S: Subcatchment30S Runoff Area=73,162 sf \(0.00 \%\) Impervious Runoff Depth>1.49" Flow Length=299' \(\mathrm{Tc}=14.2 \mathrm{~min} \mathrm{CN}=56\) Runoff=2.00 cfs 0.209 af

Subcatchment31S: Subcatchment31S Runoff Area=159,045 sf \(0.00 \%\) Impervious Runoff Depth \(>1.64\) " Flow Length=593' \(\mathrm{Tc}=22.7 \mathrm{~min} \quad \mathrm{CN}=58\) Runoff=4.12 cfs 0.500 af

Subcatchment32S: SUBCATCHMENT32S Runoff Area \(=6,935\) sf \(0.00 \%\) Impervious Runoff Depth \(>1.89\) " Flow Length \(=83^{\prime} \mathrm{Tc}=8.0 \mathrm{~min} \mathrm{CN}=61\) Runoff \(=0.31 \mathrm{cfs} 0.025\) af

Subcatchment101S: SUBCATCHMENT101SRunoff Area=3,062 sf \(63.65 \%\) Impervious Runoff Depth \(>4.14\) " Flow Length \(=149^{\prime} \quad\) Tc \(=6.0 \mathrm{~min} \quad \mathrm{CN}=85\) Runoff \(=0.33 \mathrm{cfs} 0.024\) af

\section*{Subcatchment102S: SUBCATCHMENT Runoff Area=10,426 sf \(20.31 \%\) Impervious Runoff Depth \(>2.58\) "} Flow Length=202 \(\quad\) Tc=6.0 min \(\mathrm{CN}=69\) Runoff \(=0.70 \mathrm{cfs} 0.051\) af

Subcatchment103S: SUBCATCHMENT Runoff Area \(=10,615 \mathrm{sf} 20.41 \%\) Impervious Runoff Depth \(>2.58\) " Flow Length \(=210^{\circ} \quad \mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=69\) Runoff \(=0.72 \mathrm{cfs} 0.052\) af

Subcatchment104S: SUBCATCHMENT104SRunoff Area=8,563 sf \(24.45 \%\) Impervious Runoff Depth \(>2.67^{\prime \prime}\) Flow Length=192' \(\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=70\) Runoff \(=0.60\) cfs 0.044 af

Subcatchment105S: SUBCATCHMENT105SRunoff Area=7,685 sf 24.66\% Impervious Runoff Depth>2.67" Flow Length=198' Tc=6.0 min CN=70 Runoff=0.54 cfs 0.039 af

Subcatchment106S: SUBCATCHMENT106SRunoff Area=8,480 sf 24.96\% Impervious Runoff Depth>2.67" Flow Length=150' Tc=6.0 min CN=70 Runoff=0.59 cfs 0.043 af

Subcatchment107S: SUBCATCHMENT107SRunoff Area=9,158 sf \(22.21 \%\) Impervious Runoff Depth \(>2.58\) " Flow Length=200' Tc=6.0 min CN=69 Runoff \(=0.62\) cfs 0.045 af

Subcatchment108S: SUBCATCHMENT108SRunoff Area=5,109 sf \(41.03 \%\) Impervious Runoff Depth \(>3.23^{\prime \prime}\) Flow Length=108' \(\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=76\) Runoff \(=0.44 \mathrm{cfs} 0.032\) af

Subcatchment109S: SUBCATCHMENT109SRunoff Area=4,591 sf \(85.25 \%\) Impervious Runoff Depth \(>5.01\) " Flow Length=322' Tc=6.0 min CN=93 Runoff= 0.56 cfs 0.044 af

Subcatchment110S: SUBCATCHMENT110SRunoff Area=8,954 sf 45.07\% Impervious Runoff Depth>3.23" Flow Length=193' Tc=10.4 min CN=76 Runoff=0.67 cfs 0.055 af

Subcatchment111S: SUBCATCHMENT111SRunoff Area \(=10,066\) sf \(0.00 \%\) Impervious Runoff Depth \(>1.89\) " Flow Length=37' Slope \(=0.5000\) '/' Tc=6.0 \(\mathrm{min} \mathrm{CN}=61\) Runoff \(=0.48 \mathrm{cfs} 0.036\) af

Subcatchment113S: SUBCATCHMENT Runoff Area=4,154 sf \(100.00 \%\) Impervious Runoff Depth \(>5.59{ }^{\prime \prime}\) Flow Length=144' Slope \(=0.0330\) ' \(/ \mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=0.53 \mathrm{cfs} 0.044\) af

Subcatchment114S: SUBCATCHMENT Runoff Area=21,297 sf 83.97\% Impervious Runoff Depth>4.90" Flow Length=251 \(\quad\) Tc=9.0 min \(C N=92\) Runoff \(=2.35\) cfs 0.200 af

\section*{Subcatchment115S: SUBCATCHMENT}

Runoff Area=15,683 sf \(94.57 \%\) Impervious Runoff Depth \(>5.35^{\prime \prime}\) Flow Length=264' Tc=6.0 min CN=96 Runoff=1.98 cfs 0.161 af

Subcatchment116S: SUBCATCHMENT Runoff Area=23,505 sf \(89.38 \%\) Impervious Runoff Depth \(>5.12^{\prime \prime}\) Flow Length \(=38^{\prime}\) Tc=6.0 min CN=94 Runoff=2.92 cfs 0.230 af

Subcatchment117S: SUBCATCHMENT Runoff Area=22,327 sf \(61.68 \%\) Impervious Runoff Depth \(>4.03\) " Flow Length=172' Tc=14.1 min CN=84 Runoff=1.85 cfs 0.172 af

Subcatchment118S: SUBCATCHMENT Runoff Area=22,171 sf 84.69\% Impervious Runoff Depth>4.90" Flow Length=120' Slope=0.0500 \(/{ }^{\prime}\) Tc=6.0 \(\mathrm{min} \mathrm{CN}=92\) Runoff=2.68 cfs 0.208 af

Subcatchment119S: SUBCATCHMENT
Runoff Area=13,601 sf 92.54\% Impervious Runoff Depth>5.24" Flow Length=218' Tc=6.0 \(\mathrm{min} \quad \mathrm{CN}=95\) Runoff=1.71 cfs 0.136 af

Subcatchment120S: SUBCATCHMENT Runoff Area=19,113 sf \(89.12 \%\) Impervious Runoff Depth \(>5.12^{\prime \prime}\) Flow Length=124 \(\quad \mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=94\) Runoff \(=2.37 \mathrm{cfs} 0.187\) af

Subcatchment204S: SUBCATCHMENT204SRunoff Area \(=19,442\) sf \(0.00 \%\) Impervious Runoff Depth \(>1.56^{\text {" }}\) Flow Length \(=379\) ' \(\mathrm{Cc}=23.2 \mathrm{~min} \quad \mathrm{CN}=57\) Runoff=0.47 cfs 0.058 af

Subcatchment205S: SUBCATCHMENT205S Runoff Area \(=4,627\) sf \(0.00 \%\) Impervious Runoff Depth \(>1.89^{\prime \prime}\) Flow Length \(=92\) ' Slope \(=0.5000 \%\) Tc=6.0 min \(\mathrm{CN}=61\) Runoff \(=0.22 \mathrm{cfs} 0.017\) af

Subcatchment207S: SUBCATCHMENT207SRunoff Area \(=15,002\) sf \(0.00 \%\) Impervious Runoff Depth \(>1.64^{\text {n }}\) Flow Length \(=329^{\circ} \quad \mathrm{T} \mathrm{C}=22.8 \mathrm{~min} \mathrm{CN}=58\) Runoff=0.39 cfs 0.047 af

Subcatchment211S: SUBCATCHMENT211SRunoff Area=28,592 sf \(0.00 \%\) Impervious Runoff Depth>1.49" Flow Length \(=328^{\prime} \quad \mathrm{T} \mathbf{C}=19.3 \mathrm{~min} \mathrm{CN}=56\) Runoff \(=0.70 \mathrm{cfs} 0.081\) af

Subcatchment305S: SUBCATCHMENT305S Runoff Area \(=1,541\) sf \(0.00 \%\) Impervious Runoff Depth \(>1.42^{\prime \prime}\) Flow Length=46' \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=55\) Runoff \(=0.05 \mathrm{cfs} 0.004 \mathrm{af}\) SubcatchmentROOF 1: Back of Roof Runoff Area=7,416 sf \(100.00 \%\) Impervious Runoff Depth \(>5.59\) " \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=0.95 \mathrm{cfs} 0.079\) af

\section*{SubcatchmentROOF 2: Back of Roof}

\section*{SubcatchmentROOF 3: Back of Roof}

Runoff Area \(=7,416\) sf \(100.00 \%\) Impervious Runoff Depth \(>5.59\) " \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=0.95 \mathrm{cfs} 0.079\) af

Runoff Area \(=7,416\) sf \(100.00 \%\) Impervious Runoff Depth \(>5.59^{\prime \prime}\) \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=0.95 \mathrm{cfs} 0.079\) af

Avg. Flow Depth=0.57' Max Vel=0.75 fps Inflow=4.12 cfs 0.500 af \(\mathrm{n}=0.400 \mathrm{~L}=40.0^{\prime} \mathrm{S}=0.1500 \mathrm{I}\) ' Capacity= 62.15 cfs Outflow=4.12 cfs 0.499 af

Avg. Flow Depth=0.29' Max Vel=0.65 fps Inflow=4.12 cfs 0.499 af

\author{
Reach 4Rb: Flow Through
}
\(\mathrm{n}=0.400 \mathrm{~L}=71.0^{\prime} \mathrm{S}=0.2817^{\prime} \mathrm{I}\) Capacity=\(=276.81 \mathrm{cfs}\) Outflow=4.09 cfs 0.498 af

\section*{Reach AP1: Analysis Point 1}

\section*{Reach AP2: Analysis Point 2}

\section*{Reach AP3: Analysis Point 3}

Inflow=8.58 cfs 1.546 af Outflow \(=8.58\) cfs 1.546 af

Inflow=8.89 cfs 1.093 af Outllow=8.89 cfs 1.093 af

Inflow=6.77 cfs 1.589 af Outlow \(=6.77\) cfs 1.589 af

\section*{Reach B1R: BENCH}

Avg. Flow Depth \(=0.34^{\prime} \quad\) Max Vel \(=0.84 \mathrm{fps}\) Inflow=0.39 cfs 0.047 af \(\mathrm{n}=0.150 \mathrm{~L}=173.0^{\prime} \mathrm{S}=0.0809 \mathrm{l} / \mathrm{l}\) Capacity \(=6.92 \mathrm{cfs}\) Outflow=0.38 cfs 0.047 af Overflow=0.00 cfs 0.000 af

\section*{Reach B2R: BENCH} \(\mathrm{n}=0.150 \quad \mathrm{~L}=116.0^{\prime} \mathrm{S}=0.1207 \mathrm{~m}\) "Capacity \(=8.45 \mathrm{cfs}\) Outflow=0.47 cfs 0.064 af Overflow=0.00 cfs 0.000 af

Reach B3R: BENCH
Avg. Flow Depth=0.44' Max Vel=1.21 fps Inflow=0.96 cfs 0.126 af \(n=0.150 \quad \mathrm{~L}=103.0^{\prime} \mathrm{S}=0.1165 \mathrm{l} / \mathrm{Capacity}=8.30 \mathrm{cfs}\) Outflow=0.96 cfs 0.126 af Overflow=0.00 cfs 0.000 af

Reach B4R: BENCH Avg. Flow Depth \(=0.65^{\prime} \quad\) Max Vel \(=1.08 \mathrm{fps}\) Inflow \(=1.84 \mathrm{cfs} 0.243\) af \(\mathrm{n}=0.150 \mathrm{~L}=232.0^{\prime} \mathrm{S}=0.0560 \mathrm{f}\) ' Capacity \(=5.76 \mathrm{cfs}\) Outflow=1.81 cfs 0.243 af Overflow=0.00 cfs 0.000 af

Reach B5R: BENCH \(n=0.150 \quad L=12.0^{\prime} \quad \mathrm{S}=0.0833\) ' \(/ \mathrm{Clapacity}=7.02 \mathrm{cfs}\) Outlow \(=0.05 \mathrm{cfs} 0.004\) af Overflow=0.00 cfs 0.000 af
Reach B6R: BENCH
Reach RD1: RD 1
 \(\mathrm{n}=0.150 \mathrm{~L}=165.0^{\prime} \quad \mathrm{S}=0.0545 \mathrm{\%}\) ' Capacity=5.68 cfs Outflow=0.68 cfs 0.081 af
Avg. Flow Depth=0.29' Max Vel=6.61 fps Inflow=0.95 cfs 0.079 af 8.0" Round Pipe \(\mathrm{n}=0.013 \mathrm{~L}=264.0^{\prime} \quad \mathrm{S}=0.0417^{\prime \prime} / \mathrm{Capacity=} 2.47 \mathrm{cfs}\) Outllow=\(=0.95 \mathrm{cfs} \quad 0.079\) af

\section*{Reach RD2: RD 2}
Avg. Flow Depth=0.27' Max Vel=7.01 fps Inflow=0.95 cfs 0.079 af \(8.0^{\prime \prime}\) Round Pipe \(\mathrm{n}=0.013 \mathrm{~L}=110.0^{\prime} \mathrm{S}=0.0491\) '/" Capacity \(=2.68 \mathrm{cfs}\) Outflow=0.95 cfs 0.079 af
Reach RD3: RD 3
Avg. Flow Depth=0.36' Max Vel=5.02 fps Inflow=0.95 cfs 0.079 af 8.0" Round Pipe \(\mathrm{n}=0.013 \mathrm{~L}=100.0^{\prime} \mathrm{S}=0.0200^{\prime} \mathrm{I}\) ' Capacity \(=1.71 \mathrm{cfs}\) Outflow \(=0.95 \mathrm{cfs} 0.079\) af
Pond 1P: Infiltration Pocket
Peak Elev=198.81' Storage=619 cf Inflow=2.35 cfs 0.745 af Discarded \(=0.10\) cfs 0.101 af Primary \(=2.22\) cfs 0.629 af Outflow \(=2.31 \mathrm{cfs} 0.730\) af
Pond 2P: Stormwater Pond
Peak Elev=201.10' Storage=23,890 cf Inflow=7.55 cfs 0.752 af Primary \(=1.58\) cfs 0.625 af Secondary \(=0.00 \mathrm{cfs} 0.000\) af Outflow=1.58 cfs 0.625 af
Pond 3P: Stormfilter
Peak Elev=198.86' Storage=76 cf Inflow=0.97 cfs 0.104 af Primary \(=1.06\) cfs 0.103 af Secondary \(=0.00\) cfs 0.000 af Outflow \(=1.06\) cfs 0.103 af
Pond 5P: StormTech Peak Elev=262.96' Storage=1.039 af Inflow=18.70 cfs 1.576 af Outflow=1.26 cfs 0.857 af
Pond 6P: Focal Point
Peak Elev=254.66' Storage=113 cf Inflow=1.29 cfs 0.882 af Outflow=1.29 cfs 0.882 af

\section*{Pond 9P: 18" HDPE}
Peak Elev=202.06' Storage=117 cf Inflow=2.47 cfs 0.252 af Primary=2.47 cfs 0.251 af Secondary \(=0.00 \mathrm{cfs} 0.000\) af Outflow=2.47 cfs 0.251 af
Pond 10P: Bioretention
Peak Elev=201.06' Storage \(=4,398\) cf Inflow=5.48 cfs 0.567 af Discarded=2.51 cfs 0.533 af Primary \(=0.67\) cfs 0.032 af Secondary \(=0.00 \mathrm{cfs} 0.000\) af Outflow=3.18 cfs 0.565 af
Pond 11P: EcoRaster
Peak Elev=197.32' Storage \(=1,446\) cf Inflow=1.75 cfs 0.151 af Discarded \(=0.89\) cfs 0.151 af Primary \(=0.00\) cfs 0.000 af Outflow \(=0.89 \mathrm{cfs} 0.151\) af

\author{
Pond 12P: Dry Well
}
Peak Elev=199.37' Storage=359 cf Inflow=0.78 cfs 0.076 af Discarded \(=0.01\) cfs 0.010 af Primary \(=0.98\) cfs 0.058 af Outflow \(=0.99 \mathrm{cfs} 0.068\) af

\section*{Pond CB1: Catch Basin 1}
Peak Elev=202.65' Inflow=0.33 cfs 0.024 af 15.0" Round Culvert \(n=0.013 \mathrm{~L}=19.0^{\prime} \mathrm{S}=0.0053\) '/' Outflow=0.33 cfs 0.024 af

\section*{Pond CB10: Catch Basin 10}
Peak Elev=252.63' Inflow=0.67 cfs 0.055 af 15.0" Round Culvert \(n=0.013 \mathrm{~L}=19.0^{\prime} \mathrm{S}=0.00533^{\prime \prime}\) Outflow=0.67 cfs 0.055 af
Peak Elev=208.75' Inflow=1.81 cfs 0.243 af 15.0" Round Culvert \(n=0.013\) L=57.0' \(\mathrm{S}=0.1316 \mathrm{I} / \mathrm{\prime}\) Outflow=1.81 cfs 0.243 af
Pond CB12: Catch Basin 12
Peak Elev=263.16' Storage \(=8 \mathrm{cf}\) Inflow=3.45 cfs 0.440 af Primary \(=3.45\) cfs 0.440 af Secondary \(=0.00\) cfs 0.000 af Outflow \(=3.45 \mathrm{cfs} 0.440\) af

Prepared by Jones \& Beach Engineers Inc
Printed 3/20/2023
HydroCAD® 10.20-2g s/n 00762 © 2022 HydroCAD Software Solutions LLC
Page 73
Pond CB13: Catch Basin 13
Peak Elev=268.86' Inflow=1.48 cfs 0.124 af
18.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=73.0^{\prime} \mathrm{S}=0.0110\) '/' Outflow=1.48 cfs 0.124 af

Pond CB14: Catch Basin 14
Peak Elev=268.81' Inflow=4.73 cfs 0.402 af 18.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=68.0^{\prime} \mathrm{S}=0.0059\) 'r' Outflow=4.73 cfs 0.402 af

\section*{Pond CB15: Catch Basin 15}

Peak Elev=268.32' Inflow=6.69 cfs 0.563 af 18.0" Round Culvert \(n=0.013 \mathrm{~L}=156.0^{\prime} \mathrm{S}=0.0051\) '/' Outflow=6.69 cfs 0.563 af

\section*{Pond CB16: Catch Basin 16}

Peak Elev=267.26' Inflow=9.59 cfs 0.794 af 24.0" Round Culvert \(n=0.013 \mathrm{~L}=124.0^{\prime} \mathrm{S}=0.0048^{\prime} /\) /' Outflow \(=9.59 \mathrm{cfs} 0.794\) af
Pond CB17: Catch Basin 17

Peak Elev=266.62' Inflow=11.98 cfs 1.045 af \(24.0^{\prime \prime}\) Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=57.0^{\prime} \mathrm{S}=0.0053 \mathrm{l} / \mathrm{\prime}\) Outflow=11.98 cfs 1.045 af

Pond CB18: Catch Basin 18

Pond CB19: Catch Basin 19

Pond CB2: Catch Basin 2

\section*{Pond CB20: Catch Basin 20}

Pond CB3: Catch Basin 3

Pond CB4: Catch Basin 4

\section*{Pond CB5: Catch Basin 5}

\section*{Pond CB6: Catch Basin 6}

Pond CB7: Catch Basin 7

Pond CB8: Catch Basin 8

Pond CB9: Catch Basin 9

Peak Elev=265.61' Inflow=14.65 cfs 1.253 af 24.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=11.0^{\prime} \mathrm{S}=0.0091\) // Outflow=14.65 cfs 1.253 af

Peak Elev=264.34' Inflow=4.08 cfs 0.324 af 24.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=151.0^{\prime} \mathrm{S}=0.0053\) //' Outflow=4.08 cfs 0.324 af

Peak Elev=202.65' Inflow=2.18 cfs 0.318 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=84.0^{\prime} \mathrm{S}=0.0048\) ' \(/\) ' Outflow=2.18 cfs 0.318 af

Peak Elev=264.38' Inflow=2.37 cfs 0.187 af 24.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=70.0\) ' \(\mathrm{S}=0.0057\) '//' Outflow=2.37 cfs 0.187 af

Peak Elev=209.82' Inflow=4.66 cfs 0.355 af
15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=65.0^{\prime} \mathrm{S}=0.1262\) I/ Outflow=4.66 cfs 0.355 af

Peak Elev=209.84' Inflow=0.60 cfs 0.044 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=19.0^{\prime} \mathrm{S}=0.0053 \mathrm{\prime} /{ }^{\prime}\) Outflow=0.60 cfs 0.044 af

Peak Elev=225.43' Inflow=3.35 cfs 0.259 af 15.0" Round Culvert \(n=0.013 \mathrm{~L}=82.0^{\prime} \mathrm{S}=0.0817\) ' \(/\) ' Outflow \(=3.35 \mathrm{cfs} 0.259 \mathrm{af}\)

Peak Elev=225.46' Inflow=0.59 cfs 0.043 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=19.0^{\prime} \mathrm{S}=0.0053\) '/' Outflow=0.59 cfs 0.043 af

Peak Elev=239.52' Inflow=0.62 cfs 0.045 af 15.0" Round Culvert \(n=0.013 \mathrm{~L}=19.0^{\prime} \mathrm{S}=0.0053^{\prime \prime} \%\) Outflow=0.62 cfs 0.045 af

Peak Elev=239.44' Inflow=2.22 cfs 0.176 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=63.0^{\prime} \mathrm{S}=0.0889\) ' \(/\) ' Outflow=2.22 cfs 0.176 af

Peak Elev=252.49' Inflow=1.17 cfs 0.099 af \(15.0^{\prime \prime}\) Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=163.0^{\prime} \mathrm{S}=0.0804\) '/' Outflow=1.17 cfs 0.099 af

\author{
Pond DMH 3: Drain Manhole 3
}

Peak Elev=233.85' Inflow=2.22 cfs 0.176 af \(15.0^{\prime \prime}\) Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=104.0^{\prime} \mathrm{S}=0.0827^{\prime} / \prime \prime\) Outflow=2.22 cfs 0.176 af

\title{
Prepared by Jones \& Beach Engineers Inc \\ Pond DMH 4: Drain Manhole 4
} Printed 3/20/2023
HydroCAD® 10.20-2g s/n 00762 (C) 2022 HydroCAD Software Solutions LLC Page 74

Peak Elev=264.23' Inflow=4.08 cfs 0.324 af \(24.0^{\prime \prime}\) Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=9.0^{\prime} \mathrm{S}=0.0111\) '/ Outflow=4.08 cfs 0.324 af

Pond DMH 5: Drain Manhole \(5 \quad\) Peak Elev=264.11' Inflow=18.70 cfs 1.576 af 24.0" Round Culvert \(n=0.013 \mathrm{~L}=14.0^{\prime} \mathrm{S}=0.0143\) '/ Outflow=18.70 cfs 1.576 af

Peak Elev=202.49' Inflow=6.53 cfs 0.673 af \(15.0^{\prime \prime}\) Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=30.0^{\prime} \mathrm{S}=0.0067^{\prime \prime} /{ }^{\prime \prime}\) Outflow=6.53 cfs 0.673 af

Peak Elev=218.63' Inflow=3.35 cfs 0.259 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=84.0^{\prime} \mathrm{S}=0.1095\) ' \(/\) ' Outflow \(=3.35 \mathrm{cfs} 0.259\) af

Prepared by Jones \& Beach Engineers Inc

\section*{Summary for Subcatchment 1S: SUBCATCHMENT is}

Runoff \(=6.42 \mathrm{cfs} @ 12.52 \mathrm{hrs}\), Volume= 0.916 af, Depth> 1.71"
Routed to Reach AP1 : Analysis Point 1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & ea (sf) & CN D & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Description}} & \\
\hline & 15,363 & 98 P & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Paved parking, HSG B Roofs, HSG B}} \\
\hline & 6,086 & 98 R & & & & \\
\hline & 10,953 & 85 G & \multicolumn{4}{|l|}{Gravel roads, HSG B} \\
\hline \multicolumn{2}{|r|}{246,176} & 55 & \multicolumn{4}{|l|}{Woods, Good, HSG B} \\
\hline & 798 & \(61>\) & \multicolumn{4}{|l|}{>75\% Grass cover, Good, HSG B} \\
\hline \multicolumn{2}{|r|}{279,376} & \multirow[t]{3}{*}{59} & \multicolumn{2}{|l|}{Weighted Average} & & \\
\hline & 57,927 & & \multicolumn{2}{|l|}{92.32\% Pervious Area} & & \\
\hline \multicolumn{2}{|l|}{} & & \multicolumn{2}{|l|}{7.68\% Impervious Area} & & \\
\hline Tc
\((\mathrm{min})\) & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & Capacity (cfs) & Description & \\
\hline 14.3 & 46 & 0.0125 & 0.05 & & \multicolumn{2}{|l|}{Sheet Flow,} \\
\hline \multirow[t]{2}{*}{4.9} & \multirow[t]{2}{*}{36} & \multirow[t]{2}{*}{0.1110} & \multirow[t]{2}{*}{0.12} & & Sheet Flow, & \\
\hline & & & & & Woods: Light underbrush \(\mathrm{n}=0.400\) & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline \multirow[t]{2}{*}{5.4} & \multirow[t]{2}{*}{24} & \multirow[t]{2}{*}{0.0390} & \multirow[t]{2}{*}{0.07} & & Sheet Flow, & \\
\hline & & & & & Woods: Light underbrush \(\mathrm{n}=0.400\) & \(P 2=3.02\) \\
\hline 0.5 & 27 & 0.0390 & 0.99 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline \multirow[t]{2}{*}{0.3} & \multirow[t]{2}{*}{26} & \multirow[t]{2}{*}{0.0770} & \multirow[t]{2}{*}{1.39} & & Shallow Concentrated Flow, & \\
\hline & & & & & Woodland Kv= 5.0 fps & \\
\hline \multirow[t]{2}{*}{0.4} & \multirow[t]{2}{*}{61} & \multirow[t]{2}{*}{0.2290} & \multirow[t]{2}{*}{2.39} & & Shallow Concentrated Flow, & \\
\hline & & & & & Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 24 & 0.0830 & 1.44 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline \multirow[t]{2}{*}{3.3} & \multirow[t]{2}{*}{127} & \multirow[t]{2}{*}{0.0160} & \multirow[t]{2}{*}{0.63} & & Shallow Concentrated Flow, & \\
\hline & & & & & Woodland Kv= 5.0 fps & \\
\hline \multirow[t]{2}{*}{0.3} & \multirow[t]{2}{*}{45} & \multirow[t]{2}{*}{0.3110} & \multirow[t]{2}{*}{2.79} & & Shallow Concentrated Flow, & \\
\hline & & & & & Woodland Kv= 5.0 fps & \\
\hline \multirow[t]{2}{*}{0.4} & \multirow[t]{2}{*}{56} & \multirow[t]{2}{*}{0.1790} & \multirow[t]{2}{*}{2.12} & & Shallow Concentrated Flow, & \\
\hline & & & & & Woodland Kv= 5.0 fps & \\
\hline \multirow[t]{2}{*}{0.4} & \multirow[t]{2}{*}{48} & \multirow[t]{2}{*}{0.2080} & \multirow[t]{2}{*}{2.28} & & Shallow Concentrated Flow, & \\
\hline & & & & & Woodland Kv= 5.0 fps & \\
\hline \multirow[t]{2}{*}{0.8} & \multirow[t]{2}{*}{80} & \multirow[t]{2}{*}{0.1000} & \multirow[t]{2}{*}{1.58} & & Shallow Concentrated Flow, & \\
\hline & & & & & Woodland Kv= 5.0 fps & \\
\hline \multirow[t]{2}{*}{0.7} & \multirow[t]{2}{*}{86} & \multirow[t]{2}{*}{0.1860} & 2.16 & & Shallow Concentrated Flow, & \\
\hline & & & & & Woodland Kv= 5.0 fps & \\
\hline \multirow[t]{2}{*}{1.1} & \multirow[t]{2}{*}{102} & \multirow[t]{2}{*}{0.0490} & 1.55 & & Shallow Concentrated Flow, & \\
\hline & & & & & Short Grass Pasture Kv= 7.0 fps & \\
\hline \multirow[t]{2}{*}{1.0} & \multirow[t]{2}{*}{230} & \multirow[t]{2}{*}{0.0330} & 3.69 & & Shallow Concentrated Flow, & \\
\hline & & & & & Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) & \\
\hline
\end{tabular}

\footnotetext{
34.1 1,018 Total
}

\section*{Summary for Subcatchment 10S: SUBCATCHMENT 10S}
Runoff \(=0.21 \mathrm{cfs} @ 12.15 \mathrm{hrs}\), Volume= \(\quad 0.017\) af, Depth> 2.31"

Routed to Pond 1P : Infiltration Pocket
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Area (sf) & CN D & \multicolumn{4}{|l|}{Description} \\
\hline & \[
\begin{array}{r}
756 \\
1,961 \\
1,200 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 98 \\
& 61 \\
& 55
\end{aligned}
\] & \multicolumn{4}{|l|}{Paved parking, HSG B >75\% Grass cover, Good, HSG B Woods, Good, HSG B} \\
\hline & \[
\begin{array}{r}
3,917 \\
3,161 \\
756
\end{array}
\] & 66 & \multicolumn{4}{|l|}{Weighted Average 80.70\% Pervious Area 19.30\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & Capacity (cfs) & Description & \\
\hline 3.6 & 38 & 0.2630 & 0.17 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 5.0 & 33 & 0.0910 & 0.11 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \[
\mathrm{P} 2=3.02^{\prime \prime}
\] \\
\hline 1.0 & 8 & 0.0400 & 0.13 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} & \\
\hline 9.6 & 79 & Total & & & & \\
\hline
\end{tabular}

Summary for Subcatchment 11S: Subcatchment 11S
Runoff \(=\quad 1.02 \mathrm{cfs}\) @ 12.11 hrs , Volume= \(\quad 0.079 \mathrm{af}\), Depth> \(1.89^{\prime \prime}\)

Routed to Pond 2P : Stormwater Pond
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"

\section*{Summary for Subcatchment 12S: Subcatchment 12S}
Runoff \(=0.97\) cfs @ 12.29 hrs, Volume= 0.104 af, Depth> 2.39"

Routed to Pond 3P : Stormfilter
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25 -Year 24 -Hour Rainfall \(=5.83^{\prime \prime}\)
\(\left.\begin{array}{rrllllll}\text { Area (sf) } & \text { CN } & \text { Description } & \\ \hline 5,448 & 98 & \begin{array}{l}\text { Paved parking, HSG B } \\ 10,621\end{array} & 55 & \begin{array}{l}\text { Woods, Good, HSG B } \\ 6,698\end{array} & 61 \\ >75 \% \text { Grass cover, Good, HSG B }\end{array}\right]\)

\section*{Summary for Subcatchment 20S: Subcatchment 20 S}

Runoff \(=\quad 4.85 \mathrm{cfs} @ 12.40 \mathrm{hrs}\), Volume= \(\quad 0.621\) af, Depth> 1.56"
Routed to Reach AP2 : Analysis Point 2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
1,115 & 98 & Roofs, HSG B \\
27,727 & 61 & >75\% Grass cover, Good, HSG B \\
166,599 & 55 & Woods, Good, HSG B \\
12,422 & 70 & Woods, Good, HSG C \\
\hline 207,863 & 57 & Weighted Average \\
206,748 & & 99.46\% Pervious Area \\
1,115 & & \(0.54 \%\) Impervious Area
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
HydroCAD® 10.20-2g s/n 00762 © 2022 HydroCAD Software Solutions LLC
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & Capacity
(cfs) & Description \\
\hline 0.4 & 10 & 0.5000 & 0.38 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02{ }^{\prime \prime}\)
\end{tabular} \\
\hline 19.6 & 90 & 0.0220 & 0.08 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02\) "
\end{tabular} \\
\hline 0.4 & 30 & 0.0670 & 1.29 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 1.6 & 78 & 0.0256 & 0.80 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 1.2 & 62 & 0.0320 & 0.89 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 2.0 & 71 & 0.0140 & 0.59 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 25.2 & 341 & Total & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 21S: SUBCATCHMENT 21S}

Runoff \(=\quad 3.45\) cfs @ 12.38 hrs , Volume= \(\quad 0.440\) af, Depth> 1.49"
Routed to Pond CB12 : Catch Basin 12
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 9,648 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
819 & 98 & Roofs, HSG B \\
138,282 & 55 & Woods, Good, HSG B \\
5,904 & 70 & Woods, Good, HSG C \\
\hline 154,653 & 56 & Weighted Average \\
153,834 & & \(99.47 \%\) Pervious Area \\
819 & & \(0.53 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & Slope
(ft/ft) & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description & \\
\hline 5.0 & 37 & 0.0160 & 0.12 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} & \\
\hline 9.0 & 29 & 0.0160 & 0.05 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & P2 \(=3.02{ }^{\prime \prime}\) \\
\hline 3.2 & 20 & 0.1000 & 0.10 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & P2=3.02" \\
\hline 3.4 & 14 & 0.0430 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.5 & 32 & 0.0430 & 1.04 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \\
\hline 0.2 & 41 & 0.4400 & 3.32 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 2.1 & 132 & 0.0450 & 1.06 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \\
\hline 0.6 & 53 & 0.0800 & 1.41 & & Shallow Concentrated Flow, Woodiand \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline
\end{tabular}
24.0358 Total

\section*{Summary for Subcatchment 22S: SUBCATCHMENT 22S}
Runoff \(=\quad 3.01 \mathrm{cfs} @ 12.26 \mathrm{hrs}\), Volume= \(\quad 0.316\) af, Depth> 1.97"
Routed to Pond 10 P : Bioretention

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25 -Year 24-Hour Rainfall=5.83"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 7,612 & 98 & Paved parking, HSG B \\
39,991 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
36,336 & 55 & Woods, Good, HSG B \\
\hline 83,939 & 62 & Weighted Average \\
76,327 & & 90.93\% Pervious Area \\
7,612 & & \(9.07 \%\) Impervious Area
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope
\[
(\mathrm{ft} / \mathrm{ft})
\] & Velocity (ft/sec) & Capacity
(cfs) & Description & \\
\hline 4.3 & 37 & 0.1620 & 0.14 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \[
\mathrm{P} 2=3.02^{\prime \prime}
\] \\
\hline 3.5 & 43 & 0.3720 & 0.21 & & Sheet Flow, & \\
\hline 5.1 & 20 & 0.0310 & 0.07 & & Woods: Light underbrush \(\mathrm{n}=0.400\) & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 5.1 & 20 & 0.0310 & 0.07 & & Woods: Light underbrush \(n=0.400\) & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.8 & 44 & 0.0310 & 0.88 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 51 & 0.2350 & 2.42 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.8 & 83 & 0.0240 & 0.77 & & Shallow Concentrated Flow, Woodiand Kv= 5.0 fps & \\
\hline 1.5 & 70 & 0.0229 & 0.76 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 23S: SUBCATCHMENT 23S}

Runoff \(=\quad 1.26\) cfs @ 12.09 hrs, Volume= 0.093 af, Depth> 4.14"
Routed to Pond 11P : EcoRaster
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), \(\mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Area (sf) CN Description} \\
\hline 6,467 & 98 P & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Paved parking, HSG B \\
Roofs, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}}} \\
\hline 1,122 & 98 & & & \\
\hline 4,166 & 61 > & & & \\
\hline 11,755 & 85 & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Weighted Average 35.44\% Pervious Area 64.56\% Impervious Area}} \\
\hline 4,166 & & & & \\
\hline 7,589 & & & & \\
\hline Tc Length (min) (feet) & \multicolumn{4}{|l|}{Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)} \\
\hline 4.739 & \multicolumn{4}{|l|}{\begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular}} \\
\hline \multirow[t]{2}{*}{4.739} & \multicolumn{4}{|l|}{Total, Increased to minimum Tc = 6.0 min} \\
\hline & \multicolumn{4}{|l|}{Summary for Subcatchment 24S: SUBCATCHMENT 24S} \\
\hline \multicolumn{5}{|l|}{Runoff \(=\quad 0.78\) cfs @ 12.20 hrs , Volume= \(\quad 0.076\) af, Depth> \(1.65^{\prime \prime}\)
Routed to Pond \(12 \mathrm{P}:\) Dry Well} \\
\hline \multicolumn{5}{|l|}{Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span \(=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr \(25-\) Year 24-Hour Rainfall \(=5.83\) "} \\
\hline
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & Slope
\[
(\mathrm{ft} / \mathrm{tt})
\] & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description & \\
\hline 6.9 & 30 & 0.0330 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 2.9 & 23 & 0.1740 & 0.13 & & Sheet Flow, & \\
\hline & & & & & Woods: Light underbrush \(\mathrm{n}=0.400\) & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 2.0 & 25 & 0.4800 & 0.20 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush n=0.400
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 2.7 & 22 & 0.1820 & 0.13 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.2 & 46 & 0.5000 & 4.95 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 1.8 & 222 & 0.0880 & 2.08 & & Shallow Concentrated Flow, Short Grass Pasture \(\mathrm{Kv}=7.0 \mathrm{fps}\) & \\
\hline 16.5 & 368 & Total & & & & \\
\hline
\end{tabular}

Summary for Subcatchment 30S: Subcatchment 30S
Runoff \(=\quad 2.00\) cfs @ 12.22 hrs, Volume= 0.209 af, Depth> 1.49"
Routed to Reach AP3 : Analysis Point 3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"

\section*{Summary for Subcatchment 31S: Subcatchment 31 S}

Runoff \(=\quad 4.12 \mathrm{cfs} @ 12.35 \mathrm{hrs}\), Volume \(=\quad 0.500\) af, Depth> 1.64"
Routed to Reach 4Ra : Flow Through Subcatchment 30S
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & Slope
\[
(\mathrm{ft} / \mathrm{ft})
\] & Velocity (ft/sec) & Capacity (cfs) & Description & & \\
\hline 4.4 & 44 & 0.0310 & 0.17 & & Sheet Flow, Grass: Short & \(\mathrm{n}=0.150\) & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 3.0 & 27 & 0.0310 & 0.15 & & Sheet Flow, Grass: Short & \(\mathrm{n}=0.150\) & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.6 & 12 & 0.3300 & 0.33 & & Sheet Flow, Grass: Short & \(n=0.150\) & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 8.0 & 83 & Total & & & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 101S: SUBCATCHMENT 101S}

Runoff \(=\quad 0.33 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.024 \mathrm{af}\), Depth> 4.14" Routed to Pond CB1 : Catch Basin 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall \(=5.83^{\prime \prime}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & Description & & \\
\hline & \[
\begin{aligned}
& 1,949 \\
& 1,113 \\
& \hline
\end{aligned}
\] & & \multicolumn{3}{|l|}{Paved parking, HSG B \(>75 \%\) Grass cover, Good, HSG B} \\
\hline & \[
\begin{aligned}
& 3,062 \\
& 1,113 \\
& 1,949
\end{aligned}
\] & 85 & \multicolumn{3}{|l|}{Weighted Average 36.35\% Pervious Area 63.65\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 0.5 & 12 & 0.5000 & 0.39 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 1.2 & 14 & 0.0800 & 0.19 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.6 & 74 & 0.0800 & 2.19 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.1 & 49 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved Kv= 20.3 fps \\
\hline
\end{tabular}
2.4149 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 102S: SUBCATCHMENT 102S}

Runoff \(=\quad 0.70 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume= \(\quad 0.051\) af, Depth> 2.58"
Routed to Pond CB2 : Catch Basin 2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall \(=5.83^{\prime \prime}\)

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{rrrl}
Area (sf) & CN & \multicolumn{1}{l}{ Description } \\
2,117 & 98 & \begin{tabular}{l}
Paved parking, HSG B \\
8,309
\end{tabular} & 61 \\
>75\% Grass cover, Good, HSG B
\end{tabular}
3.5202 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

Summary for Subcatchment 103S: SUBCATCHMENT \(103 S\)
Runoff \(=0.72 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume \(=\quad 0.052\) af, Depth> 2.58" Routed to Pond CB3 : Catch Basin 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & ea (sf) & CN & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Paved parking, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}}} \\
\hline & \[
\begin{aligned}
& 2,166 \\
& 8,449
\end{aligned}
\] & \[
\begin{aligned}
& 98 \\
& 61
\end{aligned}
\] & & & \\
\hline & \[
\begin{array}{r}
10,615 \\
8,449 \\
2,166
\end{array}
\] & 69 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Weighted Average \\
79.59\% Pervious Area \\
20.41\% Impervious Area
\end{tabular}} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 1.3 & 39 & 0.5000 & 0.50 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 1.7 & 21 & 0.0800 & 0.21 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 40 & 0.0800 & 1.94 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 110 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
3.6210 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 104S: SUBCATCHMENT 104S}

Runoff \(=\quad 0.60 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume= \(\quad 0.044 \mathrm{af}\), Depth> 2.67" Routed to Pond CB4 : Catch Basin 4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\)
Type III 24-hr \(25-\) Year 24 -Hour Rainfall \(=5.83^{\prime \prime}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & escription & & \\
\hline & \[
\begin{aligned}
& 2,094 \\
& 6,469
\end{aligned}
\] & & \multicolumn{3}{|l|}{Paved parking, HSG B >75\% Grass cover, Good, HSG B} \\
\hline & \[
\begin{aligned}
& 8,563 \\
& 6,469 \\
& 2,094
\end{aligned}
\] & 70 & \multicolumn{2}{|l|}{Weighted Average 75.55\% Pervious Area 24.45\% Impervious Area} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & Capacity & Description \\
\hline 1.3 & 40 & 0.5000 & 0.50 & & Sheet Flow,
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 1.8 & 23 & 0.0800 & 0.21 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 37 & 0.0800 & 1.91 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 92 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
3.7192 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 105S: SUBCATCHMENT 105S}
Runoff \(=0.54\) cfs @ 12.10 hrs , Volume= \(\quad 0.039\) af, Depth> 2.67"

Routed to Pond CB5 : Catch Basin 5
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"

Area (sf) CN Description
1,895 98 Paved parking, HSG B
\(5,790 \quad 61 \quad>75 \%\) Grass cover, Good, HSG B
7,685 \(70 \quad\) Weighted Average
5,790 75.34\% Pervious Area
1,895 24.66\% Impervious Area
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & Slope
(ftft) & Velocity (ft/sec) & Capacity
(cfs) & Description \\
\hline 1.3 & 40 & 0.5000 & 0.50 & & Sheet Flow,
Grass: Short \(\mathrm{n}=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 2.1 & 28 & 0.0800 & 0.22 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 32 & 0.0800 & 1.85 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02\) "
\end{tabular} \\
\hline 0.3 & 98 & 0.0800 & 5.74 & & \begin{tabular}{l}
Shallow Concentrated Flow, \\
Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\)
\end{tabular} \\
\hline
\end{tabular}
4.0198 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 106S: SUBCATCHMENT 106S}

Runoff \(=0.59\) cfs @ 12.10 hrs , Volume=

\author{
0.043 af, Depth> 2.67"
}

Routed to Pond CB6 : Catch Basin 6
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & \multicolumn{3}{|l|}{Description} \\
\hline & \[
\begin{array}{r}
2,117 \\
6,363 \\
\hline
\end{array}
\] & & \multicolumn{3}{|l|}{\begin{tabular}{l}
Paved parking, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{aligned}
& 8,480 \\
& 6,363 \\
& 2,117
\end{aligned}
\] & 70 & \[
\begin{aligned}
& \text { Veighted } A \\
& 5.04 \% \mathrm{Pe} \\
& 4.96 \% \mathrm{Im}
\end{aligned}
\] & \begin{tabular}{l}
verage \\
vious Area \\
ervious Ar
\end{tabular} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 0.9 & 25 & 0.5000 & 0.45 & & Sheet Flow,
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 1.0 & 11 & 0.0800 & 0.19 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.5 & 64 & 0.0800 & 2.13 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.1 & 50 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
2.5150 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 107S: SUBCATCHMENT 107S}

Runoff \(=\quad 0.62 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume \(=\quad 0.045\) af, Depth> 2.58"
Routed to Pond CB7 : Catch Basin 7
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & escription & & \\
\hline & \[
\begin{aligned}
& 2,034 \\
& 7,124
\end{aligned}
\] & \[
\begin{aligned}
& 98 \\
& 61
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
Paved parking, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{aligned}
& 9,158 \\
& 7,124 \\
& 2,034
\end{aligned}
\] & 69 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Weighted Average \\
77.79\% Pervious Area \\
22.21\% Impervious Area
\end{tabular}} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & \[
\begin{gathered}
\text { Capacity } \\
\text { (cfs) }
\end{gathered}
\] & Description \\
\hline 1.3 & 40 & 0.5000 & 0.50 & & Sheet Flow,
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 1.4 & 17 & 0.0800 & 0.20 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.4 & 43 & 0.0800 & 1.97 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 100 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
3.4200 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 108S: SUBCATCHMENT 108S}
Runoff \(=\quad 0.44 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.032 \mathrm{af}\), Depth> 3.23"

Routed to Pond CB8 : Catch Basin 8
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & escription & & \\
\hline & \[
\begin{array}{r}
2,096 \\
3,013 \\
\hline
\end{array}
\] & & \multicolumn{3}{|l|}{\begin{tabular}{l}
Paved parking, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{aligned}
& 5,109 \\
& 3,013 \\
& 2,096
\end{aligned}
\] & 76 & \multicolumn{2}{|l|}{Weighted Average 58.97\% Pervious Area 41.03\% Impervious Are} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 0.6 & 15 & 0.5000 & 0.41 & & Sheet Flow, Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 1.6 & 20 & 0.0800 & 0.21 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.5 & 65 & 0.0800 & 2.13 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(\mathrm{n}=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.0 & 8 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
2.7108 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 109S: SUBCATCHMENT 109 S}

\author{
Runoff \(=\quad 0.56\) cfs @ 12.09 hrs , Volume= \(\quad 0.044\) af, Depth> 5.01" \\ Routed to Pond CB9 : Catch Basin 9
}

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25 -Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & escription & & \\
\hline & \[
\begin{array}{r}
3,914 \\
677 \\
\hline
\end{array}
\] & & \multicolumn{3}{|l|}{Paved parking, HSG B >75\% Grass cover, Good, HSG B} \\
\hline & \[
\begin{array}{r}
4,591 \\
677 \\
3,914
\end{array}
\] & 93 & \multicolumn{2}{|l|}{Weighted Average 14.75\% Pervious Area 85.25\% Impervious Area} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope
\[
(\mathrm{ft} / \mathrm{ft})
\] & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 4.4 & 35 & 0.0200 & 0.13 & & Sheet Flow,
Grass: Short \(\mathrm{n}=0.150 \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.7 & 65 & 0.0380 & 1.58 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.2 & 47 & 0.0430 & 4.21 & & Shallow Concentrated Flow, Paved Kv=20.3 fps \\
\hline 0.1 & 35 & 0.0570 & 4.85 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline 0.4 & 140 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
5.8322 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 110S: SUBCATCHMENT 110 S}

\author{
Runoff \(=0.67\) cfs @ 12.15 hrs, Volume \(=0.055\) af, Depth> 3.23"
}

Routed to Pond CB10: Catch Basin 10
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 4,036 & 98 & Paved parking, HSG B \\
3,001 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
1,917 & 55 & Woods, Good, HSG B \\
\hline 8,954 & 76 & Weighted Average \\
4,918 & & 54.93\% Pervious Area \\
4,036 & & \(45.07 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope
\[
(\mathrm{ft} / \mathrm{ft})
\] & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description & \\
\hline 4.7 & 40 & 0.1500 & 0.14 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 5.3 & 60 & 0.2500 & 0.19 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(P 2=3.02^{\prime \prime}\) \\
\hline 0.1 & 15 & 0.2500 & 2.50 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.1 & 23 & 0.5000 & 4.95 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 0.1 & 14 & 0.0800 & 1.98 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 0.1 & 41 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved Kv= 20.3 fps & \\
\hline 10.4 & 193 & Total & & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 111S: SUBCATCHMENT 111S}

Runoff \(=0.48 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume= 0.036 af, Depth> 1.89"
Routed to Reach B4R : BENCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"

\section*{Summary for Subcatchment 113S: SUBCATCHMENT 113S}

Runoff \(=0.53 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.044\) af, Depth> 5.59" Routed to Pond CB13: Catch Basin 13

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 4,154 & 98 & Paved parking, HSG B \\
\hline 4,154 & & \(100.00 \%\) Impervious Area
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 1.0 & 100 & 0.0330 & 1.63 & & Sheet Flow, Smooth surfaces \(n=0.011 \quad P 2=3.02^{\prime \prime}\) \\
\hline 0.2 & 44 & 0.0330 & 3.69 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
1.2144 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 114S: SUBCATCHMENT 114S}

Runoff \(=2.35\) cfs @ 12.12 hrs, Volume \(=0.200\) af, Depth> 4.90"
Routed to Pond CB14 : Catch Basin 14
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span=0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & Description & & \\
\hline & \[
\begin{array}{r}
3,467 \\
3,413 \\
14,417
\end{array}
\] & \(\begin{array}{ll}98 & \text { R } \\ 61 & > \\ 98 & \text { P }\end{array}\) & \multicolumn{3}{|l|}{Roofs, HSG B >75\% Grass cover, Good, HSG B Paved parking, HSG B} \\
\hline & \[
\begin{array}{r}
21,297 \\
3,413 \\
17,884
\end{array}
\] & 92 & \multicolumn{2}{|l|}{Weighted Average 16.03\% Pervious Area 83.97\% Impervious Area} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & \[
\begin{array}{r}
\text { Length } \\
\text { (feet) }
\end{array}
\] & Slope
\[
(\mathrm{ft} / \mathrm{ft})
\] & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
(\mathrm{cfs})
\end{array}
\] & Description \\
\hline 8.0 & - 75 & 0.0200 & 0.16 & & Sheet Flow,
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.3 & 35 & 0.0360 & - 1.28 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(\mathrm{n}=0.011 \mathrm{P}=3.02\) "
\end{tabular} \\
\hline 0.6 & - 133 & 0.0360 & - 3.85 & & Shallow Concentrated Flow, Paved Kv= 20.3 fps \\
\hline 0.1 & 18 & 0.0200 & - 2.87 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline 9.0 & - 251 & Total & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 115S: SUBCATCHMENT 115S}
Runoff \(=1.98\) cfs @ 12.09 hrs, Volume \(=\quad 0.161\) af, Depth> 5.35" Routed to Pond CB15 : Catch Basin 15

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs
Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN D & \multicolumn{3}{|l|}{Description} \\
\hline & \[
\begin{array}{r}
3,294 \\
11,537 \\
852 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 98 \\
& 98 \\
& 61 \\
& \hline
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
Roofs, HSG B \\
Paved parking, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{array}{r}
\hline 15,683 \\
852 \\
14,831
\end{array}
\] & 96 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Weighted Average 5.43\% Pervious Area \\
94.57\% Impervious Area
\end{tabular}} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \begin{tabular}{l}
Capacity \\
(cfs)
\end{tabular} & Description \\
\hline 0.8 & 40 & 0.0100 & 0.84 & & Sheet Flow, Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 2.1 & 10 & 0.0100 & 0.08 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.5 & 50 & 0.0500 & 1.68 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.6 & 164 & 0.0500 & 4.54 & & Shallow Concentrated Flow, Paved \(K v=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
4.0264 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 116S: SUBCATCHMENT 116S}
Runoff \(=2.92\) cfs @ 12.09 hrs , Volume= 0.230 af, Depth> 5.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{rrll}
Area (sf) & CN & Description \\
\hline 3,185 & 98 & Roofs, HSG B \\
17,824 & 98 & Paved parking, HSG B \\
2,496 & 61 & \(>75 \%\) Grass cover, Good, HSG B
\end{tabular}

\section*{Summary for Subcatchment 117S: SUBCATCHMENT 117S}
Runoff \(=1.85\) cfs @ 12.19 hrs, Volume \(=\quad 0.172\) af, Depth> 4.03"

Routed to Pond CB17: Catch Basin 17
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & a (sf) & CN & escription & & \\
\hline & \[
\begin{array}{r}
323 \\
13,448 \\
8,556 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 98 \\
& 98 \\
& 61 \\
& \hline
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
Roofs, HSG B \\
Paved parking, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{array}{r}
22,327 \\
8,556 \\
13,771
\end{array}
\] & 84 & \multicolumn{2}{|l|}{Weighted Average 38.32\% Pervious Area 61.68\% Impervious Area} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 9.1 & 62 & 0.0100 & 0.11 & & Sheet Flow,
Grass: Short \(\mathrm{n}=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.1 & 5 & 0.0100 & 0.56 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02\) "
\end{tabular} \\
\hline 4.1 & 25 & 0.0120 & 0.10 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.2 & 8 & 0.0110 & 0.63 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02\) "
\end{tabular} \\
\hline 0.6 & 72 & 0.0110 & 2.13 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
\(14.1 \quad 172\) Total

\section*{Summary for Subcatchment 118S: SUBCATCHMENT 1185}

\author{
Runoff \(=\quad 2.68\) cfs @ 12.09 hrs , Volume= 0.208 af, Depth> 4.90"
}

Routed to Pond CB18 : Catch Basin 18
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{rrl}
Area \((\mathrm{sf})\) & CN & Description \\
\hline 4,495 & 98 & Roofs, HSG B \\
14,282 & 98 & Paved parking, HSG B \\
3,394 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
\hline 22,171 & 92 & Weighted Average \\
3,394 & & \(15.31 \%\) Pervious Area \\
18,777 & & \(84.69 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & Capacity
(cfs) & Description \\
\hline 4.6 & 60 & 0.0500 & 0.22 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.4 & 40 & 0.0500 & 1.61 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.1 & 20 & 0.0500 & 4.54 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fos}\) \\
\hline
\end{tabular}
5.1120 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 119S: SUBCATCHMENT 119 S}
Runoff \(=\quad 1.71 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume \(=\quad 0.136\) af, Depth> 5.24"

Routed to Pond CB19: Catch Basin 19
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & Description & & \\
\hline & \[
\begin{aligned}
& 3,314 \\
& 9,272 \\
& 1,015 \\
& \hline
\end{aligned}
\] & \begin{tabular}{ll}
98 & \\
98 \\
61
\end{tabular} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Roofs, HSG B \\
Paved parking, HSG B \\
>75\% Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{array}{r}
13,601 \\
1,015 \\
12,586
\end{array}
\] & \multicolumn{4}{|l|}{95 Weighted Average 7.46\% Pervious Area 92.54\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 0.8 & 40 & 0.0100 & 0.84 & & \multirow[t]{4}{*}{\begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\) \\
Sheet Flow, \\
Grass: Short \(n=0.150\) P2 \(=3.02^{\prime \prime}\) \\
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02^{\prime \prime}\) \\
Shallow Concentrated Flow, \\
Paved Kv= 20.3 fps
\end{tabular}} \\
\hline 2.8 & 14 & 0.0100 & 0.08 & & \\
\hline 0.7 & 46 & 0.0200 & 1.14 & & \\
\hline 0.7 & 118 & 0.0200 & 2.87 & & \\
\hline 5.0 & 218 & \multicolumn{4}{|l|}{Total, Increased to minimum Tc = 6.0 min} \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 120S: SUBCATCHMENT 120 S}

Runoff \(=\quad 2.37 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.187\) af, Depth> 5.12" Routed to Pond CB20 : Catch Basin 20

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & Description & & \\
\hline & \[
\begin{array}{r}
2,604 \\
14,430 \\
2,079
\end{array}
\] & 98
98
61 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Roofs, HSG B \\
Paved parking, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{array}{r}
19,113 \\
2,079 \\
17,034
\end{array}
\] & 94 Weighted Average 10.88\% Pervious Area 89.12\% Impervious Area & \multicolumn{3}{|l|}{Weighted Average 10.88\% Pervious Area 89.12\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{gathered}
\text { Capacity } \\
(\mathrm{cfs})
\end{gathered}
\] & Description \\
\hline 3.3 & 42 & 0.0570 & 0.21 & & Sheet Flow,
Grass: Short \(\mathrm{n}=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.1 & 5 & 0.0200 & 0.73 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(\mathrm{n}=0.011 \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.8 & 53 & 0.0200 & - 1.18 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(\mathrm{n}=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.1 & 24 & 0.0200 & - 2.87 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
4.3124 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 204S: SUBCATCHMENT 204S}

\author{
Runoff \(=0.47 \mathrm{cfs}\) @ 12.36 hrs , Volume= 0.058 af, Depth> \(1.56{ }^{\prime \prime}\)
}

Routed to Reach B3R : BENCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Area (sf)} & CN & \multicolumn{4}{|l|}{Description} \\
\hline & \[
\begin{array}{r}
13,879 \\
5,563
\end{array}
\] & \[
\begin{array}{ll}
55 & W \\
61 & >7
\end{array}
\] & loods, Good \(75 \%\) Grass & od, HSG B s cover, Go & od, HSG B & \\
\hline & \[
\begin{aligned}
& 19,442 \\
& 19,442
\end{aligned}
\] & 57 W & eighted A
\[
00.00 \% \text { F }
\] & verage ervious Are & & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description & \\
\hline 21.0 & 100 & 0.0227 & 0.08 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.2 & 10 & 0.0292 & 0.85 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 32 & 0.0630 & 1.25 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.5 & 77 & 0.2340 & 2.42 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 56 & 0.1790 & 2.12 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.6 & 72 & 0.1390 & 1.86 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.1 & 32 & 0.5000 & 4.95 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 23.2 & 379 & Total & & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 205S: SUBCATCHMENT 205S}
Runoff \(=0.22 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume= 0.017 af, Depth> \(1.89^{\prime \prime}\)

Routed to Reach B2R : BENCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 25-Year 24-Hour Rainfall=5.83"

\section*{Summary for Subcatchment 207S: SUBCATCHMENT 207 S}
Runoff \(=\quad 0.39 \mathrm{cfs} @ 12.35 \mathrm{hrs}\), Volume= \(\quad 0.047\) af, Depth> \(1.64^{\prime \prime}\) Routed to Reach B1R : BENCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 25 -Year 24-Hour Rainfall \(=5.83^{\prime \prime}\)
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 6,840 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
8,162 & 55 & Woods, Good, HSG B \\
\hline 15,002 & 58 & Weighted Average \\
15,002 & & \(100.00 \%\) Pervious Area
\end{tabular}
\begin{tabular}{rrrrl}
\begin{tabular}{r}
Tc \\
\((\mathrm{min})\)
\end{tabular} & \begin{tabular}{r}
Length \\
(feet)
\end{tabular} & \begin{tabular}{r}
Slope \\
(ft/ft) \()\)
\end{tabular} & \begin{tabular}{r}
Velocity \\
(ft/sec)
\end{tabular} & \begin{tabular}{r}
Capacity \\
\((\mathrm{cfs})\)
\end{tabular} \\
\hline 20.2 & 100 & 0.0250 & 0.08 & \begin{tabular}{l}
Description \\
0.2
\end{tabular} \\
10 & 0.0250 & 0.79 & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush n= \\
Shallow Concentrated Flow,
\end{tabular} \\
0.7 & 56 & 0.0710 & 1.33 & \begin{tabular}{l}
Woodland Kv=5.0 fps \\
Shallow Concentrated Flow, \\
Woodland Kv=5.0 fps
\end{tabular} \\
0.9 & 66 & 0.0610 & 1.23 & \begin{tabular}{l}
Shallow Concentrated Flow, \\
Woodland Kv=5.0 fps \\
Whallow Concentrated Flow,
\end{tabular} \\
0.6 & 57 & 0.1050 & 1.62 & \begin{tabular}{l}
Woodland Kv=5.0 fps \\
Shallow Concentrated Flow, \\
Woodland Kv=5.0 fps
\end{tabular} \\
0.2 & 40 & 0.5000 & 3.54 &
\end{tabular}

\section*{Summary for Subcatchment 211S: SUBCATCHMENT 211S}

Runoff \(=0.70\) cfs @ 12.31 hrs, Volume= \(\quad 0.081\) af, Depth> 1.49"
Routed to Reach B6R : BENCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Area (sf)} & CN D & \multicolumn{4}{|l|}{Description} \\
\hline & \[
\begin{array}{r}
6,380 \\
22,212
\end{array}
\] & \multicolumn{5}{|l|}{\(61>75 \%\) Grass cover, Good, HSG B
55 Woods, Good, HSG B} \\
\hline \multicolumn{2}{|r|}{\[
\begin{aligned}
& 28,592 \\
& 28,592
\end{aligned}
\]} & 56 & \multicolumn{2}{|l|}{Weighted Average 100.00\% Pervious Area} & & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
(\mathrm{cfs}) \\
\hline
\end{array}
\] & Description & \\
\hline 15.0 & 83 & 0.0361 & 0.09 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 2.1 & 17 & 0.2140 & 0.14 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.1 & 11 & 0.2140 & 2.31 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 33 & 0.1820 & 2.13 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 45 & 0.1780 & 2.11 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.2 & 34 & 0.2350 & 2.42 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.7 & 45 & 0.0440 & 1.05 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 32 & 0.0630 & 1.25 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.1 & 28 & 0.5000 & 4.95 & & Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps & \\
\hline 19.3 & 328 & Total & & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 305S: SUBCATCHMENT 305S}
Runoff =
0.05 cfs @
12.11 hrs , Volume=
0.004 af, Depth> \(1.42^{\prime \prime}\)

Routed to Reach B5R : BENCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 25-Year 24-Hour Rainfall=5.83"

\section*{Summary for Subcatchment ROOF 2: Back of Roof}

Runoff \(=\quad 0.95 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.079\) af, Depth> 5.59"
Routed to Reach RD2 : RD 2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 25-Year 24-Hour Rainfall=5.83"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 7,416 & 98 & Roofs, HSG B \\
\hline 7,416 & & \(100.00 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 6.0 & & & & & Direct Entry \\
\hline
\end{tabular}

\section*{Summary for Subcatchment ROOF 3: Back of Roof}

Runoff \(=0.95 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.079\) af, Depth> 5.59"
Routed to Reach RD3: RD 3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\)
Type III 24-hr 25 -Year 24-Hour Rainfall=5.83"
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Area (sf)} & CN & \multicolumn{3}{|l|}{Description} \\
\hline & 7,416 & 98 R & Roofs, HSG & & \\
\hline \multicolumn{2}{|r|}{7,416} & \multicolumn{4}{|c|}{100.00\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope
\[
(\mathrm{ft} / \mathrm{ft})
\] & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 6.0 & & & & & Direct Entry \\
\hline
\end{tabular}

\section*{Summary for Reach 4Ra: Flow Through Subcatchment 30 S}

\author{
Inflow Area \(=3.651 \mathrm{ac}, \quad 0.00 \%\) Impervious, Inflow Depth \(>1.64^{\prime \prime}\) for 25 -Year 24 -Hour event Inflow \(=4.12 \mathrm{cfs} @ 12.35 \mathrm{hrs}\), Volume \(=0.500 \mathrm{af}\) Outflow = \(4.12 \mathrm{cfs} @ 12.36 \mathrm{hrs}\), Volume \(=0.499 \mathrm{af}\), Atten \(=0 \%\), Lag \(=0.6 \mathrm{~min}\) \\ Routed to Reach 4Rb : Flow Through Subcatchment 30S
}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.75 \mathrm{fps}, \mathrm{Min}\). Travel Time \(=0.9 \mathrm{~min}\)
Avg. Velocity \(=0.34 \mathrm{fps}\), Avg. Travel Time \(=2.0 \mathrm{~min}\)
Peak Storage= 219 cf @ 12.36 hrs
Average Depth at Peak Storage=0.57' , Surface Width= 14.41'
Bank-Full Depth= 2.00' Flow Area \(=36.0\) sf, Capacity \(=62.15 \mathrm{cfs}\)
\(27.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(\mathrm{n}=0.400\) Sheet flow: Woods+light brush Length \(=40.0\) ' Slope \(=0.1500\) ' \(/\) '
Inlet Invert= 252.00', Outlet Invert=246.00'

\section*{Summary for Reach 4Rb: Flow Through Subcatchment 30S}
[61] Hint: Exceeded Reach 4Ra outlet invert by 0.29 @ 12.40 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.65 \mathrm{fps}\), Min. Travel Time \(=1.8 \mathrm{~min}\)
Avg. Velocity \(=0.30 \mathrm{fps}\), Avg. Travel Time \(=4.0 \mathrm{~min}\)
Peak Storage= 445 cf @ 12.39 hrs
Average Depth at Peak Storage=0.29' , Surface Width= 32.88'
Bank-Full Depth= 2.00' Flow Area= 116.0 sf, Capacity= 276.81 cfs
\(87.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(\mathrm{n}=0.400\) Sheet flow: Woods+light brush
Length= \(71.0^{\prime}\) Slope \(=0.2817 \mathrm{I} /\)
Inlet Invert= 246.00', Outlet Invert= 226.00'

\section*{Summary for Reach AP1: Analysis Point 1}
[40] Hint: Not Described (Outflow=Inflow)
\begin{tabular}{llll}
Inflow Area \(=\) & \(11.107 \mathrm{ac}, 10.76 \%\) & Impervious, Inflow Depth \(>1.67 "\) & for \(25-\) Year \(24-\) Hour event \\
Inflow & \(=\) & \(8.58 \mathrm{cfs} @ 12.51 \mathrm{hrs}\), Volume \(=\) & 1.546 af \\
Outflow & \(=\) & \(8.58 \mathrm{cfs} @ 12.51 \mathrm{hrs}\), Volume= & 1.546 af , Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\)
\end{tabular}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach AP2: Analysis Point 2}
[40] Hint: Not Described (Outflow=Inflow)
\begin{tabular}{llll}
Inflow Area \(=\) & 12.549 ac, & \(4.54 \%\) Impervious, Inflow Depth \(>\) & \(1.05{ }^{\prime \prime}\) for \(25-\) Year \(24-\) Hour event \\
Inflow & \(=\) & \(8.89 \mathrm{cfs} @\) & 12.40 hrs , Volume= \\
Outflow & \(=\) & \(8.89 \mathrm{cfs} @\) & 12.40 hrs , Volume=
\end{tabular}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt=0.05 hrs \(/ 9\)

\section*{Summary for Reach AP3: Analysis Point 3}
[40] Hint: Not Described (Outflow=Inflow)
Inflow Area \(=\quad 9.257\) ac, \(35.29 \%\) Impervious, Inflow Depth \(>2.06^{\prime \prime}\) for 25-Year 24-Hour event Inflow \(=6.77\) cfs @ 12.36 hrs, Volume \(=1.589 \mathrm{af}\) Outflow \(=6.77\) cfs @ 12.36 hrs , Volume \(=1.589 \mathrm{af}\), Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\)

Routing by Dyn-Stor-Ind method, Time Span = 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach B1R: BENCH}

Inflow Area \(=\quad 0.344 \mathrm{ac}, \quad 0.00 \%\) Impervious, Inflow Depth \(>1.64^{\prime \prime}\) for 25-Year 24-Hour event Inflow \(=\quad 0.39\) cfs @ 12.35 hrs , Volume= 0.047 af Outflow \(=0.38 \mathrm{cfs} @ 12.40 \mathrm{hrs}\), Volume= 0.047 af, Atten \(=2 \%, \operatorname{Lag}=3.0 \mathrm{~min}\)

Routed to Reach B2R : BENCH
Overflow \(=0.00\) cfs @ 0.00 hrs , Volume \(=0.000 \mathrm{af}\)
Routed to Pond CB7 : Catch Basin 7
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.84 \mathrm{fps}\), Min. Travel Time \(=3.4 \mathrm{~min}\)
Avg. Velocity \(=0.44 \mathrm{fps}\), Avg. Travel Time \(=6.6 \mathrm{~min}\)
Peak Storage= 79 cf @ 12.40 hrs
Average Depth at Peak Storage \(=0.34^{\prime}\), Surface Width= 2.69'
Bank-Full Depth=1.00' Flow Area= 4.0 sf, Capacity \(=6.92\) cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= 6.02 .0 ' \(/ \prime\) Top Width= 8.00'
Length \(=173.0^{\prime}\) Slope \(=0.0809\) '/'
Inlet Invert=278.00', Outlet Invert= \(264.0^{\prime}\)

\section*{Summary for Reach B2R: BENCH}
[62] Hint: Exceeded Reach B1R OUTLET depth by \(0.07^{\prime}\) @ 12.10 hrs
Inflow Area = \(0.451 \mathrm{ac}, 0.00 \%\) Impervious, Inflow Depth \(>1.70^{\prime \prime}\) for 25-Year 24-Hour event Inflow \(=0.47 \mathrm{cfs} @ 12.37 \mathrm{hrs}\), Volume \(=0.064 \mathrm{af}\) Outflow = \(0.47 \mathrm{cfs} @ 12.40 \mathrm{hrs}\), Volume= 0.064 af , Atten= \(1 \%\), Lag \(=1.6 \mathrm{~min}\)

Routed to Reach B3R : BENCH
Overflow \(=0.00 \mathrm{cfs} @ 0.00 \mathrm{hrs}\), Volume \(=0.000 \mathrm{af}\)
Routed to Pond CB5 : Catch Basin 5

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity= 1.03 fps , Min. Travel Time \(=1.9 \mathrm{~min}\)
Avg. Velocity \(=0.54 \mathrm{fps}\), Avg. Travel Time \(=3.6 \mathrm{~min}\)
Peak Storage= 53 cf @ 12.40 hrs
Average Depth at Peak Storage= \(0.34^{\prime}\), Surface Width= \(2.71^{\prime}\)
Bank-Full Depth= \(1.00^{\prime}\) Flow Area= 4.0 sf , Capacity= 8.45 cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= \(6.02 .0 \mathrm{\prime} / \mathrm{\prime}\) Top Width= 8.00'
Length= 116.0' Slope= 0.1207 '/'
Inlet Invert= 264.00', Outlet Invert= 250.00'

\section*{Summary for Reach B3R: BENCH}
[62] Hint: Exceeded Reach B2R OUTLET depth by 0.11' @ 12.40 hrs
Inflow Area \(=\quad 0.932\) ac, \(0.00 \%\) Impervious, Inflow Depth \(>1.62\) " for 25-Year 24-Hour event Inflow \(=0.96\) cfs @ 12.38 hrs , Volume= 0.126 af
Outflow \(=\quad 0.96 \mathrm{cfs} @ 12.40 \mathrm{hrs}\), Volume \(=\quad 0.126 \mathrm{af}\), Atten= \(0 \%\), Lag= 1.2 min
Routed to Reach B4R : BENCH
Overflow \(=0.00\) cfs @ 0.00 hrs , Volume= 0.000 af
Routed to Pond CB4 : Catch Basin 4
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity= 1.21 fps , Min. Travel Time= 1.4 min
Avg. Velocity \(=0.63 \mathrm{fps}\), Avg. Travel Time \(=2.7 \mathrm{~min}\)
Peak Storage= 82 cf @ 12.40 hrs
Average Depth at Peak Storage= \(0.44^{\prime}\), Surface Width= 3.56'
Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity \(=8.30\) cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= \(6.02 .0 \mathrm{l} / \mathrm{\prime}\) Top Width= \(8.00^{\prime}\)
Length= 103.0' Slope \(=0.1165 \mathrm{I} /{ }^{\prime}\)
Inlet Invert= 250.00', Outlet Invert= 238.00'

Prepared by Jones \& Beach Engineers Inc

\section*{Summary for Reach B4R: BENCH}
[62] Hint: Exceeded Reach B3R OUTLET depth by \(0.20^{\prime}\) @ 12.45 hrs
Inflow Area \(=\quad 1.820 \mathrm{ac}, \quad 0.00 \%\) Impervious, Inflow Depth \(>1.61^{n}\) for 25-Year 24-Hour event
Inflow \(=1.84\) cfs @ 12.36 hrs, Volume \(=\quad 0.243\) af
Outflow =
1.81 cfs @ 12.41 hrs, Volume=
0.243 af, Atten \(=2 \%\), Lag \(=2.8 \mathrm{~min}\)

Routed to Pond CB11 : Catch Basin 11
Overflow = 0.00 cfs @ 0.00 hrs , Volume= 0.000 af
Routed to Pond CB2 : Catch Basin 2
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt=0.05 hrs \(/ 9\)
Max. Velocity \(=1.08 \mathrm{fps}\), Min. Travel Time \(=3.6 \mathrm{~min}\)
Avg. Velocity \(=0.56 \mathrm{fps}\), Avg. Travel Time \(=6.9 \mathrm{~min}\)
Peak Storage= 389 cf @ 12.41 hrs
Average Depth at Peak Storage \(=0.65^{\prime}\), Surface Width= 5.18'
Bank-Full Depth=1.00' Flow Area= 4.0 sf , Capacity= 5.76 cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= 6.02 .0 ' \(/\) Top Width= 8.00'
Length \(=232.0^{\prime}\) Slope \(=0.0560\) ' \(/ \prime\)
Inlet Invert=238.00', Outlet Invert=225.00'

\section*{Summary for Reach B5R: BENCH}

Routed to Reach B2R : BENCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.51 \mathrm{fps}\), Min. Travel Time \(=0.4 \mathrm{~min}\)
Avg. Velocity \(=0.25 \mathrm{fps}\), Avg. Travel Time \(=0.8 \mathrm{~min}\)
Peak Storage= 1 cf @ 12.11 hrs
Average Depth at Peak Storage=0.16', Surface Width=1.26'
Bank-Full Depth \(=1.00^{\prime}\) Flow Area= 4.0 sf, Capacity= 7.02 cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value=6.0 \(2.0 \mathrm{I} / \mathrm{I}\) Top Width= \(8.00^{\prime}\)
Length= 12.0 ' Slope \(=0.0833\) '/'
Inlet Invert= 274.00', Outlet Invert= 273.00'

Summary for Reach B6R: BENCH

Routed to Reach B4R : BENCH
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.84 \mathrm{fps}\), Min. Travel Time \(=3.3 \mathrm{~min}\)
Avg. Velocity \(=0.44 \mathrm{fps}\), Avg. Travel Time \(=6.3 \mathrm{~min}\)
Peak Storage= 134 cf @ 12.35 hrs
Average Depth at Peak Storage= \(0.45^{\prime}\), Surface Width= 3.61'
Bank-Full Depth= \(1.00^{\prime}\) Flow Area \(=4.0\) sf, Capacity \(=5.68 \mathrm{cfs}\)
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= 6.02 .0 ' \(/\) Top Width= 8.00
Length= \(165.0^{\prime}\) Slope \(=0.0545 \mathrm{~J} /\)
Inlet Invert= 259.00', Outlet Invert= 250.00'

\section*{Summary for Reach RD1: RD 1}
[52] Hint: Inlet/Outlet conditions not evaluated
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
0.170 ac, \(100.00 \%\) Impervious, Inflow Depth > 5.59" for 25-Year 24-Hour \(0.95 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.079\) af \\
0.95 cfs @ 12.10 hrs , Volume \(=\quad 0.079 \mathrm{af}\), Atten \(=0 \%\), Lag \(=0.6 \mathrm{~min}\)
\end{tabular}}} \\
\hline & & & & \\
\hline Outflow & & & & \\
\hline
\end{tabular}

Routed to Pond CB13 : Catch Basin 13

Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=6.61 \mathrm{fps}\), Min. Travel Time \(=0.7 \mathrm{~min}\)
Avg. Velocity \(=2.25 \mathrm{fps}\), Avg. Travel Time \(=2.0 \mathrm{~min}\)
Peak Storage= 38 cf @ 12.10 hrs
Average Depth at Peak Storage \(=0.29^{\prime}\), Surface Width= \(0.66^{\prime}\)
Bank-Full Depth=0.67' Flow Area=0.3 sf, Capacity= 2.47 cfs

\author{
8.0" Round Pipe \\ \(\mathrm{n}=0.013\) Corrugated PE , smooth interior \\ Length \(=264.0^{\prime}\) Slope \(=0.0417{ }^{\prime} / \prime\) \\ Inlet Invert= 276.00', Outlet Invert= 265.00'
}

\section*{Summary for Reach RD2: RD 2}
[52] Hint: Inlet/Outlet conditions not evaluated
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
\begin{tabular}{lll}
Inflow Area \(=\) & \(0.170 \mathrm{ac}, 100.00 \%\) Impervious, Inflow Depth \(>5.59^{n}\) for \(25-\) Year 24 -Hour event \\
Inflow & \(=\) & \(0.95 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \\
Outflow & \(=\) & \(0.95 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume=
\end{tabular}

Routed to Pond CB14 : Catch Basin 14
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=7.01 \mathrm{fps}\), Min. Travel Time \(=0.3 \mathrm{~min}\)
Avg. Velocity \(=2.38 \mathrm{fps}\), Avg. Travel Time \(=0.8 \mathrm{~min}\)
Peak Storage= 15 cf @ 12.09 hrs
Average Depth at Peak Storage \(=0.27^{\prime}\), Surface Width= \(0.66^{\prime}\)
Bank-Full Depth= 0.67 ' Flow Area= 0.3 sf , Capacity= 2.68 cfs
8.0" Round Pipe
\(\mathrm{n}=0.013\) Corrugated PE , smooth interior
Length \(=110.0^{\prime}\) Slope \(=0.0491 \mathrm{l} /\)
Inlet Invert=269.00', Outlet Invert= 263.60'

\section*{Summary for Reach RD3: RD 3}
[52] Hint: Inlet/Outlet conditions not evaluated
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
\begin{tabular}{llll}
Inflow Area \(=\) & \(0.170 \mathrm{ac}, 100.00 \%\) Impervious, Inflow Depth \(>5.59\) " & for \(25-\) Year 24 -Hour event \\
Inflow & \(=\) & 0.95 cfs @ 12.09 hrs , Volume= & 0.079 af \\
Outflow & \(=\) & \(0.95 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= & 0.079 af , Atten \(=0 \%\), Lag \(=0.3 \mathrm{~min}\)
\end{tabular} Routed to Pond CB17 : Catch Basin 17

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt=0.05 hrs / 9
Max. Velocity= 5.02 fps , Min. Travel Time \(=0.3 \mathrm{~min}\)
Avg. Velocity \(=1.74 \mathrm{fps}\), Avg. Travel Time \(=1.0 \mathrm{~min}\)
Peak Storage= 19 cf @ 12.09 hrs
Average Depth at Peak Storage \(=0.36^{\prime}\), Surface Width= \(0.67^{\prime}\)
Bank-Full Depth \(=0.67\) ' Flow Area= 0.3 sf, Capacity= 1.71 cfs
8.0" Round Pipe
\(n=0.013\) Corrugated PE, smooth interior
Length \(=100.0^{\prime}\) Slope \(=0.0200\) ' \(/\)
Inlet Invert= 268.00', Outlet Invert= 266.00'

\section*{Summary for Pond 1P: Infiltration Pocket}
[80] Warning: Exceeded Pond 3P by 0.98 @ 10.35 hrs (0.00 cfs 0.000 af)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=198.81' @ 12.15 hrs Surf.Area= 393 sf Storage= 619 cf
Plug-Flow detention time \(=15.1\) min calculated for 0.730 af (\(98 \%\) of inflow)
Center-of-Mass det. time \(=5.5 \mathrm{~min}\) (931.2 - 925.8)
\begin{tabular}{crrr}
Volume & Invert & Avail.Storage & Storage Description \\
\hline\(\# 1\) & \(195.84^{\prime}\) & 619 cf & Custom Stage Data (Prismatic)Listed below (Recalc)
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{rrrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Voids \\
\((\%)\)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 195.84 & 43 & 0.0 & 0 & 0 \\
195.85 & 43 & 40.0 & 0 & 0 \\
195.99 & 43 & 40.0 & 2 & 3 \\
196.00 & 43 & 100.0 & 0 & 3 \\
197.00 & 197 & 100.0 & 120 & 123 \\
198.00 & 263 & 100.0 & 230 & 353 \\
198.80 & 393 & 100.0 & 262 & 615 \\
198.81 & 393 & 100.0 & 4 & 619
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \#0 & Primary & 198.81' & Automatic Storage Overflow (Discharged without head) \\
\hline \multirow[t]{2}{*}{\#1} & \multirow[t]{2}{*}{Discarded} & \multirow[t]{2}{*}{195.84'} & \(0.300 \mathrm{in} / \mathrm{hr}\) Exfiltration over Surface area \\
\hline & & & Conductivity to Groundwater Elevation = 195.83' Phase-In=0.01' \\
\hline \multirow[t]{5}{*}{\#2} & \multirow[t]{5}{*}{Primary} & \multirow[t]{5}{*}{198.80'} & 20.0' long x 1.0' breadth Broad-Crested Rectangular Weir \\
\hline & & & Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80 \\
\hline & & & 2.503 .00 \\
\hline & & & Coef. (English) 2.692 .722 .752 .852 .983 .083 .203 .283 .31 \\
\hline & & & 3.303 .313 .32 \\
\hline
\end{tabular}

Discarded OutFlow Max=0.10 cfs @ 12.15 hrs HW=198.81' (Free Discharge)
E1=Exfiltration (Controls 0.10 cfs)
Primary OutFlow Max=0.05 cfs @ 12.41 hrs HW=198.81' TW=0.00' (Dynamic Tailwater)
——2=Broad-Crested Rectangular Weir(Weir Controls 0.05 cfs @ 0.27 fps)

\section*{Summary for Pond 2P: Stormwater Pond}

\begin{tabular}{rrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 196.00 & 2,494 & 0 & 0 \\
197.00 & 3,194 & 2,844 & 2,844 \\
198.00 & 3,961 & 3,578 & 6,422 \\
199.00 & 4,795 & 4,378 & 10,800 \\
199.49 & 5,237 & 2,458 & 13,257 \\
199.50 & 5,818 & 55 & 13,313 \\
200.00 & 6,296 & 3,029 & 16,341 \\
201.00 & 7,292 & 6,794 & 23,135 \\
202.00 & 8,346 & 7,819 & 30,954 \\
202.80 & 9,005 & 6,940 & 37,895 \\
202.81 & 9,005 & 90 & 37,985
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & \multirow[t]{4}{*}{Primary} & \multirow[t]{4}{*}{199.00'} & 12.0" Round Culvert \\
\hline & & & \(\mathrm{L}=26.0^{\prime} \mathrm{CPP}\), projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert= 199.00' / 198.80' S=0.0077 '/' Cc= 0.900 \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area \(=0.79\) sf \\
\hline \#2 & Device 1 & 199.00' & 2.0" Vert. Orifice/Grate \(\mathrm{C}=0.600\) Limited to weir flow at low heads \\
\hline \#3 & Device 1 & 199.85' & 7.5" Vert. Orifice/Grate \(\mathrm{C}=0.600\) Limited to weir flow at low heads \\
\hline \#4 & Device 1 & 201.70' & 48.0" \(\times 48.0^{\prime \prime}\) Horiz. Orifice/Grate \(\mathrm{C}=0.600\) \\
\hline & & & Limited to weir flow at low heads \\
\hline \multirow[t]{5}{*}{\#5} & \multirow[t]{5}{*}{Secondary} & \multirow[t]{5}{*}{201.80'} & 6.0' long x 6.0' breadth Broad-Crested Rectangular Weir \\
\hline & & & Head (feet) \(0.200 .400 .600 .801 .001 .201 .401 .601 .80 \quad 2.00\) \\
\hline & & & \(2.503 .003 .504 .004 .50 \quad 5.00 \quad 5.50\) \\
\hline & & & Coef. (English) 2.372 .512 .702 .682 .682 .6712 .6512 .6512 .65 \\
\hline & & & \(\begin{array}{llllllllll}2.65 & 2.662 .662 .672 .692 .72 ~ & 2.76 & 2.83\end{array}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Primary OutFlow Max=1.58 cfs @ 12.92 hrs HW=201.1 \\
-1=Culvert (Passes 1.58 cfs of 3.78 cfs potential flow)
\end{tabular} & (Dynamic Tailwater) \\
\hline -2=Orifice/Grate (Orifice Controls 0.15 cfs @ 6.84 fps) & \\
\hline -3=Orifice/Grate (Orifice Controls 1.43 cfs @ 4.67 fps) & \\
\hline 4=Orifice/Grate (Controls 0.00 cfs) & \\
\hline
\end{tabular}

\section*{Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=199.00' TW=195.84' (Dynamic Tailwater) \\ \(4_{5=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00 \mathrm{cfs}\))}

\section*{Summary for Pond 3P: Stormfilter}
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=1)

Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs} / 9\)

Prepared by Jones \& Beach Engineers Inc

Peak Elev= 198.86' @ 12.26 hrs Surf.Area= 243 sf Storage= 76 cf
Plug-Flow detention time \(=10.3\) min calculated for 0.102 af (\(98 \%\) of inflow)
Center-of-Mass det. time \(=2.3 \mathrm{~min}(859.4-857.1)\)

Primary OutFlow Max=1.02 cfs @12.26 hrs HW=198.86' TW=198.81' (Dynamic Tailwater)
—1 \(_{1=\text { Culvert (Inlet Controls } 1.02 \mathrm{cfs} @ 0.83 \mathrm{fps} \text {) }) ~}^{\text {@ }}\)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=191.75' TW=0.00' (Dynamic Tailwater)
\(t_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~}^{0.00}\) cfs)

\section*{Summary for Pond 5P: StormTech}

\section*{Summary for Pond 6P: Focal Point}
 Routed to Reach AP3 : Analysis Point 3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=254.66' @ 13.66 hrs Surf.Area= 620 sf Storage= 113 cf
Plug-Flow detention time \(=0.9 \mathrm{~min}\) calculated for 0.882 af (\(100 \%\) of inflow)
Center-of-Mass det. time \(=0.9 \min (1,005.4-1,004.6)\)
\begin{tabular}{crrl}
Volume & Invert & Avail.Storage & Storage Description \\
\hline\(\# 1\) & \(253.75^{\prime}\) & 279 cf & \(\mathbf{2 0 . 0 0 ^ { \prime } \mathrm { W } \times 3 1 . 0 0 ^ { \prime } \mathrm { L } \times 2 . 2 5 ' \mathrm { H } \text { Focal Point }}\) \\
\(\# 2\) & \(256.00^{\prime}\) & \(1,965 \mathrm{cf}\) & \(1,395 \mathrm{cf}\) Overall \(\times 20.0 \%\) Voids \\
\hline & & \(2,244 \mathrm{cf}\) & Total Available Srownatis)Listed below (Recalc) \\
\hline
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
Printed 3/20/2023
HydroCAD(8) 10.20-2g s/n 00762 © 2022 HydroCAD Software Solutions LLC
\begin{tabular}{rrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 256.00 & 620 & 0 & 0 \\
258.00 & 1,345 & 1,965 & 1,965
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & \multirow[t]{4}{*}{Primary} & \multirow[t]{4}{*}{252.75'} & 15.0" Round Culvert \\
\hline & & & \(\mathrm{L}=60.0^{\prime}\) CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert= 252.75 '/252.00' S=0.0125 '/' Cc= 0.900 \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf \\
\hline \#2 & Device 3 & 253.75' & \(100.000 \mathrm{in} / \mathrm{hr}\) Exfiltration over Surface area Phase-In= \(0.10^{\prime}\) \\
\hline \#3 & Device 1 & 253.25' & \(6.0{ }^{\prime \prime} \mathrm{W} \times 6.0^{\prime \prime} \mathrm{H}\) Vert. Orifice/Grate \(\mathrm{C}=0.600\) \\
\hline & & & Limited to weir flow at low heads \\
\hline \#4 & Device 1 & 257.00' & 18.0" Horiz. Orifice/Grate C= 0.600 \\
\hline & & & Limited to weir flow at low heads \\
\hline
\end{tabular}

Primary OutFlow Max=1.29 cfs @ 13.66 hrs HW=254.66' TW=0.00' (Dynamic Tailwater)
L-1=Culvert (Passes 1.29 cfs of 5.29 cfs potential flow)
- 3=Orifice/Grate (Orifice Controls 1.29 cfs @ 5.18 fps)
\(L_{-2=E x f i l t r a t i o n ~(P a s s e s ~} 1.29\) cfs of 1.44 cfs potential flow)
4=Orifice/Grate (Controls 0.00 cfs)

\section*{Summary for Pond 9P: 18" HDPE}

Inlet / Outlet Invert=201.20'/201.00'S=0.0053 '// Cc= 0.900 \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.77 sf
\#2
36.0' long \(\times 1.0^{\prime}\) breadth Broad-Crested Rectangular Weir Head (feet) \(0.20 \quad 0.40 \quad 0.60 \quad 0.801 .001 .201 .401 .601 .80 \quad 2.00\) 2.503 .00

Coef. (English) \(2.692 .722 .75 \quad 2.85 \quad 2.98 \quad 3.08 \quad 3.20 \quad 3.28 \quad 3.31\) 3.303 .313 .32

Primary OutFlow Max=2.45 cfs @ 12.26 hrs HW=202.06' TW=200.53' (Dynamic Tailwater) —1=Culvert (Barrel Controls 2.45 cfs @ 3.40 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=201.00' TW=0.00' (Dynamic Tailwater)
4-2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

\section*{Summary for Pond 10P: Bioretention}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, \(\mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Peak Elev=201.06' @ 12.55 hrs Surf.Area= 3,869 sf Storage= \(4,398 \mathrm{cf}\)
Plug-Flow detention time \(=19.5 \mathrm{~min}\) calculated for 0.564 af (\(99 \%\) of inflow)
Center-of-Mass det. time \(=17.2 \mathrm{~min}(883.7-866.5)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Volume & \multicolumn{2}{|l|}{Invert Avail.Storage} & \multicolumn{4}{|l|}{Storage Description} \\
\hline \#1 & 197.49' & 10,895 cf & Custom & age Data (Ir & Histed below & calc) \\
\hline Elevation (feet) & Surf.Area (sq-ft) & Perim. (feet) & \begin{tabular}{l}
Voids \\
(\%)
\end{tabular} & Inc.Store (cubic-feet) & Cum.Store (cubic-feet) & Wet.Area (sq-ft) \\
\hline 197.49 & 2,341 & 224.0 & 0.0 & 0 & 0 & 2,341 \\
\hline 197.50 & 2,341 & 224.0 & 40.0 & 9 & 9 & 2,343 \\
\hline 198.49 & 2,341 & 224.0 & 40.0 & 927 & 936 & 2,565 \\
\hline 198.50 & 2,341 & 224.0 & 15.0 & 4 & 940 & 2,567 \\
\hline 199.99 & 2,341 & 224.0 & 15.0 & 523 & 1,463 & 2,901 \\
\hline 200.00 & 2,341 & 224.0 & 100.0 & 23 & 1,487 & 2,903 \\
\hline 200.99 & 3,056 & 251.0 & 100.0 & 2,664 & 4,150 & 3,951 \\
\hline 201.00 & 3,826 & 265.0 & 100.0 & 34 & 4,185 & 4,525 \\
\hline 202.00 & 4,646 & 284.0 & 100.0 & 4,229 & 8,414 & 5,400 \\
\hline 202.50 & 5,079 & 293.0 & 100.0 & 2,430 & 10,844 & 5,837 \\
\hline 202.51 & 5,079 & 293.0 & 100.0 & 51 & 10,895 & 5,840 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{3}{*}{\#1} & \multirow[t]{3}{*}{Primary} & \multirow[t]{3}{*}{200.10'} & 10.0" Round Culvert \\
\hline & & & \(\mathrm{L}=60.0^{\prime} \mathrm{CPP}\), square edge headwall, \(\mathrm{Ke}=0.500\) \\
\hline & & & Inlet / Outlet Invert=200.10'/199.80' S=0.0050 //' Cc= 0.900 \\
\hline \#2 & Device 1 & 200.30' & 6.0"Vert. Orifice/Grate \(\mathrm{C}=0.600\) Limited to weir flow at low heads \\
\hline \multirow[t]{2}{*}{\#3} & \multirow[t]{2}{*}{Device 1} & \multirow[t]{2}{*}{201.10'} & \(48.0^{\prime \prime} \times 48.0^{\prime \prime}\) Horiz. Orifice/Grate \(\mathrm{C}=0.600\) \\
\hline & & & Limited to weir flow at low heads \\
\hline \multirow[t]{5}{*}{\#4} & \multirow[t]{5}{*}{Secondary} & \multirow[t]{5}{*}{201.50'} & 6.0' long x \(2.0{ }^{\prime}\) breadth Broad-Crested Rectangular Weir \\
\hline & & & \\
\hline & & & 2.503 .003 .50 \\
\hline & & & Coef. (English) 2.542 .612 .612 .602 .662 .702 .772 .892 .88 \\
\hline & & & 2.853 .073 .203 .32 \\
\hline \multirow[t]{2}{*}{\#5} & \multirow[t]{2}{*}{Discarded} & 197.49' & \(1.000 \mathrm{in} / \mathrm{hr}\) Exfiltration over Surface area \\
\hline & & & Conductivity to Groundwater Elevation = 197.41' Phase-In=0.10' \\
\hline
\end{tabular}

Discarded OutFlow Max=2.51 cfs @ 12.55 hrs HW=201.06' (Free Discharge)
\(-5=\) Exfiltration (Controls 2.51 cfs)
Primary OutFlow Max=0.67 cfs @ 12.55 hrs HW=201.06' TW=0.00' (Dynamic Tailwater)
t-1=Culvert (Passes 0.67 cfs of 1.60 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.67 cfs @ 3.42 fps)
\(\square_{3=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}\))
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=197.49' TW=195.07' (Dynamic Tailwater)

\section*{Summary for Pond 11P: EcoRaster}

\begin{tabular}{rrrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Voids \\
(\%)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 195.07 & 3,707 & 0.0 & 0 & 0 \\
195.08 & 3,707 & 30.0 & 11 & 11 \\
196.08 & 3,707 & 30.0 & 1,112 & 1,123 \\
196.09 & 3,707 & 15.0 & 6 & 1,129 \\
196.33 & 3,707 & 15.0 & 133 & 1,262 \\
196.34 & 3,707 & 5.0 & 2 & 1,264 \\
197.33 & 3,707 & 5.0 & 183 & 1,448 \\
197.34 & 3,707 & 30.0 & 11 & 1,459 \\
197.99 & 3,707 & 30.0 & 723 & 2,182 \\
198.00 & 3,707 & 100.0 & 37 & 2,219 \\
198.01 & 3,707 & 100.0 & 37 & 2,256
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & 198.00' & 100.0' long x 50.0' breadth Broad-Crested Rectangular Weir Head (feet) \(0.200 .40 \quad 0.60 \quad 0.801 .001 .201 .401 .60\) \\
\hline & & & Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63 \\
\hline \multirow[t]{2}{*}{\#2} & Discarded & 195.07' & \(1.000 \mathrm{in} / \mathrm{hr} \mathrm{Exfiltration} \mathrm{over} \mathrm{Surface} \mathrm{area}{ }^{\text {a }}\) (\({ }^{\text {a }}\), \\
\hline & & & Conductivity to Groundwater Elevation \(=194.83\) ' Phase-In=0.01' \\
\hline
\end{tabular}

Discarded OutFlow Max=0.88 cfs @ 12.42 hrs HW=197.30' (Free Discharge)
\(\mathbf{L}_{2=\text { Exfiltration }}\) (Controls 0.88 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=195.07' TW=0.00' (Dynamic Tailwater)
L_1 Broad-Crested Rectangular Weir(Controls 0.00 cfs) \(^{\text {B }}\)

\section*{Summary for Pond 12P: Dry Well}
[93] Warning: Storage range exceeded by 0.16
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=75)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev= 199.37' @ 12.20 hrs Surf.Area= 287 sf Storage= 359 cf
Plug-Flow detention time \(=69.9 \mathrm{~min}\) calculated for 0.068 af (\(89 \%\) of inflow)
Center-of-Mass det. time= \(18.9 \mathrm{~min}(893.6-874.7\))

Prepared by Jones \& Beach Engineers Inc
Printed 3/20/2023
HydroCAD® 10.20-2g s/n 00762 © 2022 HydroCAD Software Solutions LLC
Page 115

Discarded OutFlow Max=0.01 cfs @ 12.20 hrs HW=199.37' (Free Discharge)
—1=Exfiltration (Controls 0.01 cfs)
Primary OutFlow Max=0.98 cfs @ 12.20 hrs HW=199.37' TW=196.04' (Dynamic Tailwater)
\(\dagger_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(W e i r ~ C o n t r o l s ~} 0.98 \mathrm{cfs} @ 1.16 \mathrm{fps}\))
Summary for Pond CB1: Catch Basin 1

Primary OutFlow Max=0.32 cfs @ 12.09 hrs HW=202.52' TW=202.51' (Dynamic Tailwater)
-1=Culvert (Inlet Controls 0.32 cfs @ 0.26 fps)

\section*{Summary for Pond CB10: Catch Basin 10}

Primary OutFlow Max=0.67 cfs @ 12.15 hrs HW=252.63' TW=252.47' (Dynamic Tailwater)
L1=Culvert (Outlet Controls \(0.67 \mathrm{cfs} @ 1.99 \mathrm{fps}\))

\section*{Summary for Pond CB11: Catch Basin 11}

Primary OutFlow Max=1.80 cfs @ 12.41 hrs HW=208.75' TW=201.75' (Dynamic Tailwater)
Ł1=Culvert (Inlet Controls 1.80 cfs @ 2.33 fps)

\section*{Summary for Pond CB12: Catch Basin 12}

\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \#0 & Secondary & 264.01' & Automatic Storage Overflow (Discharged without head) \\
\hline \#1 & Primary & \(259.70^{\prime}\) & 15.0" Round Culvert \\
\hline & & & \(\mathrm{L}=50.0^{\prime}\) CPP, square edge headwall, \(\mathrm{Ke}=0.500\) \\
\hline & & & Inlet / Outlet Invert=259.70' \(259.00^{\prime} \mathrm{S}=0.0140\) '/' \(\mathrm{Cc}=0.900\) \(\mathrm{n}=0.012\) Concrete pipe, finished, Flow Area=1.23 sf \\
\hline \#2 & Device 1 & \(263.00^{\prime}\) & 48.0 " \(48.0^{\prime \prime}\) Horiz. Orifice/Grate C= 0.600 \\
\hline & & & Limited to weir flow at low heads \\
\hline \#3 & Secondary & \(264.00^{\prime}\) & 8.0' long x 1.0' breadth Broad-Crested Rectangular Weir \\
\hline & & & Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80 \\
\hline & & & 2.503 .00 \\
\hline & & & Coef. (English) \(2.692 .722 .75 \quad 2.852 .983 .083 .203 .283 .31\) \\
\hline & & & 3.303 .313 .32 \\
\hline
\end{tabular}

Primary OutFlow Max=3.43 cfs @ 12.38 hrs HW=263.16' TW=0.00' (Dynamic Tailwater)
-1=Culvert (Passes 3.43 cfs of 9.95 cfs potential flow)
L-2=Orifice/Grate (Weir Controls 3.43 cfs @ 1.32 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=263.00' TW=252.10' (Dynamic Tailwater)
\(\ell_{3=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(~ C o n t r o l s ~} 0.00 \mathrm{cfs}\))

\section*{Summary for Pond CB13: Catch Basin 13}
[62] Hint: Exceeded Reach RD1 OUTLET depth by 3.57' @ 12.10 hrs
 Routed to Pond CB14 : Catch Basin 14

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=268.86' @ 12.10 hrs
Flood Elev=270.70'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & Primary & 264.20' & 18.0' \({ }^{\text {' }}\) Round Culvert \\
\hline & & & \(\mathrm{L}=73.0^{\prime}\) CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert=264.20' \(/ 263.40^{\prime} \mathrm{S}=0.0110^{\prime \prime} / \mathrm{Cc}=0.900\) \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.77 sf \\
\hline
\end{tabular}

Primary OutFlow Max=1.45 cfs @ 12.09 hrs HW=268.59' TW=268.55' (Dynamic Tailwater)
—1=Culvert (Inlet Controls \(1.45 \mathrm{cfs} @ 0.82 \mathrm{fps}\))

\section*{Summary for Pond CB14: Catch Basin 14}
[62] Hint: Exceeded Reach RD2 OUTLET depth by 4.94' @ 12.10 hrs

Routed to Pond CB15 : Catch Basin 15
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, \(\mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Peak Elev=268.81' @ 12.10 hrs
Flood Elev= 270.00'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(263.30^{\prime}\) & \(18.0^{\prime \prime}\) Round Culvert \\
& & \(\mathrm{L=68.0}\) CPP, projecting, no headwall, Ke=0.900 \\
& & Inlet / Outlet Invert= \(263.30^{\prime} / 262.90^{\prime} \mathrm{S}=0.00599^{\prime} / \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.77 sf
\end{tabular}

Primary OutFlow Max=4.68 cfs @ 12.10 hrs HW=268.66' TW=268.18' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 4.68 cfs @ 2.65 fps)

\section*{Summary for Pond CB15: Catch Basin 15}

Primary OutFlow Max=6.68 cfs @ 12.10 hrs HW=268.29' TW=267.24' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 6.68 cfs @ 3.78 fps)

\section*{Summary for Pond CB16: Catch Basin 16}
 Routed to Pond CB17 : Catch Basin 17

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=267.26' @ 12.10 hrs
Flood Elev= 270.30'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & Primary & \(261.50{ }^{\prime}\) & 24.0" Round Culvert \\
\hline & & & \(\mathrm{L}=124.0\) ' CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert= 261.50 / \(260.90^{\prime} \mathrm{S}=0.0048 \mathrm{l} / \mathrm{Cc}=0.900\) \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area=3.14 sf \\
\hline
\end{tabular}

Primary OutFlow Max=9.49 cfs @ 12.10 hrs HW=267.13' TW=266.50' (Dynamic Tailwater)
—1=Culvert (Inlet Controls \(9.49 \mathrm{cfs} @ 3.02 \mathrm{fps}\))

\section*{Summary for Pond CB17: Catch Basin 17}
[62] Hint: Exceeded Reach RD3 OUTLET depth by 0.26 ' @ 12.10 hrs
Inflow Area \(=\quad 2.507\) ac, \(85.98 \%\) Impervious, Inflow Depth \(>5.00\) for 25 -Year 24-Hour event
Inflow = 11.98 cfs @ 12.10 hrs , Volume \(=1.045 \mathrm{af}\)
Outflow = \(11.98 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume \(=1.045 \mathrm{af}\), Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\)
Primary \(=11.98\) cfs @ 12.10 hrs, Volume \(=1.045 \mathrm{af}\)
Routed to Pond CB18: Catch Basin 18

Prepared by Jones \& Beach Engineers Inc
HydroCAD® 10.20-2g s/n 00762 © 2022 HydroCAD Software Solutions LLC

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=266.62' @ 12.10 hrs
Flood Elev= 269.00'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & 260.80' & \begin{tabular}{l}
24.0" Round Culvert \\
\(\mathrm{L}=57.0^{\prime} \mathrm{CPP}\), projecting, no headwall, \(\mathrm{Ke}=0.900\) Inlet / Outlet Invert=260.80' \(/ 260.50^{\prime} \quad \mathrm{S}=0.0053 \mathrm{l} / \mathrm{l} \quad \mathrm{Cc}=0.900\) \(\mathrm{n}=0.013\) Corrugated PE , smooth interior, Flow Area= 3.14 sf
\end{tabular} \\
\hline \multicolumn{4}{|l|}{Primary OutFlow Max=11.96 cfs @ \(12.10 \mathrm{hrs} \mathrm{HW}=266.60^{\prime} \mathrm{TW}=265.60^{\prime}\) (Dynamic Tailwater) —1=Culvert (Inlet Controls 11.96 cfs @ 3.81 fps)} \\
\hline \multicolumn{4}{|r|}{Summary for Pond CB18: Catch Basin 18} \\
\hline \multicolumn{4}{|l|}{Inflow Area = \(\quad 3.016 \mathrm{ac}, 85.76 \%\) Impervious, Inflow Depth \(>\) 4.98' for 25-Year 24-Hour event} \\
\hline Inflow & = & 14.65 cfs @ 12 & . 10 hrs , Volume \(=\quad 1.253 \mathrm{af}\) \\
\hline Outflow & \(=\) & 14.65 cfs @ 12 & 2.10 hrs, Volume \(=\quad 1.253 \mathrm{af}\), Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\) \\
\hline Primary Rout & & \begin{tabular}{l}
\[
14.65 \text { cfs @ } 12
\] \\
DMH 5 : Drain
\end{tabular} & 2.10 hrs, Volume \(=\quad 1.253\) af
Manhole 5 \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\) \\
Peak Elev=265.61' @ 12.10 hrs \\
Flood Elev=268.70'
\end{tabular}} \\
\hline Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & 260.40' & \begin{tabular}{l}
24.0" Round Culvert \\
\(\mathrm{L}=11.0^{\prime} \mathrm{CPP}\), projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
Inlet / Outlet Invert= \(260.40^{\prime} / 260.30^{\prime} \quad \mathrm{S}=0.0091 / / \mathrm{Cc}=0.900\) \(\mathrm{n}=0.013\) Corrugated PE , smooth interior, Flow Area= 3.14 sf
\end{tabular} \\
\hline
\end{tabular}

Primary OutFlow Max=14.59 cfs @ 12.10 hrs HW=265.57' TW=264.08' (Dynamic Tailwater) ——1=Culvert (Inlet Controls 14.59 cfs @ 4.64 fps)

\section*{Summary for Pond CB19: Catch Basin 19}

\(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 3.14 sf
Primary OutFlow Max=3.97 cfs @ 12.09 hrs HW=264.14' TW=264.03' (Dynamic Tailwater)
t—1=Culvert (Inlet Controls \(3.97 \mathrm{cfs} @ 1.26 \mathrm{fps}\))

\section*{Summary for Pond CB2: Catch Basin 2}
\begin{tabular}{|c|c|c|c|c|}
\hline Inflow Area \(=\) & 2.129 ac, & 4.38\% Impervious, & , & 9" for 25-Year 24-Hour event \\
\hline Inflow & 2.18 cfs @ & 12.37 hrs , Volume= & 0.318 af & \\
\hline Outflow & 2.18 cfs @ & 12.37 hrs , Volume= & 0.318 af, & Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\) \\
\hline Primary & 2.18 cfs @ & 12.37 hrs , Volume= & 0.318 af & \\
\hline
\end{tabular}

Routed to Pond DMH1 : Drain Manhole 1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=202.65' @ 12.11 hrs
Flood Elev=203.90'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & Primary & 200.40' & 15.0" Round Culvert \\
\hline & & & \(\mathrm{L}=84.0^{\circ}\) CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert= 200.40'/200.00'S=0.0048 //'Cc= 0.900 \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf \\
\hline
\end{tabular}

Primary OutFlow Max=2.17 cfs @ 12.37 hrs HW=201.76' TW=201.54' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 2.17 cfs @ 2.03 fps)

\section*{Summary for Pond CB20: Catch Basin 20}

\footnotetext{
Primary OutFlow Max=2.37 cfs @ 12.09 hrs HW=264.18' TW=264.14' (Dynamic Tailwater)
\&1=Culvert (Inlet Controls \(2.37 \mathrm{cfs} @ 0.76 \mathrm{fps}\))
}

\section*{Summary for Pond CB3: Catch Basin 3}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=209.82' @ 12.10 hrs
Flood Elev=216.40'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & \(208.20^{\prime}\) & \(15.0^{\prime \prime}\) Round Culvert \\
& & \(\mathrm{L}=65.0^{\prime}\) CPP, projecting, no headwall, Ke= 0.900 \\
& & Inlet \(/\) Outlet Invert \(=208.20^{\prime} / 200.00^{\prime} \mathrm{S}=0.1262 \prime^{\prime \prime} \quad \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf
\end{tabular}

Primary OutFlow Max=4.65 cfs @ 12.10 hrs HW=209.82' TW=202.47' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 4.65 cfs @ 3.79 fps)

\section*{Summary for Pond CB4: Catch Basin 4}

Primary OutFlow Max=0.59 cfs @ 12.10 hrs HW=209.82' TW=209.80' (Dynamic Tailwater) —1=Culvert (Inlet Controls \(0.59 \mathrm{cfs} @ 0.48 \mathrm{fps}\))

\section*{Summary for Pond CB5: Catch Basin 5}
```

Inflow Area = 1.010 ac, 36.59% Impervious, Inflow Depth > 3.07" for 25-Year 24-Hour event
Inflow = 3.35 cfs @ 12.10 hrs, Volume= 0.259 af
Outflow = 3.35 cfs @ 12.10 hrs, Volume= 0.259 af, Atten= 0%, Lag= 0.0 min
Primary = 3.35 cfs @ 12.10 hrs, Volume= 0.259 af
Routed to Pond DMH2 : Drain Manhole 2

```

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

Prepared by Jones \& Beach Engineers Inc
HydroCAD® 10.20-2g s/n 00762 © 2022 HydroCAD Software Solutions LLC
Page 123
Peak Elev= 225.43' @ 12.10 hrs
Flood Elev=229.70'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & Primary & 224.30' & 15.0" Round Culvert \\
\hline & & & \(\mathrm{L}=82.0^{\prime}\) CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert= \(224.30^{\prime} / 217.60^{\prime} \mathrm{S}=0.0817^{\prime} / \mathrm{\prime} \quad \mathrm{Cc}=0.900\) \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf \\
\hline
\end{tabular}

Primary OutFlow Max=3.35 cfs @ 12.10 hrs HW=225.43' TW=218.63' (Dynamic Tailwater) 4-1=Culvert (Inlet Controls 3.35 cfs @ 2.86 fps)

\section*{Summary for Pond CB6: Catch Basin 6}

Primary OutFlow Max=0.59 cfs @ 12.10 hrs HW=225.45' TW=225.42' (Dynamic Tailwater)
t-1=Culvert (Inlet Controls \(0.59 \mathrm{cfs} @ 0.59 \mathrm{fps}\))

\section*{Summary for Pond CB7: Catch Basin 7}

Primary OutFlow Max=0.61 cfs @ 12.10 hrs HW=239.52' TW=239.43' (Dynamic Tailwater) —1=Culvert (Outlet Controls 0.61 cfs @ 1.48 fps)

\section*{Summary for Pond CB8: Catch Basin 8}

Primary OutFlow Max=2.20 cfs @ 12.10 hrs HW=239.44' TW=233.85' (Dynamic Tailwater)廿1=Culvert (Inlet Controls 2.20 cfs @ 2.92 fps)

\section*{Summary for Pond CB9: Catch Basin 9}

Primary OutFlow Max=1.15 cfs @ 12.11 hrs HW=252.48' TW=239.43' (Dynamic Tailwater) —1=Culvert (Inlet Controls 1.15 cfs @ 2.05 fps)

\section*{Summary for Pond DMH 3: Drain Manhole 3}

Primary OutFlow Max=2.20 cfs @ 12.10 hrs HW=233.85' TW=225.43' (Dynamic Tailwater) t1=Culvert (Inlet Controls 2.20 cfs @ 2.48 fps)

\section*{Summary for Pond DMH 4: Drain Manhole 4}
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=61)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt=0.05 hrs \(/ 9\)
Peak Elev=264.23' @ 12.10 hrs
Flood Elev= 268.40'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(260.50^{\prime}\) & \(24.0^{\prime \prime}\) Round Culvert \\
& & \(L=9.0^{\prime}\) CPP, projecting, no headwall, Ke \(=0.900\) \\
& & Inlet / Outlet Invert= \(260.50^{\prime} / 260.40^{\prime} \mathrm{S}=0.0111^{\prime} / \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= \(=3.14 \mathrm{sf}\)
\end{tabular}

Primary OutFlow Max=3.97 cfs @12.09 hrs HW=264.03' TW=263.92' (Dynamic Tailwater) ——1=Culvert (Inlet Controls 3.97 cfs @ 1.26 fps)

\section*{Summary for Pond DMH 5: Drain Manhole 5}
[80] Warning: Exceeded Pond DMH 4 by 1.65 @ 19.65 hrs (8.32 cfs 1.349 af)
Inflow Area \(=\quad 3.767 \mathrm{ac}, 86.71 \%\) Impervious, Inflow Depth > 5.02" for 25-Year 24-Hour event
Inflow \(=18.70\) cfs @ 12.10 hrs , Volume= 1.576 af
Outflow \(=18.70 \mathrm{cfs}\) @ 12.10 hrs , Volume= \(\quad 1.576 \mathrm{af}\), Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\)
Primary \(=\quad 18.70\) cfs @ 12.10 hrs, Volume= 1.576 af

Routed to Pond 5P : StormTech
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=264.11' @ 12.11 hrs
Flood Elev=268.60'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(260.30^{\prime}\) & \(24.0^{\prime \prime}\) Round Culvert \\
& & \(L=14.0^{\prime} \quad\) CPP, projecting, no headwall, Ke \(=0.900\) \\
& & Inlet \(/\) Outlet Invert= \(260.30^{\prime} / 260.10^{\prime} \quad \mathrm{S}=0.0143 \mathrm{I} / \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 3.14 sf
\end{tabular}

Primary OutFlow Max=18.52 cfs @ 12.10 hrs HW=264.04' TW=261.64' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 18.52 cfs @ 5.89 fps)

\section*{Summary for Pond DMH1: Drain Manhole 1}

\footnotetext{
Primary OutFlow Max=6.45 cfs @ 12.11 hrs HW=202.44' TW=200.11' (Dynamic Tailwater)
L1 \(_{1=\text { Culvert }}\) (Inlet Controls 6.45 cfs @ 5.26 fps)
}

\section*{Summary for Pond DMH2: Drain Manhole 2}

Prepared by Jones \& Beach Engineers Inc

Peak Elev= 218.63' @ 12.10 hrs
Flood Elev=223.30'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{3}{*}{\#1} & Primary & 217.50' & 15.0" Round Culvert \\
\hline & & & \(\mathrm{L}=84.0^{\prime} \mathrm{CPP}\), projecting, no headwall, \(\mathrm{Ke}=0.900\) Inlet / Outlet Invert \(=217.50^{\prime} / 208.0^{\prime} \quad \mathrm{S}=0.1095 \mathrm{f} / \mathrm{Cc}=0.900\) \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf \\
\hline
\end{tabular}

Primary OutFlow Max=3.35 cfs @ 12.10 hrs HW=218.63' TW=209.82' (Dynamic Tailwater)
廿-1=Culvert (Inlet Controls \(3.35 \mathrm{cfs} @ 2.86 \mathrm{fps}\))

Time span \(=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 481\) points \(\times 9\)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment1S: SUBCATCHMENT1S Runoff Area=279,376 sf 7.68\% Impervious Runoff Depth>2.47" Flow Length=1,018' Tc=34.1 min CN=59 Runoff=9.58 cfs 1.321 af

Subcatchment10S: SUBCATCHMENT10S Runoff Area \(=3,917\) sf \(19.30 \%\) Impervious Runoff Depth \(>3.18^{\prime \prime}\) Flow Length=79' Tc=9.6 min CN=66 Runoff=0.29 cfs 0.024 af

\section*{Subcatchment11S: Subcatchment11S}

Subcatchment12S: Subcatchment12S

Subcatchment20S: Subcatchment20S

Runoff Area \(=21,833\) sf \(0.00 \%\) Impervious Runoff Depth \(>2.68{ }^{\prime \prime}\) Flow Length=137' \(\mathrm{Tc}=6.7 \mathrm{~min} \quad \mathrm{CN}=61\) Runoff \(=1.48 \mathrm{cfs} 0.112\) af

Runoff Area=22,767 sf \(23.93 \%\) Impervious Runoff Depth \(>3.28^{\prime \prime}\) Flow Length=642' Tc=19.9 \(\mathrm{min} \quad \mathrm{CN}=67\) Runoff \(=1.35 \mathrm{cfs} 0.143 \mathrm{af}\)

Runoff Area=207,863 sf \(0.54 \%\) Impervious Runoff Depth \(>2.29\) " Flow Length=341' \(\mathrm{Tc}=25.2 \mathrm{~min} \quad \mathrm{CN}=57\) Runoff=7.42 cfs 0.909 af

Subcatchment21S: SUBCATCHMENT21S Runoff Area=154,653 sf 0.53\% Impervious Runoff Depth>2.19" Flow Length=358' \(\mathrm{Tc}=24.0 \mathrm{~min} \quad \mathrm{CN}=56\) Runoff=5.36 cfs 0.648 af

Subcatchment22S: SUBCATCHMENT22S Runoff Area=83,939 sf \(9.07 \%\) Impervious Runoff Depth \(>2.78^{\prime \prime}\) Flow Length=348' \(\mathrm{Tc}=17.4 \mathrm{~min} \mathrm{CN}=62\) Runoff=4.36 cfs 0.446 af

Subcatchment23S: SUBCATCHMENT23S Runoff Area=11,755 sf \(64.56 \%\) Impervious Runoff Depth \(>5.23{ }^{\prime \prime}\) Flow Length \(=39^{\prime}\) Slope \(=0.0200\) '/ Tc=6.0 \(\mathrm{min} \mathrm{CN}=85\) Runoff \(=1.57 \mathrm{cfs} 0.118\) af

Subcatchment24S: SUBCATCHMENT24S Runoff Area=24,222 sf \(0.91 \%\) Impervious Runoff Depth \(>2.39^{\prime \prime}\) Flow Length=204' Tc=12.8 min CN=58 Runoff=1.18 cfs 0.111 af

Subcatchment25S: SUBCATCHMENT25S Runoff Area=64,195 sf \(11.59 \%\) Impervious Runoff Depth \(>2.88^{\prime \prime}\) Flow Length=368' Tc=16.5 min CN=63 Runoff=3.54 cfs 0.353 af

Subcatchment30S: Subcatchment30S Runoff Area=73,162 sf 0.00\% Impervious Runoff Depth \(>2.20^{\prime \prime}\) Flow Length=299' \(\quad\) cc=14.2 \(\mathrm{min} \quad \mathrm{CN}=56\) Runoff \(=3.12 \mathrm{cfs} 0.308\) af

Subcatchment31S: Subcatchment31S Runoff Area \(=159,045\) sf \(0.00 \%\) Impervious Runoff Depth \(>2.38^{\prime \prime \prime}\) Flow Length=593' \(\mathrm{Tc}=22.7 \mathrm{~min} \quad \mathrm{CN}=58\) Runoff \(=6.23 \mathrm{cfs} 0.725\) af

Subcatchment32S: SUBCATCHMENT32S Runoff Area \(=6,935\) sf \(0.00 \%\) Impervious Runoff Depth \(>2.68{ }^{\prime \prime}\) Flow Length \(=83\) ' \(\mathrm{Cc}=8.0 \mathrm{~min} \mathrm{CN}=61\) Runoff \(=0.45 \mathrm{cfs} 0.036\) af

Subcatchment101S: SUBCATCHMENT101SRunoff Area \(=3,062\) sf \(63.65 \%\) Impervious Runoff Depth \(>5.23^{\text {" }}\) Flow Length=149' Tc=6.0 min CN=85 Runoff \(=0.41\) cfs 0.031 af

\section*{Subcatchment102S: SUBCATCHMENT}

Runoff Area \(=10,426\) sf \(20.31 \%\) Impervious Runoff Depth \(>3.49^{\prime \prime}\) Flow Length \(=202^{\prime} \quad \mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=69\) Runoff \(=0.96\) cfs 0.070 af

Subcatchment103S: SUBCATCHMENT

Runoff Area \(=10,615\) sf \(20.41 \%\) Impervious Runoff Depth \(>3.49^{\prime \prime}\) Flow Length=210' Tc=6.0 min \(\mathrm{CN}=69\) Runoff \(=0.98 \mathrm{cfs} 0.071\) af

Prepared by Jones \& Beach Engineers Inc
Printed 3/20/2023
HydroCAD®10.20-2g s/n 00762 © 2022 HydroCAD Software Solutions LLC
Page 129
Subcatchment104S: SUBCATCHMENT104SRunoff Area \(=8,563\) sf \(24.45 \%\) Impervious Runoff Depth \(>3.60\) " Flow Length \(=192^{\prime} \quad \mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=70\) Runoff \(=0.81 \mathrm{cfs} 0.059\) af

Subcatchment105S: SUBCATCHMENT105SRunoff Area=7,685 sf \(24.66 \%\) Impervious Runoff Depth \(>3.60^{\prime \prime}\) Flow Length \(=198^{\prime}\) TC \(=6.0 \mathrm{~min} \quad \mathrm{CN}=70\) Runoff \(=0.73 \mathrm{cfs} 0.053\) af

Subcatchment106S: SUBCATCHMENT106SRunoff Area \(=8,480 \mathrm{sf} 24.96 \%\) Impervious Runoff Depth \(>3.60^{\prime \prime}\) Flow Length \(=150^{\prime} \quad \mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=70\) Runoff \(=0.81 \mathrm{cfs} 0.058\) af

Subcatchment107S: SUBCATCHMENT107SRunoff Area=9,158 sf \(22.21 \%\) Impervious Runoff Depth \(>3.49^{\prime \prime}\) Flow Length \(=200^{\prime} \quad \mathrm{T}=6.0 \mathrm{~min} \quad \mathrm{CN}=69\) Runoff \(=0.84 \mathrm{cfs} 0.061 \mathrm{af}\)

Subcatchment108S: SUBCATCHMENT108SRunoff Area=5,109 sf \(41.03 \%\) Impervious Runoff Depth \(>4.24\) " Flow Length \(=108^{\prime} \quad \mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=76\) Runoff \(=0.57 \mathrm{cfs} 0.041\) af

Subcatchment109S: SUBCATCHMENT109SRunoff Area=4,591 sf \(85.25 \%\) Impervious Runoff Depth \(>6.15^{\text {" }}\) Flow Length \(=322^{\prime} \quad \mathrm{T}=6.0 \mathrm{~min} \quad \mathrm{CN}=93\) Runoff \(=0.68 \mathrm{cfs} 0.054\) af

Subcatchment110S: SUBCATCHMENT110SRunoff Area \(=8,954 \mathrm{sf} 45.07 \%\) Impervious Runoff Depth \(>4.23^{\text {" }}\) Flow Length=193' Tc=10.4 \(\mathrm{min} \quad \mathrm{CN}=76\) Runoff= 0.87 cfs 0.072 af

Subcatchment111S: SUBCATCHMENT111SRunoff Area=10,066 sf \(0.00 \%\) Impervious Runoff Depth>2.68" Flow Length \(=37\) ' Slope \(=0.5000\) '/ Tc \(=6.0 \mathrm{~min} \mathrm{CN}=61\) Runoff \(=0.70 \mathrm{cfs} 0.052\) af

Subcatchment113S: SUBCATCHMENT Runoff Area=4,154 sf \(100.00 \%\) Impervious Runoff Depth \(>6.74\) " Flow Length \(=144\) ' Slope \(=0.0330\) ' \(f\) ' \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=0.64 \mathrm{cfs} 0.054\) af

Subcatchment114S: SUBCATCHMENT Runoff Area=21,297 sf \(83.97 \%\) Impervious Runoff Depth \(>6.03^{\prime \prime}\)

Subcatchment115S: SUBCATCHMENT Runoff Area=15,683 sf \(94.57 \%\) Impervious Runoff Depth>6.50" Flow Length=264' \(\quad\) cc=6.0 min \(\quad \mathrm{CN}=96\) Runoff \(=2.39 \mathrm{cfs} 0.195\) af

Subcatchment116S: SUBCATCHMENT Runoff Area=23,505 sf \(89.38 \%\) Impervious Runoff Depth>6.26" Flow Length \(=38^{\prime}\) Tc= \(=6.0 \mathrm{~min} \mathrm{CN}=94\) Runoff=3.53 cfs 0.282 af

Subcatchment117S: SUBCATCHMENT Runoff Area=22,327 sf 61.68\% Impervious Runoff Depth \(>5.11\) " Flow Length=172' \(\mathrm{Tc}=14.1 \mathrm{~min} \mathrm{CN}=84\) Runoff=2.32 cfs 0.218 af

Subcatchment119S: SUBCATCHMENT Runoff Area=13,601 sf \(92.54 \%\) Impervious Runoff Depth \(>6.3\) " \(^{\prime \prime}\) Flow Length=218' \(\quad\) c \(=6.0 \mathrm{~min} \quad \mathrm{CN}=95\) Runoff=2.06 cfs 0.166 af

Subcatchment120S: SUBCATCHMENT Runoff Area=19,113 sf \(89.12 \%\) Impervious Runoff Depth \(>6.26^{\prime \prime}\) Flow Length=124' \(\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=94\) Runoff \(=2.87 \mathrm{cfs} 0.229\) af

Subcatchment204S: SUBCATCHMENT204SRunoff Area=19,442 sf \(0.00 \%\) Impervious Runoff Depth \(>2.29^{\prime \prime}\) Flow Length=379' \(\mathrm{Tc}=23.2 \mathrm{~min} \quad \mathrm{CN}=57\) Runoff \(=0.72 \mathrm{cfs} 0.085\) af

Subcatchment205S: SUBCATCHMENT205S Runoff Area=4,627 sf 0.00\% Impervious Runoff Depth \(>2.68^{n}\) Flow Length \(=92\) ' Slope \(=0.5000\) '/ Tc=6.0 min \(\mathrm{CN}=61\) Runoff \(=0.32 \mathrm{cfs} 0.024\) af

Subcatchment207S: SUBCATCHMENT207SRunoff Area=15,002 sf 0.00\% Impervious Runoff Depth>2.38" Flow Length=329' Tc=22.8 min CN=58 Runoff=0.59 cfs 0.068 af

Subcatchment211S: SUBCATCHMENT211SRunoff Area=28,592 sf \(0.00 \%\) Impervious Runoff Depth \(>2.19^{\prime \prime}\) Flow Length=328' \(\mathrm{Tc}=19.3 \mathrm{~min} \quad \mathrm{CN}=56\) Runoff=1.08 cfs 0.120 af

Subcatchment305S: SUBCATCHMENT305S Runoff Area=1,541 sf \(0.00 \%\) Impervious Runoff Depth \(>2.11^{\prime \prime}\) Flow Length=46' \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=55\) Runoff \(=0.08 \mathrm{cfs} 0.006\) af

\section*{SubcatchmentROOF 1: Back of Roof}

\section*{SubcatchmentROOF 2: Back of Roof}

\section*{Subcatchment ROOF 3: Back of Roof}

Runoff Area \(=7,416\) sf \(100.00 \%\) Impervious Runoff Depth \(>6.74^{" \prime}\) \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff=1.14 cfs 0.096 af Runoff Area \(=7,416\) sf \(100.00 \%\) Impervious Runoff Depth \(>6.74\) " \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=1.14 \mathrm{cfs} 0.096\) af

Runoff Area=7,416 sf 100.00\% Impervious Runoff Depth>6.74" \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff=1.14 cfs 0.096 af

\section*{Reach 4Ra: Flow Through}

Reach 4Rb: Flow Through

Avg. Flow Depth=0.69' Max Vel=0.85 fps Inflow=6.23 cfs 0.725 af \(\mathrm{n}=0.400 \mathrm{~L}=40.0^{\prime} \quad \mathrm{S}=0.1500 \mathrm{I} / \mathrm{I}\) Capacity=62.15 cfs Outfiow=6.23 cfs 0.724 af

Avg. Flow Depth=0.35' Max Vel=0.74 fps Inflow=6.23 cfs 0.724 af \(\mathrm{n}=0.400 \mathrm{~L}=71.0^{\prime} \mathrm{S}=0.2817\) ' \(/\) ' Capacity \(=276.81 \mathrm{cfs}\) Outflow=6.21 cfs 0.723 af

\section*{Reach AP1: AnalysisPoint 1}

\section*{Reach AP2: AnalysisPoint 2}

\section*{Reach AP3: Analysis Point 3}

Inflow=12.55 cfs 2.269 af Outlow=12.55 cfs 2.269 af

Inflow=14.70 cfs 1.664 af Outlow=14.70 cfs 1.664 af

Inflow=10.11 cfs 2.249 af Outflow=10.11 cfs 2.249 af

\section*{Reach B1R: BENCH}

Avg. Flow Depth \(=0.39^{\prime}\) Max Vel \(=0.93 \mathrm{fps}\) Inflow= 0.59 cfs 0.068 af

Reach B2R: BENCH
Avg. Flow Depth=0.39' Max Vel=1.13 fps Inflow=0.71 cfs 0.092 af \(\mathrm{n}=0.150 \mathrm{~L}=116.0^{\prime} \mathrm{S}=0.1207 \mathrm{I} / \mathrm{f}\) Capacity \(=8.45 \mathrm{cfs}\) Outflow=0.71 cfs 0.092 af Overflow=0.00 cfs 0.000 af

Reach B3R: BENCH \(\mathrm{n}=0.150 \mathrm{~L}=103.0^{\circ}\)

Reach B4R: BENCH \(\mathrm{n}=0.150 \mathrm{~L}=232.0\) ' \(\mathrm{S}=0.0560 \mathrm{f} \mathrm{f}\) Capacity=5.76 cfs Outflow=2.77 cfs 0.354 af Overflow=0.00 cfs 0.000 af

Reach B5R: BENCH \(\mathrm{n}=0.150 \quad \mathrm{~L}=12.0^{\prime} \quad \mathrm{S}=0.0833 \mathrm{I} / \mathrm{m}\)

Avg. Flow Depth=0.19' Max Vel=0.57 fps Inflow=0.08 cfs 0.006 af Capacity \(=7.02 \mathrm{cfs}\) Outflow \(=0.08\) cfs 0.006 af Overflow \(=0.00\) cfs 0.000 af

Avg. Flow Depth=0.53' Max Vel=0.93 fps Inflow=1.08 cfs 0.120 af \(\mathrm{n}=0.150 \mathrm{~L}=165.0^{\prime} \mathrm{S}=0.0545^{\prime} \mathrm{I}\) ' Capacity=5.68 cfs Outflow=1.06 cfs 0.120 af

\section*{Reach RD1: RD 1}

Avg. Flow Depth=0.32' Max Vel=6.93 fps Inflow=1.14 cfs 0.096 af 8.0" Round Pipe \(\mathrm{n}=0.013 \mathrm{~L}=264.0^{\prime} \mathrm{S}=0.0417^{\prime \prime} /{ }^{\prime}\) Capacity \(=2.47 \mathrm{cfs}\) Outflow=1.14 cfs 0.096 af

\section*{Reach RD2: RD 2}

Avg. Flow Depth=0.30' Max Vel=7.35 fps Inflow=1.14 cfs 0.096 af 8.0" Round Pipe \(n=0.013 \mathrm{~L}=110.0^{\prime} \mathrm{S}=0.0491\) '/' Capacity=2.68 cfs Outflow=1.14 cfs 0.096 af

Reach RD3: RD 3
Avg. Flow Depth=0.40' Max Vel=5.24 fps Inflow=1.14 cfs 0.096 af 8.0" Round Pipe \(\mathrm{n}=0.013 \mathrm{~L}=100.0^{\prime} \mathrm{S}=0.0200^{\prime \prime} /{ }^{\prime}\) Capacity \(=1.71 \mathrm{cfs}\) Outflow \(=1.14 \mathrm{cfs} 0.096\) af

Pond 1P: Infiltration Pocket
Peak Elev=198.81' Storage=619 cf Inflow=3.42 cfs 1.068 af Discarded \(=0.10 \mathrm{cfs} 0.105\) af Primary \(=3.30 \mathrm{cfs} 0.949\) af Outflow=3.40 cfs 1.054 af

Pond 2P: Stormwater Pond
Peak Elev=201.76' Storage=28,992 of Inflow=10.55 cfs 1.036 af Primary \(=2.84\) cfs 0.903 af Secondary \(=0.00\) cfs 0.000 af Outflow \(=2.84\) cfs 0.903 af

Pond 3P: Stormfilter

Pond 5P: StormTech

\section*{Pond 6P: Focal Point}

\section*{Pond 9P: 18" HDPE}

Pond 10P: Bioretention Primary \(=3.54\) cfs 0.353 af Secondary \(=0.00\) cfs 0.000 af Oufflow \(=3.54 \mathrm{cfs} 0.353\) af Discarded \(=2.82\) cfs 0.688 af Primary \(=2.06\) cfs 0.107 af Secondary \(=0.00 \mathrm{cfs} 0.000\) af Outflow=4.87 cfs 0.795 af

\section*{Pond 11P: EcoRaster}

Pond 12P: Dry Well

Peak Elev=197.91' Storage=2,097 cf Inflow=2.60 cfs 0.210 af Discarded \(=1.10 \mathrm{cfs} 0.210\) af Primary \(=0.00 \mathrm{cfs} 0.000\) af Outflow=1.10 cfs 0.210 af

Peak Elev=199.41' Storage=359 cf Inflow=1.18 cfs 0.111 af Discarded \(=0.01\) cfs 0.010 af Primary \(=1.34\) cfs 0.093 af Outflow=1.35 cfs 0.102 af

\section*{Pond CB1: Catch Basin 1}

Peak Elev=204.73' Inflow=0.41 cfs 0.031 af 15.0" Round Culvert \(n=0.013 \mathrm{~L}=19.0^{\prime} \mathrm{S}=0.0053\) 'r' Outflow=0.41 cfs 0.031 af

Pond CB10: Catch Basin \(10 \quad\) Peak Elev=252.73' Inflow=0.87 cfs 0.072 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=19.0^{\prime} \mathrm{S}=0.0053 \mathrm{l} / \mathrm{l}\) Outflow=0.87 cfs 0.072 af

Peak Elev=208.98' Inflow=2.77 cfs 0.354 af \(15.0^{\prime \prime}\) Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=57.0^{\prime} \mathrm{S}=0.1316\) '/' Outflow=2.77 cfs 0.354 af

\section*{Pond CB12: Catch Basin 12}

Peak Elev=263.22' Storage=11 cf Inflow=5.36 cfs 0.648 af Primary \(=5.36 \mathrm{cfs} 0.648\) af Secondary \(=0.00 \mathrm{cfs} 0.000\) af Outflow=5.36 cfs 0.648 af

\title{
Prepared by Jones \& Beach Engineers Inc Printed 3/20/2023
}

HydroCAD® 10.20-2g s/n 00762 (c) 2022 HydroCAD Software Solutions LLC
Page 132

Peak Elev=265.97' Inflow=4.92 cfs 0.395 af 24.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=9.0^{\prime} \mathrm{S}=0.0111\) '/ Outflow=4.92 cfs 0.395 af
Pond DMH 5: Drain Manhole \(5 \quad\) Peak Elev=265.80' Inflow=22.68 cfs 1.932 af 24.0" Round Culvert \(n=0.013 \mathrm{~L}=14.0^{\prime} \mathrm{S}=0.0143\) '/' Outflow=22.68 cfs 1.932 af

Pond DMH1: Drain Manhole \(1 \quad\) Peak Elev=204.33' Inflow=9.07 cfs 0.924 af \(15.0^{\prime \prime}\) Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=30.0^{\prime} \mathrm{S}=0.0067\) '/' Outflow=9.07 cfs 0.924 af

Pond DMH2: Drain Manhole 2 Peak Elev=219.02' Inflow=4.42 cfs 0.340 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=84.0^{\prime} \mathrm{S}=0.1095\) ' \(f\) ' Outflow=4.42 cfs 0.340 af Total Runoff Area \(=32.913\) ac Runoff Volume \(=8.109\) af Average Runoff Depth \(=2.9 \mathbf{N a}^{\prime \prime}\) 84.71\% Pervious = 27.881 ac \(15.29 \%\) Impervious \(=5.031\) ac

\section*{Summary for Subcatchment 1S: SUBCATCHMENT 1S}

Runoff \(=\quad 9.58 \mathrm{cfs}\) @ 12.51 hrs , Volume= 1.321 af, Depth> 2.47"
Routed to Reach AP1 : Analysis Point 1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall \(=6.98^{\prime \prime}\)

\footnotetext{
34.1 1,018 Total
}

\section*{Summary for Subcatchment 10S: SUBCATCHMENT 10S}

Runoff \(=\)
\(=0.29 \mathrm{cfs}\) @
12.14 hrs , Volume=
0.024 af, Depth> \(3.18^{\prime \prime}\)

Routed to Pond 1P : Infiltration Pocket
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"

\section*{Summary for Subcatchment 12S: Subcatchment 12S}

Runoff \(=\quad 1.35 \mathrm{cfs}\) @ 12.28 hrs , Volume= \(\quad 0.143\) af, Depth> 3.28"
Routed to Pond 3P : Stormfilter
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr \(50-\) Year 24 -Hour Rainfall \(=6.98^{\prime \prime}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Area (sf) & CN D & Description & & & \\
\hline & \[
\begin{array}{r}
5,448 \\
10,621 \\
6,698
\end{array}
\] & \begin{tabular}{ll}
98 & P \\
55 \\
61 &
\end{tabular} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Paved parking, HSG B \\
Woods, Good, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{array}{r}
22,767 \\
17,319 \\
5,448
\end{array}
\] & 67 & \multicolumn{3}{|l|}{Weighted Average 76.07\% Pervious Area 23.93\% Impervious Area} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description & \\
\hline 11.5 & 66 & 0.0450 & 0.10 & & \multirow[t]{2}{*}{\begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\) Sheet Flow,
\end{tabular}} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 3.5 & 34 & 0.2350 & 0.16 & & & \\
\hline 0.7 & 101 & 0.2180 & 2.33 & & Woods: Light underbrush \(n=0.400\) Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.4 & 88 & 0.0450 & 1.06 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.2 & 157 & 0.1910 & 2.19 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.6 & 196 & 0.1730 & 2.08 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 19.9 & 642 & Total & \multicolumn{4}{|c|}{,} \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 20S: Subcatchment 20S}

Runoff \(=\quad 7.42 \mathrm{cfs}\) @ 12.38 hrs , Volume= \(\quad 0.909\) af, Depth> 2.29"
Routed to Reach AP2 : Analysis Point 2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50 -Year 24-Hour Rainfall=6.98"
\begin{tabular}{rrl}
Area \((\mathrm{sf})\) & CN & Description \\
1,115 & 98 & Roofs, HSG B \\
27,727 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
166,599 & 55 & Woods, Good, HSG B \\
12,422 & 70 & Woods, Good, HSG C \\
\hline 207,863 & 57 & Weighted Average \\
206,748 & & \(99.46 \%\) Pervious Area \\
1,115 & & \(0.54 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 0.4 & 10 & 0.5000 & 0.38 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 19.6 & 90 & 0.0220 & 0.08 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad P 2=3.02{ }^{\prime \prime}\)
\end{tabular} \\
\hline 0.4 & 30 & 0.0670 & 1.29 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 1.6 & 78 & 0.0256 & 0.80 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps \\
\hline 1.2 & 62 & 0.0320 & 0.89 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps \\
\hline 2.0 & 71 & 0.0140 & 0.59 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 21S: SUBCATCHMENT 21S}

Runoff \(=\quad 5.36 \mathrm{cfs} @ 12.37 \mathrm{hrs}\), Volume \(=\)
Routed to Pond CB12 : Catch Basin 12
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 50-Year 24-Hour Rainfall=6.98"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 9,648 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
819 & 98 & Roofs, HSG B \\
138,282 & 55 & Woods, Good, HSG B \\
5,904 & 70 & Woods, Good, HSG C \\
\hline 154,653 & 56 & Weighted Average \\
153,834 & & 99.47\% Pervious Area \\
819 & & \(0.53 \%\) Impervious Area
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description & \\
\hline 4.3 & 37 & 0.1620 & 0.14 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 3.5 & 43 & 0.3720 & 0.21 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 5.1 & 20 & 0.0310 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.8 & 44 & 0.0310 & 0.88 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \\
\hline 0.4 & 51 & 0.2350 & 2.42 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.8 & 83 & 0.0240 & 0.77 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.5 & 70 & 0.0229 & 0.76 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 23S: SUBCATCHMENT 23S}

\author{
Runoff \(=1.57 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \\ 0.118 af, Depth> 5.23" \\ Routed to Pond 11P : EcoRaster
}

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 50-Year 24-Hour Rainfall=6.98"

\section*{Summary for Subcatchment 25S: SUBCATCHMENT 25S}

Runoff \(=\quad 3.54 \mathrm{cfs} @ 12.24 \mathrm{hrs}\), Volume= \(\quad 0.353\) af, Depth> 2.88"
Routed to Pond 9P : 18" HDPE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr \(50-\) Year 24-Hour Rainfall \(=6.98^{\prime \prime}\)
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 23,000 & 55 & Woods, Good, HSG B \\
33,757 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
7,438 & 98 & Paved parking, HSG B \\
\hline 64,195 & 63 & Weighted Average \\
56,757 & & 88.41\% Pervious Area \\
7,438 & & \(11.59 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description & \\
\hline 6.9 & 30 & 0.0330 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & P2=3.02" \\
\hline 2.9 & 23 & 0.1740 & 0.13 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 2.0 & 25 & 0.4800 & 0.20 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 2.7 & 22 & 0.1820 & 0.13 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.2 & 46 & 0.5000 & 4.95 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 1.8 & 222 & 0.0880 & 2.08 & & Shallow Concentrated Flow, Short Grass Pasture \(\mathrm{Kv}=7.0 \mathrm{fps}\) & \\
\hline 16.5 & 368 & Total & & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 30S: Subcatchment 30 S}

Runoff \(=3.12\) cfs @ 12.21 hrs, Volume= \(\quad 0.308\) af, Depth> 2.20" Routed to Reach AP3 : Analysis Point 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt=0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Area (sf)} & \multicolumn{2}{|l|}{CN Description} & & & \\
\hline \multicolumn{2}{|r|}{\[
\begin{array}{r}
6,678 \\
66,484 \\
\hline
\end{array}
\]} & & \multicolumn{4}{|l|}{\(>75 \%\) Grass cover, Good, HSG B Woods, Good, HSG B} \\
\hline & \[
\begin{aligned}
& 73,162 \\
& 73,162
\end{aligned}
\] & 56 & eighted A 00.00\% Pe & \begin{tabular}{l}
verage \\
rvious Area
\end{tabular} & & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity
(cfs) & Description & \\
\hline 5.5 & 36 & 0.0830 & 0.11 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400\)
\end{tabular} & P2=3.02' \\
\hline 6.9 & 64 & 0.1500 & 0.15 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.1 & 16 & 0.1500 & 1.94 & & Shallow Concentrated Flow, Woodiand Kv= 5.0 fps & \\
\hline 0.4 & 40 & 0.1000 & 1.58 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.9 & 67 & 0.0600 & 1.22 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 76 & 0.3420 & 2.92 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline
\end{tabular}
14.2299 Total

\section*{Summary for Subcatchment 31S: Subcatchment 31S}

Runoff \(=\quad 6.23 \mathrm{cfs} @ 12.34 \mathrm{hrs}\), Volume \(=0.725\) af, Depth> 2.38"
Routed to Reach 4Ra : Flow Through Subcatchment 30S
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"

\section*{Summary for Subcatchment 32S: SUBCATCHMENT 325}

Runoff \(=\quad 0.45 \mathrm{cfs} @ 12.12 \mathrm{hrs}\), Volume \(=\quad 0.036\) af, Depth> 2.68"
Routed to Pond 6P : Focal Point
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"

Area (sf) CN Description 6,935 61 >75\% Grass cover, Good, HSG B 6,935 100.00\% Pervious Area
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & \begin{tabular}{l}
Velocity \\
(ft/sec)
\end{tabular} & Capacity
(cfs) & Description & & \\
\hline 4.4 & 44 & 0.0310 & 0.17 & & Sheet Flow, Grass: Short & \(\mathrm{n}=0.150\) & P2 \(=3.02{ }^{\prime \prime}\) \\
\hline 3.0 & 27 & 0.0310 & 0.15 & & Sheet Flow, Grass: Short & \(\mathrm{n}=0.150\) & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.6 & 12 & 0.3300 & 0.33 & & Sheet Flow, Grass: Short & \(\mathrm{n}=0.150\) & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 101S: SUBCATCHMENT 101S}

\author{
Runoff \(=0.41\) cfs @ 12.09 hrs, Volume= 0.031 af, Depth> 5.23"
}

Routed to Pond CB1 : Catch Basin 1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & \multicolumn{3}{|l|}{Description} \\
\hline & \[
\begin{aligned}
& 1,949 \\
& 1,113
\end{aligned}
\] & & \multicolumn{3}{|l|}{Paved parking, HSG B \(>75 \%\) Grass cover, Good, HSG B} \\
\hline & \[
\begin{aligned}
& 3,062 \\
& 1,113 \\
& 1,949
\end{aligned}
\] & 85 & \multicolumn{2}{|l|}{Weighted Average 36.35\% Pervious Area 63.65\% Impervious Area} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 0.5 & 12 & 0.5000 & 0.39 & & Sheet Flow,
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 1.2 & 14 & 0.0800 & 0.19 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02\) "
\end{tabular} \\
\hline 0.6 & 74 & 0.0800 & 2.19 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02\) "
\end{tabular} \\
\hline 0.1 & 49 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
2.4149 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 102S: SUBCATCHMENT 102S}

Runoff \(=0.96\) cfs @ 12.09 hrs, Volume= 0.070 af, Depth> 3.49"
Routed to Pond CB2 : Catch Basin 2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr \(50-\) Year 24-Hour Rainfall \(=6.98^{\prime \prime}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & escription & & \\
\hline & \[
\begin{aligned}
& 2,117 \\
& 8,309 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 98 \\
& 61
\end{aligned}
\] & \multicolumn{3}{|l|}{Paved parking, HSG B \(>75 \%\) Grass cover, Good, HSG B} \\
\hline & \[
\begin{array}{r}
10,426 \\
8,309 \\
2,117
\end{array}
\] & \multicolumn{4}{|l|}{\(69 \quad\) Weighted Average 1 79.69\% Pervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 1.4 & 41 & 0.5000 & 0.50 & & Sheet Flow,
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 1.5 & 19 & 0.0800 & 0.21 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 40 & 0.0800 & 1.94 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 102 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
3.5202 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 103S: SUBCATCHMENT 103S}

Runoff \(=0.98 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume \(=0.071\) af, Depth> 3.49"
Routed to Pond CB3 : Catch Basin 3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN D & \multicolumn{3}{|l|}{Description} \\
\hline & \[
\begin{array}{r}
2,166 \\
8,449 \\
\hline
\end{array}
\] & & \multicolumn{3}{|l|}{\begin{tabular}{l}
Paved parking, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{array}{r}
10,615 \\
8,449 \\
2,166
\end{array}
\] & 69 & \multicolumn{3}{|l|}{Weighted Average 79.59\% Pervious Area 20.41\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & \begin{tabular}{l}
Velocity \\
(ft/sec)
\end{tabular} & \begin{tabular}{l}
Capacity \\
(cfs)
\end{tabular} & Description \\
\hline 1.3 & 39 & 0.5000 & 0.50 & & Sheet Flow,
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 1.7 & 21 & 0.0800 & 0.21 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 40 & 0.0800 & - 1.94 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 110 & 0.0800 & - 5.74 & & \begin{tabular}{l}
Shallow Concentrated Flow, \\
Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\)
\end{tabular} \\
\hline 3.6 & 210 & Total, In & Increased to & o minimum & \(\mathrm{Tc}=6.0 \mathrm{~min}\) \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 104S: SUBCATCHMENT 104S}
Runoff \(=0.81\) cfs @ 12.09 hrs , Volume \(=\quad 0.059\) af, Depth> 3.60" Routed to Pond CB4 : Catch Basin 4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"
\begin{tabular}{|c|c|c|}
\hline Area (sf) & CN D & Description \\
\hline \[
\begin{aligned}
& 2,094 \\
& 6,469
\end{aligned}
\] & \[
\begin{array}{ll}
98 \\
61
\end{array}
\] & Paved parking, HSG B \(>75 \%\) Grass cover, Good, HSG B \\
\hline \[
\begin{aligned}
& 8,563 \\
& 6,469 \\
& 2,094
\end{aligned}
\] & \(70 \begin{array}{r} \\ 7 \\ \\ \\ \\ \end{array}\) & \begin{tabular}{l}
Weighted Average \\
\(75.55 \%\) Pervious Area \\
24.45\% Impervious Area
\end{tabular} \\
\hline Tc Length (min) (feet) & Slope
\[
(\mathrm{ft} / \mathrm{tt})
\] & \begin{tabular}{l}
Velocity Capacity Description \\
(ft/sec) (cfs)
\end{tabular} \\
\hline 1.340 & 0.5000 & 0.50 \(\quad \begin{aligned} & \text { Sheet Flow, } \\ & \text { Grass: } \\ & \text { Short } n=0.150 \quad P 2=3.02 " ~\end{aligned}\) \\
\hline 1.823 & 0.0800 & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 37 & 0.0800 & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.392 & 0.0800 & \begin{tabular}{l}
5.74 \\
Shallow Concentrated Flow, \\
Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\)
\end{tabular} \\
\hline 3.7192 & \multicolumn{2}{|l|}{Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)} \\
\hline \multicolumn{3}{|r|}{Summary for Subcatchment 105S: SUBCATCHMENT \(105 S\)} \\
\hline Runoff = Routed to Pond & \multicolumn{2}{|l|}{\(0.73 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume \(=0.053 \mathrm{af}\), Depth> 3.6 d CB5 : Catch Basin 5} \\
\hline \multicolumn{3}{|l|}{Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"} \\
\hline Area (sf) & CN D & Description \\
\hline \[
\begin{aligned}
& 1,895 \\
& 5,790
\end{aligned}
\] & \[
\begin{aligned}
& 98 \quad F \\
& 61
\end{aligned}
\] & Paved parking, HSG B \(>75 \%\) Grass cover, Good, HSG B \\
\hline 7,685
5,790
1,895 & 70 & \begin{tabular}{l}
Weighted Average \\
75.34\% Pervious Area \\
24.66\% Impervious Area
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 1.3 & 40 & 0.5000 & 0.50 & & Sheet Flow,
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02\) " \\
\hline 2.1 & 28 & 0.0800 & 0.22 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 32 & 0.0800 & 1.85 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 98 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
4.0198 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 106S: SUBCATCHMENT 106S}
Runoff \(=\quad 0.81 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.058 \mathrm{af}\), Depth> 3.60"

Routed to Pond CB6 : Catch Basin 6
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"

\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & Description & & \\
\hline & \[
\begin{aligned}
& 2,034 \\
& 7.124
\end{aligned}
\] & \[
\begin{aligned}
& 98 \\
& 61
\end{aligned}
\] & \multicolumn{3}{|l|}{Paved parking, HSG B \(>75 \%\) Grass cover, Good, HSG B} \\
\hline & \[
\begin{aligned}
& 9,158 \\
& 7,124 \\
& 2,034
\end{aligned}
\] & \multicolumn{4}{|l|}{\begin{tabular}{l}
69 Weighted Average \\
77.79\% Pervious Area \\
22.21\% Impervious Area
\end{tabular}} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 1.3 & 40 & 0.5000 & 0.50 & & Sheet Flow,
Grass: Short \(\mathrm{n}=0.150\) P2 \(=3.02^{\prime \prime}\) \\
\hline 1.4 & 17 & 0.0800 & 0.20 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.4 & 43 & 0.0800 & 1.97 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 100 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved Kv= 20.3 fps \\
\hline
\end{tabular}
3.4200 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 108S: SUBCATCHMENT 108S}

\author{
Runoff \(=0.57 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume \(=\quad 0.041\) af, Depth> 4.24"
}

Routed to Pond CB8 : Catch Basin 8
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 50-Year 24-Hour Rainfall=6.98"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Paved parking, HSG B \(>75 \%\) Grass cover, Good, HSG B}} \\
\hline & \[
\begin{aligned}
& 2,096 \\
& 3,013
\end{aligned}
\] & 98
61 & & & \\
\hline & \[
\begin{aligned}
& 5,109 \\
& 3,013 \\
& 2,096
\end{aligned}
\] & 76 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Weighted Average \\
58.97\% Pervious Area \\
41.03\% Impervious Area
\end{tabular}} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(\(\mathrm{ft} / \mathrm{ft}\))
\end{tabular} & Velocity (ft/sec) & Capacity
(cfs) & Description \\
\hline 0.6 & 15 & 0.5000 & 0.41 & & Sheet Flow,
Grass: Short \(n=0.150 \quad\) P2 \(=3.02^{\prime \prime}\) \\
\hline 1.6 & 20 & 0.0800 & 0.21 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.5 & 65 & 0.0800 & 2.13 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.0 & 8 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
2.7108 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 109S: SUBCATCHMENT 109 S}
Runoff \(=0.68 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.054\) af, Depth> 6.15"

Routed to Pond CB9 : Catch Basin 9
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 50-Year 24-Hour Rainfall=6.98"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Paved parking, HSG B >75\% Grass cover, Good, HSG B}} \\
\hline & \[
\begin{array}{r}
3,914 \\
677
\end{array}
\] & & & & \\
\hline & \[
\begin{array}{r}
4,591 \\
677 \\
3,914
\end{array}
\] & 93 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Weighted Average \\
14.75\% Pervious Area \\
85.25\% Impervious Area
\end{tabular}} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope
\[
(\mathrm{ft} / \mathrm{tt})
\] & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 4.4 & 35 & 0.0200 & 0.13 & & Sheet Flow,
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.7 & 65 & 0.0380 & 1.58 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.2 & 47 & 0.0430 & 4.21 & & Shallow Concentrated Flow, Paved Kv= 20.3 fps \\
\hline 0.1 & 35 & 0.0570 & 4.85 & & Shallow Concentrated Flow, Paved Kv=20.3 fps \\
\hline 0.4 & 140 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
5.8322 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 110S: SUBCATCHMENT 110 S}

Runoff \(=0.87\) cfs @ 12.15 hrs, Volume= \(\quad 0.072\) af, Depth> 4.23"
Routed to Pond CB10 : Catch Basin 10
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"
\begin{tabular}{rrl}
Area \((\mathrm{sf})\) & CN & Description \\
\hline 4,036 & 98 & Paved parking, HSG B \\
3,001 & 61 & >75\% Grass cover, Good, HSG B \\
1,917 & 55 & Woods, Good, HSG B \\
\hline 8,954 & 76 & Weighted Average \\
4,918 & & \(54.93 \%\) Pervious Area \\
4,036 & & \(45.07 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope
\[
(\mathrm{ft} / \mathrm{ft})
\] & Velocity (ft/sec) & Capacity
(cfs) & Description & \\
\hline 4.7 & 40 & 0.1500 & 0.14 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 5.3 & 60 & 0.2500 & 0.19 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.1 & 15 & 0.2500 & 2.50 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.1 & 23 & 0.5000 & 4.95 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 0.1 & 14 & 0.0800 & 1.98 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 0.1 & 41 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) & \\
\hline
\end{tabular}

\subsection*{10.4193 Total}

\section*{Summary for Subcatchment 111S: SUBCATCHMENT 111S}
Runoff =
0.70 cfs @
12.10 hrs , Volume=
0.052 af, Depth> 2.68"

Routed to Reach B4R : BENCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & Capacity & Description \\
\hline 1.0 & 100 & 0.0330 & 1.63 & & Sheet Flow, \\
\hline & & & & & Smooth surfaces \(\mathrm{n}=0.011 \mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.2 & 44 & 0.0330 & 3.69 & & Shallow Concentrated Flow, \\
\hline
\end{tabular}
1.2144 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 114S: SUBCATCHMENT 114S}
```

Runoff = 2.87 cfs @ 12.12 hrs, Volume=
0.246 af, Depth> 6.03"

``` Routed to Pond CB14 : Catch Basin 14

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), \(\mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 50-Year 24-Hour Rainfall=6.98"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & Description & & \\
\hline & \[
\begin{array}{r}
3,467 \\
3,413 \\
14,417 \\
\hline
\end{array}
\] & \(\qquad\) & \multicolumn{3}{|l|}{Roofs, HSG B >75\% Grass cover, Good, HSG B Paved parking, HSG B} \\
\hline & \[
\begin{array}{r}
21,297 \\
3,413 \\
17,884
\end{array}
\] & 92 & \multicolumn{2}{|l|}{Weighted Average 16.03\% Pervious Area 83.97\% Impervious Area} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length
(feet) & Slope (ft/ft) & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 8.0 & 75 & 0.0200 & 0.16 & & Sheet Flow,
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.3 & 25 & 0.0360 & - 1.28 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(\mathrm{n}=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.6 & 133 & 0.0360 & - 3.85 & & Shallow Concentrated Flow, Paved Kv= 20.3 fps \\
\hline 0.1 & 18 & 0.0200 & - 2.87 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline 9.0 & 251 & Total & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 115S: SUBCATCHMENT \(115 S\)}
Runoff \(=\)
Routed to Pond CB15 : Catch Basin 15

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"

4.0264 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 116S: SUBCATCHMENT 116S}

Runoff \(=3.53 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume \(=\quad 0.282\) af, Depth> 6.26" Routed to Pond CB16 : Catch Basin 16

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"

4.038 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 117S: SUBCATCHMENT 117S}
Runoff \(=\quad 2.32 \mathrm{cfs} @ 12.19 \mathrm{hrs}\), Volume \(=\quad 0.218 \mathrm{af}\), Depth> 5.11"

Routed to Pond CB17 : Catch Basin 17
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\)
Type III 24-hr 50-Year 24-Hour Rainfall=6.98"

\section*{Summary for Subcatchment 118S: SUBCATCHMENT 118S}

Runoff \(=\quad 3.27 \mathrm{cfs}\) @ 12.09 hrs , Volume= \(\quad 0.256\) af, Depth> 6.03"
Routed to Pond CB18 : Catch Basin 18
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"
\begin{tabular}{rrl}
Area \((\mathrm{sf})\) & CN & Description \\
\hline 4,495 & 98 & Roofs, HSG B \\
14,282 & 98 & Paved parking, HSG B \\
3,394 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
\hline 22,171 & 92 & Weighted Average \\
3,394 & & 15.31\% Pervious Area \\
18,777 & & \(84.69 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity
(cfs) & Description \\
\hline 4.6 & 60 & 0.0500 & 0.22 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.4 & 40 & 0.0500 & 1.61 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(\mathrm{n}=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.1 & 20 & 0.0500 & 4.54 & & Shallow Concentrated Flow, Paved Kv=20.3 fps \\
\hline
\end{tabular}
5.1120 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 119S: SUBCATCHMENT 1195}

Runoff \(=2.06 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.166\) af, Depth> 6.38"
Routed to Pond CB19: Catch Basin 19
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 50-Year 24-Hour Rainfall=6.98"

\subsection*{5.0218 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)}

\section*{Summary for Subcatchment 120S: SUBCATCHMENT 120S}

Runoff \(=\quad 2.87 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.229 \mathrm{af}\), Depth> 6.26" Routed to Pond CB20: Catch Basin 20

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 50-Year 24-Hour Rainfall=6.98"

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & escription & & \\
\hline & \[
\begin{array}{r}
2,604 \\
14,430 \\
2,079 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 98 \\
& 98 \\
& 61 \\
& \hline
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
Roofs, HSG B \\
Paved parking, HSG B \\
>75\% Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{array}{r}
19,113 \\
2,079 \\
17,034
\end{array}
\] & 94 & \multicolumn{3}{|l|}{Weighted Average 10.88\% Pervious Area 89.12\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 3.3 & 42 & 0.0570 & 0.21 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.1 & 5 & 0.0200 & 0.73 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.8 & 53 & 0.0200 & 1.18 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.1 & 24 & 0.0200 & 2.87 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
4.3124 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 204S: SUBCATCHMENT 204S}
Runoff \(=\quad 0.72 \mathrm{cfs} @ 12.35 \mathrm{hrs}\), Volume \(=\quad 0.085\) af, Depth> 2.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"

Summary for Subcatchment 205S: SUBCATCHMENT 205S
Runoff \(=0.32\) cfs @ 12.10 hrs , Volume= \(\quad 0.024\) af, Depth> 2.68" Routed to Reach B2R : BENCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Area (sf)} & \multicolumn{3}{|l|}{CN Description} & & \\
\hline & \[
\begin{array}{r}
4,339 \\
288 \\
\hline
\end{array}
\] & & \multicolumn{4}{|l|}{>75\% Grass cover, Good, HSG B Woods, Good, HSG B} \\
\hline & \[
\begin{aligned}
& 4,627 \\
& 4,627
\end{aligned}
\] & 61 & \multicolumn{2}{|l|}{Weighted Average \(100.00 \%\) Pervious Area} & & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope
\[
(\mathrm{ft} / \mathrm{ft})
\] & Velocity (ft/sec) & Capacity
(cfs) & Description & \\
\hline 1.8 & 22 & 0.5000 & 0.20 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(P 2=3.02^{\prime \prime}\) \\
\hline 2.1 & 70 & 0.5000 & 0.56 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 207S: SUBCATCHMENT 207S}
Runoff \(=0.59 \mathrm{cfs} @ 12.34 \mathrm{hrs}\), Volume= \(\quad 0.068 \mathrm{af}\), Depth> 2.38"

Routed to Reach B1R : BENCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"

Area (sf) CN Description
\(6,840 \quad 61\) >75\% Grass cover, Good, HSG B 8,162 55 Woods, Good, HSG B
15,002 58 Weighted Average
15,002 100.00\% Pervious Area

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{rrrrrl}
\begin{tabular}{r}
Tc \\
\((\mathrm{min})\)
\end{tabular} & \begin{tabular}{r}
Length \\
\((\mathrm{feet})\)
\end{tabular} & \begin{tabular}{r}
Slope \\
\((\mathrm{ft} / \mathrm{ft})\)
\end{tabular} & \begin{tabular}{r}
Velocity \\
\((\mathrm{ft} / \mathrm{sec})\)
\end{tabular} & \begin{tabular}{r}
Capacity \\
\((\mathrm{cfs})\)
\end{tabular} & Description \\
\hline 20.2 & 100 & 0.0250 & 0.08 & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400 \quad \mathrm{P} 2=3.02\) "
\end{tabular} \\
0.2 & 10 & 0.0250 & 0.79 & \begin{tabular}{l}
Shallow Concentrated Flow, \\
Wodland Kv=5.0 fps \\
Shallow Concentrated Flow,
\end{tabular} \\
0.7 & 56 & 0.0710 & 1.33 & \begin{tabular}{l}
Woodland Kv=5.0 fps \\
Shallow Concentrated Flow,
\end{tabular} \\
0.9 & 66 & 0.0610 & 1.23 & \begin{tabular}{l}
Woodland Kv=5.0 fps \\
Shallow Concentrated Flow, \\
Woodland Kv=5.0 fps \\
Shallow Concentrated Flow, \\
Woodland Kv=5.0 fps
\end{tabular} \\
0.6 & 57 & 0.1050 & 1.62 &
\end{tabular}

\section*{Summary for Subcatchment 211S: SUBCATCHMENT 211 S}
Runoff \(=\quad 1.08\) cfs @ 12.29 hrs, Volume= 0.120 af, Depth> 2.19" Routed to Reach B6R : BENCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 50-Year 24-Hour Rainfall=6.98"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Area (sf)} & \multicolumn{2}{|l|}{CN Description} & & & \\
\hline \multicolumn{2}{|r|}{\[
\begin{array}{r}
6,380 \\
22,212 \\
\hline
\end{array}
\]} & \[
\begin{aligned}
& \hline 61 \\
& 55 \\
& \hline
\end{aligned}
\] & \multicolumn{4}{|l|}{>75\% Grass cover, Good, HSG B Woods, Good, HSG B} \\
\hline & \[
\begin{aligned}
& 28,592 \\
& 28,592
\end{aligned}
\] & 56 & reighted A 00.00\% P & \begin{tabular}{l}
verage \\
rvious Are
\end{tabular} & & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & \begin{tabular}{l}
Velocity \\
(ft/sec)
\end{tabular} & Capacity (cfs) & Description & \\
\hline 15.0 & 83 & 0.0361 & 0.09 & & \begin{tabular}{l}
Sheet Fiow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 2.1 & 17 & 0.2140 & 0.14 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & P2= 3.02" \\
\hline 0.1 & 11 & 0.2140 & 2.31 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 33 & 0.1820 & 2.13 & & Shallow Concentrated Flow, Woodiand \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 45 & 0.1780 & 2.11 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.2 & 34 & 0.2350 & 2.42 & & Shallow Concentrated Flow, Woodiand \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.7 & 45 & 0.0440 & 1.05 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 32 & 0.0630 & 1.25 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.1 & 28 & 0.5000 & 4.95 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 305S: SUBCATCHMENT 305S}
Runoff \(=0.08 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume \(=\quad 0.006 \mathrm{af}\), Depth> 2.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year 24-Hour Rainfall=6.98"

\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 7,416 & 98 & Roofs, HSG B \\
\hline 7,416 & & \(100.00 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 6.0 & & & & & Direct En \\
\hline
\end{tabular}

\section*{Summary for Subcatchment ROOF 3: Back of Roof}

Runoff \(=\quad 1.14 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= 0.096 af, Depth> 6.74" Routed to Reach RD3: RD 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 50 -Year 24-Hour Rainfall \(=6.98^{\prime \prime}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & rea (sf) & \multicolumn{4}{|l|}{CN Description} \\
\hline & 7,416 & 98 & oofs, HS & & \\
\hline \multicolumn{2}{|r|}{7,416} & \multicolumn{4}{|c|}{100.00\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ftft) & \begin{tabular}{l}
Velocity \\
(ft/sec)
\end{tabular} & Capacity (cfs) & Description \\
\hline 6.0 & & & & & Direct Entry \\
\hline
\end{tabular}

\section*{Summary for Reach 4Ra: Flow Through Subcatchment 30 S}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.85 \mathrm{fps}\), Min. Travel Time \(=0.8 \mathrm{~min}\)
Avg. Velocity \(=0.37 \mathrm{fps}\), Avg. Travel Time \(=1.8 \mathrm{~min}\)
Peak Storage= 291 cf @ 12.35 hrs
Average Depth at Peak Storage \(=0.69^{\prime}\), Surface Width= 15.85'
Bank-Full Depth \(=2.00^{\prime}\) Flow Area= 36.0 sf, Capacity= 62.15 cfs
\(27.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush
Length= 40.0' Slope \(=0.1500\) '/'
Inlet Invert= 252.00', Outlet Invert= 246.00'

\section*{Summary for Reach 4Rb: Flow Through Subcatchment 30 S}
[61] Hint: Exceeded Reach 4Ra outlet invert by 0.35 (@ 12.35 hrs
Inflow Area \(=3.651 \mathrm{ac}, 0.00 \%\) Impervious, Inflow Depth > 2.38" for 50-Year 24-Hour event Inflow = \(6.23 \mathrm{cfs} @ 12.35 \mathrm{hrs}\), Volume= 0.724 af Outflow = \(6.21 \mathrm{cfs} @ 12.37 \mathrm{hrs}\), Volume \(=0.723 \mathrm{af}\), Atten= \(0 \%\), Lag= 1.1 min

Routed to Reach AP3 : Analysis Point 3
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, \(\mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.74 \mathrm{fps}\), Min. Travel Time \(=1.6 \mathrm{~min}\)
Avg. Velocity \(=0.32 \mathrm{fps}\), Avg. Travel Time \(=3.7 \mathrm{~min}\)
Peak Storage= 594 cf @ 12.37 hrs
Average Depth at Peak Storage \(=0.35^{\prime}\), Surface Width= \(36.21^{\prime}\)
Bank-Full Depth=2.00' Flow Area= 116.0 sf, Capacity= 276.81 cfs
\(87.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush Length= 71.0' Slope= 0.2817 '/'
Inlet Invert= 246.00', Outlet Invert= 226.00'

\section*{Summary for Reach AP1: Analysis Point 1}
[40] Hint: Not Described (Outflow=Inflow)
\begin{tabular}{lllll}
Inflow Area \(=\) & 11.107 ac, & \(10.76 \%\) Impervious, Inflow Depth \(>\) & \(2.45^{\prime \prime}\) & for \(50-\) Year \(24-\) Hour event \\
Inflow & \(=\) & \(12.55 \mathrm{cfs} @\) & 12.49 hrs , Volume= & 2.269 af \\
Outflow & \(=\) & \(12.55 \mathrm{cfs} @\) & 12.49 hrs , Volume= & 2.269 af , Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\)
\end{tabular}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach AP2: Analysis Point 2}
[40] Hint: Not Described (Outflow=Inflow)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach AP3: Analysis Point 3}
[40] Hint: Not Described (Outflow=Inflow)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach B1R: BENCH}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, \(\mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.93 \mathrm{fps}\), Min. Travel Time \(=3.1 \mathrm{~min}\)
Avg. Velocity \(=0.47 \mathrm{fps}\), Avg. Travel Time \(=6.2 \mathrm{~min}\)
Peak Storage= 107 cf @ 12.39 hrs
Average Depth at Peak Storage= \(0.39^{\prime}\), Surface Width=3.15'
Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 6.92 cfs
Any excess flow will be diverted to the secondary overfiow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= \(6.02 .0 \mathrm{I} / \mathrm{I}\) Top Width= 8.00'
Length=173.0' Slope= 0.0809 '/'
Inlet Invert= 278.00', Outlet Invert= 264.00'

Summary for Reach B2R: BENCH
[62] Hint: Exceeded Reach B1R OUTLET depth by 0.07' @ 12.10 hrs
Inflow Area \(=0.451\) ac, \(0.00 \%\) Impervious, Inflow Depth \(>2.45^{\prime \prime}\) for 50-Year 24-Hour event Inflow \(=0.71 \mathrm{cfs} @ 12.36\) hrs, Volume \(=0.092\) af
Outflow = \(\quad 0.71 \mathrm{cfs} @ 12.38 \mathrm{hrs}\), Volume= \(\quad 0.092 \mathrm{af}\), Atten \(=0 \%\), Lag= 1.3 min
Routed to Reach B3R : BENCH
Overflow = \(0.00 \mathrm{cfs} @ 0.00 \mathrm{hrs}\), Volume= 0.000 af
Routed to Pond CB5 : Catch Basin 5

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=1.13 \mathrm{fps}\), Min. Travel Time \(=1.7 \mathrm{~min}\)
Avg. Velocity \(=0.58 \mathrm{fps}\), Avg. Travel Time \(=3.4 \mathrm{~min}\)
Peak Storage= 72 cf @ 12.38 hrs
Average Depth at Peak Storage= \(0.39^{\prime}\), Surface Width= 3.15'
Bank-Full Depth \(=1.00^{\prime}\) Flow Area= 4.0 sf, Capacity= 8.45 cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value=6.0 2.0 '/' Top Width= 8.00'
Length \(=116.0^{\prime}\) Slope \(=0.1207\) '/'
Inlet Invert= 264.00', Outlet Invert= 250.00'

Summary for Reach B3R: BENCH
[62] Hint: Exceeded Reach B2R OUTLET depth by \(0.13^{\prime}\) @ 12.35 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=1.34 \mathrm{fps}\), Min. Travel Time \(=1.3 \mathrm{~min}\)
Avg. Velocity \(=0.67 \mathrm{fps}\), Avg. Travel Time \(=2.5 \mathrm{~min}\)
Peak Storage= 112 cf @ 12.38 hrs
Average Depth at Peak Storage=0.52', Surface Width=4.16'
Bank-Full Depth \(=1.00^{\prime}\) Flow Area= 4.0 sf, Capacity= 8.30 cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= 6.02 .0 ' \(/\) Top Width= \(8.00^{\prime}\)
Length \(=103.0^{\prime}\) Slope \(=0.1165 \mathrm{I}^{\prime}\)
Inlet Invert=250.00', Outlet Invert=238.00'

\section*{Summary for Reach B4R: BENCH}
[62] Hint: Exceeded Reach B3R OUTLET depth by 0.24' @ 12.40 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity= 1.20 fps , Min. Travel Time \(=3.2 \mathrm{~min}\)
Avg. Velocity \(=0.60 \mathrm{fps}\), Avg. Travel Time \(=6.4 \mathrm{~min}\)
Peak Storage= 536 cf @ 12.38 hrs
Average Depth at Peak Storage \(=0.76^{\prime}\), Surface Width= 6.08'
Bank-Full Depth \(=1.00^{\prime}\) Flow Area= 4.0 sf, Capacity= 5.76 cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= \(6.02 .0 \mathrm{I} / \mathrm{\prime}\) Top Width= 8.00'
Length \(=232.0^{\prime}\) Slope \(=0.0560 ~ / /\)
Inlet Invert= 238.00', Outlet Invert= 225.00'

\section*{Summary for Reach B5R: BENCH}
\begin{tabular}{|c|c|c|c|c|}
\hline Inflow Area & \multicolumn{4}{|l|}{\(0.035 \mathrm{ac}, 0.00 \%\) Impervious, Inflow Depth > 2.11" for 50-Year 24-Hour event} \\
\hline Inflow & 0.08 cfs @ & 12.10 hrs , Volume= & \multicolumn{2}{|l|}{0.006 af} \\
\hline Outflow & 0.08 cfs @ & 12.11 hrs, Volume= & 0.006 af , & Atten \(=0 \%\) Lag \(=0.3 \mathrm{~min}\) \\
\hline Routed to R & B3R : BEN & & & \\
\hline Overflow = & 0.00 cfs @ & 0.00 hrs , Volume= & 0.000 af & \\
\hline
\end{tabular}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.57 \mathrm{fps}, \mathrm{Min}\). Travel Time \(=0.3 \mathrm{~min}\)
Avg. Velocity \(=0.27 \mathrm{fps}\), Avg. Travel Time \(=0.8 \mathrm{~min}\)
Peak Storage= 2 cf @ 12.11 hrs
Average Depth at Peak Storage= 0.19' , Surface Width= 1.50'
Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 7.02 cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(\mathrm{n}=0.150\) Sheet flow over Short Grass
Side Slope Z-value= 6.02 .0 ' \(/ \prime\) ' Top Width= 8.00'
Length=12.0' Slope \(=0.0833\) '/'
Inlet Invert=274.00', Outlet Invert= \(273.00^{\prime}\)

\section*{Summary for Reach B6R: BENCH}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.93 \mathrm{fps}\), Min. Travel Time \(=2.9 \mathrm{~min}\)
Avg. Velocity \(=0.47 \mathrm{fps}\), Avg. Travel Time \(=5.9 \mathrm{~min}\)
Peak Storage= 187 cf @ 12.33 hrs
Average Depth at Peak Storage \(=0.53^{\prime}\), Surface Width=4.26'
Bank-Full Depth \(=1.00^{\prime}\) Flow Area= 4.0 sf, Capacity \(=5.68 \mathrm{cfs}\)
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= \(6.02 .0 \mathrm{I} / \mathrm{I}\) Top Width= 8.00'
Length \(=165.0^{\prime}\) Slope \(=0.0545 \mathrm{I} / \mathrm{\prime}\)
Inlet Invert= 259.00', Outlet Invert= 250.00'

\section*{Summary for Reach RD1: RD 1}
[52] Hint: Inlet/Outlet conditions not evaluated

Routed to Pond CB13 : Catch Basin 13

Prepared by Jones \& Beach Engineers Inc

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=6.93 \mathrm{fps}\), Min. Travel Time \(=0.6 \mathrm{~min}\)
Avg. Velocity \(=2.38 \mathrm{fps}\), Avg. Travel Time \(=1.8 \mathrm{~min}\)
Peak Storage= 43 cf @ 12.10 hrs
Average Depth at Peak Storage \(=0.32^{\prime}\), Surface Width= \(0.67^{\prime}\)
Bank-Full Depth \(=0.67^{\prime}\) Flow Area= 0.3 sf , Capacity \(=2.47 \mathrm{cfs}\)
8.0" Round Pipe
\(\mathrm{n}=0.013\) Corrugated PE, smooth interior
Length \(=264.0^{\prime}\) Slope \(=0.0417\) '/'
Inlet Invert=276.00', Outlet Invert=265.00'

\section*{Summary for Reach RD2: RD 2}
[52] Hint: Inlet/Outlet conditions not evaluated
[90] Warning: Qout>Qin may require smaller dt or Finer Routing

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=7.35 \mathrm{fps}, \mathrm{Min}\). Travel Time \(=0.2 \mathrm{~min}\)
Avg. Velocity \(=2.52 \mathrm{fps}\), Avg. Travel Time \(=0.7 \mathrm{~min}\)
Peak Storage= 17 cf @ 12.09 hrs
Average Depth at Peak Storage \(=0.30^{\prime}\), Surface Width \(=0.66^{\prime}\)
Bank-Full Depth \(=0.67^{\prime}\) Flow Area= 0.3 sf , Capacity= 2.68 cfs
8.0" Round Pipe
\(\mathrm{n}=0.013\) Corrugated PE , smooth interior
Length \(=110.0^{\prime}\) Slope \(=0.0491\) '/'
Inlet Invert=269.00', Outlet Invert=263.60'

\section*{Summary for Reach RD3: RD 3}
[52] Hint: Inlet/Outlet conditions not evaluated
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
Inflow Area \(=\quad 0.170 \mathrm{ac}, 100.00 \%\) Impervious, Inflow Depth > 6.74" for 50-Year 24-Hour event
Inflow = 1.14 cfs @ 12.09 hrs, Volume= 0.096 af
Outflow = \(1.14 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume \(=0.096 \mathrm{af}\), Atten \(=0 \%\), Lag \(=0.3 \mathrm{~min}\)
Routed to Pond CB17 : Catch Basin 17
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=5.24 \mathrm{fps}\), Min. Travel Time \(=0.3 \mathrm{~min}\)
Avg. Velocity \(=1.84 \mathrm{fps}\), Avg. Travel Time \(=0.9 \mathrm{~min}\)
Peak Storage= 22 cf @ 12.09 hrs
Average Depth at Peak Storage \(=0.40^{\prime}\), Surface Width= \(0.65^{\prime}\)
Bank-Full Depth=0.67' Flow Area= 0.3 sf, Capacity= 1.71 cfs
8.0" Round Pipe
\(\mathrm{n}=0.013\) Corrugated PE, smooth interior
Length \(=100.0\) ' Slope \(=0.0200 \mathrm{I} /\)
Inlet Invert= 268.00', Outlet Invert= 266.00'

\section*{Summary for Pond 1P: Infiltration Pocket}
[80] Warning: Exceeded Pond 3P by 1.04' @ 9.65 hrs (0.00 cfs 0.000 af)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=198.81' @ 11.95 hrs Surf.Area= 393 sf Storage= 619 cf
Plug-Flow detention time \(=11.2\) min calculated for 1.051 af (\(98 \%\) of inflow)
Center-of-Mass det. time \(=4.4 \mathrm{~min}\) (924.4 -920.0)
\begin{tabular}{crrl}
Volume & Invert & Avail.Storage & Storage Description \\
\hline\(\# 1\) & \(195.84^{\prime}\) & 619 cf & Custom Stage Data (Prismatic)Listed below (Recalc)
\end{tabular}
\begin{tabular}{rrrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Voids \\
(\%)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 195.84 & 43 & 0.0 & 0 & 0 \\
195.85 & 43 & 40.0 & 0 & 0 \\
195.99 & 43 & 40.0 & 2 & 3 \\
196.00 & 43 & 100.0 & 0 & 3 \\
197.00 & 197 & 100.0 & 120 & 123 \\
198.00 & 263 & 100.0 & 230 & 353 \\
198.80 & 393 & 100.0 & 262 & 615 \\
198.81 & 393 & 100.0 & 4 & 619
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \#0 & Primary & 198.81' & Automatic Storage Overflow (Discharged without head) \\
\hline \#1 & Discarded & 195.84' & \(0.300 \mathrm{in} / \mathrm{hr}\) Exfiltration over Surface area \\
\hline \multirow{6}{*}{\#2} & & & Conductivity to Groundwater Elevation = 195.83' Phase-In=0.01' \\
\hline & \multirow[t]{5}{*}{Primary} & \multirow[t]{5}{*}{\(198.80^{\prime}\)} & 20.0' long \(\times 1.0\) ' breadth Broad-Crested Rectangular Weir \\
\hline & & & \(\begin{array}{llllllllllllll}\text { Head (feet) } & 0.20 & 0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60 & 1.80 & 2.00\end{array}\) \\
\hline & & & 2.503 .00 \\
\hline & & & Coef. (English) 2.692 .722 .752 .852 .983 .083 .203 .283 .31 \\
\hline & & & 3.303 .313 .32 \\
\hline
\end{tabular}

Discarded OutFlow Max=0.10 cfs @ 11.95 hrs HW=198.81' (Free Discharge)
4-1=Exfiltration (Controls 0.10 cfs)
Primary OutFlow Max=0.05 cfs @ 12.73 hrs HW=198.81' TW=0.00' (Dynamic Tailwater)
_-2=Broad-Crested Rectangular Weir(Weir Controls \(0.05 \mathrm{cfs} @ 0.27 \mathrm{fps})\)

\section*{Summary for Pond 2P: Stormwater Pond}

Prepared by Jones \& Beach Engineers Inc
Printed 3/20/2023 HydroCAD® 10.20-2g s/n 00762 (C) 2022 HydroCAD Software Solutions LLC

Page 167
\begin{tabular}{rrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 196.00 & 2,494 & 0 & 0 \\
197.00 & 3,194 & 2,844 & 2,844 \\
198.00 & 3,961 & 3,578 & 6,422 \\
199.00 & 4,795 & 4,378 & 10,800 \\
199.49 & 5,237 & 2,458 & 13,257 \\
199.50 & 5,818 & 55 & 13,313 \\
200.00 & 6,296 & 3,029 & 16,341 \\
201.00 & 7,292 & 6,794 & 23,135 \\
202.00 & 8,346 & 7,819 & 30,954 \\
202.80 & 9,005 & 6,940 & 37,895 \\
202.81 & 9,005 & 90 & 37,985
\end{tabular}

Device Routing Invert Outlet Devices
\#1 Primary 199.00' 12.0" Round Culvert
\(\mathrm{L}=26.0^{\prime} \mathrm{CPP}\), projecting, no headwall, \(\mathrm{Ke}=0.900\)
Inlet / Outlet Invert= 199.00' / 198.80' S=0.0077 '/' Cc= 0.900
\(\mathrm{n}=0.013\) Corrugated PE , smooth interior, Flow Area= 0.79 sf
\#2 Device \(1 \quad 199.00^{\prime} \quad\) 2.0" Vert. Orifice/Grate \(\mathrm{C}=0.600\) Limited to weir flow at low heads
\#3 Device 1 199.85 7.5" Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads
\#4 Device \(1 \quad 201.70^{\prime} \quad 48.0^{\prime \prime} \times 48.0^{\prime \prime}\) Horiz. Orifice/Grate C= 0.600
Limited to weir flow at low heads
\#5 Secondary \(\quad 201.80^{\prime} \quad 6.0^{\prime}\) long \(\times 6.0^{\prime}\) breadth Broad-Crested Rectangular Weir
Head (feet) \(0.20 \quad 0.400 .60 \begin{array}{lllllll} & 0.80 & 1.00 & 1.20 & 1.40 & 1.60 & 1.80 \\ 2.00\end{array}\)
2.503 .003 .504 .004 .505 .005 .50

Coef. (English) \(2.372 .51 \quad 2.70 \quad 2.68 \quad 2.682 .672 .65 \quad 2.65 \quad 2.65\)
\(\begin{array}{lllllll}2.65 & 2.66 & 2.66 & 2.67 & 2.69 & 2.72 & 2.76 \\ 2.83\end{array}\)
Primary OutFlow Max=2.83 cfs @ 12.74 hrs HW=201.76' TW=198.81' (Dynamic Tailwater)
—1=Culvert (Passes 2.83 cfs of 4.49 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.17 cfs @ 7.88 fps)
-3=Orifice/Grate (Orifice Controls 1.87 cfs @ 6.09 fps)
\(4=\) Orifice/Grate (Weir Controls 0.79 cfs @ 0.81 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=199.00' TW=195.84' (Dynamic Tailwater)

\section*{Summary for Pond 3P: Stormfilter}
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=1)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
20564-PR
Prepared by Jones \& Beach Engineers Inc
HydroCAD® 10.20-2g s/n 00762 © 2022 HydrocAD Software Solutions LLC
\begin{tabular}{|c|c|c|c|}
\hline Volume & Invert & Avail.Storage & Storage Description \\
\hline \#1A & 259.25' & 0.540 af & \begin{tabular}{l}
\(58.58^{\prime} \mathrm{W} \times 292.50^{\prime} \mathrm{L} \times 5.50^{\prime} \mathrm{H}\) Field A \\
2.164 af Overall -0.813 af Embedded \(=1.350\) af \(\times 40.0 \%\) Voids
\end{tabular} \\
\hline \#2A & 260.00' & 0.813 af & \begin{tabular}{l}
ADS_StormTech MC-3500 d +Capx 320 Inside \#1 \\
Effective Size \(=70.4^{\prime \prime} \mathrm{W} \times 45.0^{\prime \prime} \mathrm{H}=>15.33 \mathrm{sf} \times 7.17^{\prime} \mathrm{L}=110.0 \mathrm{cf}\) Overall \(\mathrm{Size}=77.0^{\prime \prime} \mathrm{W} \times 45.0^{\prime \prime} \mathrm{H} \times 7.50^{\prime} \mathrm{L}\) with \(0.33^{\prime}\) Overlap 320 Chambers in 8 Rows \\
Cap Storage \(=14.9 \mathrm{cf} \times 2 \times 8\) rows \(=238.4 \mathrm{cf}\)
\end{tabular} \\
\hline & & 1.353 af & Total Available Storage \\
\hline
\end{tabular}

Storage Group A created with Chamber Wizard
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & \multirow[t]{4}{*}{Primary} & 259.25' & 15.0" Round Culvert \\
\hline & & & \(\mathrm{L}=32.0^{\circ} \mathrm{CPP}\), projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf \\
\hline \#2 & Device 1 & 259.25' & 1.0" Vert. Orifice/Grate \(\mathrm{C}=0.600\) Limited to weir flow at low heads \\
\hline \#3 & Device 1 & 261.50' & 6.5" Vert. Orifice/Grate \(\mathrm{C}=0.600\) Limited to weir flow at low heads \\
\hline \#4 & Device 1 & 263.70' & 20.0" W x 12.0" H Vert. Orifice/Grate C= 0.600 \\
\hline & & & Limited to weir flow at low heads \\
\hline
\end{tabular}

Primary OutFlow Max=2.35 cfs @ 12.93 hrs HW=263.95' TW=256.51' (Dynamic Tailwater)
t-1 =Culvert (Passes 2.35 cfs of 9.41 cfs potential flow)
\({ }^{2}\)-2=Orifice/Grate (Orifice Controls 0.06 cfs @ 10.39 fps)
\(-3=\) Orifice/Grate (Orifice Controls 1.64 cfs @ 7.10 fps)
4=Orifice/Grate (Orifice Controls 0.65 cfs @ 1.59 fps)

\section*{Summary for Pond 6P: Focal Point}
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=15)

Prepared by Jones \& Beach Engineers Inc
\#2 Secondary 202.50'
Inlet / Outlet Invert= 201.20' / 201.00' S=0.0053 '// Cc=0.900 \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.77 sf
 Head (feet) \(\begin{array}{lllllllllll}0.20 & 0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60 & 1.80 & 2.00\end{array}\) 2.503 .00

Coef. (English) \(2.692 .722 .75 \quad 2.852 .983 .08 \quad 3.20 \quad 3.28 \quad 3.31\) 3.303 .313 .32

Primary OutFlow Max=3.53 cfs @ 12.25 hrs HW=202.26' TW=201.04' (Dynamic Tailwater) —1=Culvert (Barrel Controls 3.53 cfs @ 3.72 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=201.00' TW=0.00' (Dynamic Tailwater)
4-2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

\section*{Summary for Pond 10P: Bioretention}
\begin{tabular}{|c|c|c|c|c|}
\hline Inflow Area \(=\) & 3.401 ac, & \% Impervious, & pth > & 2" for 50-Year 24-Hour event \\
\hline Inflow & 7.90 cfs @ & 12.25 hrs , Volume= & 0.798 af & \\
\hline Outflow & 4.87 cfs @ & 12.51 hrs , Volume= & 0.795 af, & Atten \(=38 \%\), Lag \(=15.6 \mathrm{~min}\) \\
\hline Discarded = & 2.82 cfs @ & 12.51 hrs , Volume= & 0.688 af & \\
\hline Primary \(=\) Routed to & \[
\begin{gathered}
2.06 \text { cfs @ } \\
\text { ch AP2 : Anal }
\end{gathered}
\] & 12.51 hrs , Volume \(=\) lysis Point 2 & 0.107 af & \\
\hline Secondary = & 0.00 cfs @ & 0.00 hrs , Volume= & 0.000 af & \\
\hline
\end{tabular}

Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=201.49' @ 12.51 hrs Surf.Area=4,222 sf Storage=6,174 cf
Plug-Flow detention time= 19.6 min calculated for 0.793 af (\(99 \%\) of inflow)
Center-of-Mass det. time \(=17.1 \mathrm{~min}(873.4-856.3)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Volume & \multicolumn{2}{|l|}{Invert} & \multicolumn{4}{|l|}{Storage Description} \\
\hline \#1 & 197.49' & 10,895 cf & Custom & age Data (Ir & ar)Listed below & calc) \\
\hline Elevation (feet) & \[
\begin{array}{r}
\text { Surf.Area } \\
(\mathrm{sq}-\mathrm{ft}) \\
\hline
\end{array}
\] & Perim. (feet) & Voids
(\%) & Inc.Store (cubic-feet) & Cum.Store (cubic-feet) & Wet.Area (sq-ft) \\
\hline 197.49 & 2,341 & 224.0 & 0.0 & 0 & 0 & 2,341 \\
\hline 197.50 & 2,341 & 224.0 & 40.0 & 9 & 9 & 2,343 \\
\hline 198.49 & 2,341 & 224.0 & 40.0 & 927 & 936 & 2,565 \\
\hline 198.50 & 2,341 & 224.0 & 15.0 & 4 & 940 & 2,567 \\
\hline 199.99 & 2,341 & 224.0 & 15.0 & 523 & 1,463 & 2,901 \\
\hline 200.00 & 2,341 & 224.0 & 100.0 & 23 & 1,487 & 2,903 \\
\hline 200.99 & 3,056 & 251.0 & 100.0 & 2,664 & 4,150 & 3,951 \\
\hline 201.00 & 3,826 & 265.0 & 100.0 & 34 & 4,185 & 4,525 \\
\hline 202.00 & 4,646 & 284.0 & 100.0 & 4,229 & 8,414 & 5,400 \\
\hline 202.50 & 5,079 & 293.0 & 100.0 & 2,430 & 10,844 & 5,837 \\
\hline 202.51 & 5,079 & 293.0 & 100.0 & 51 & 10,895 & 5,840 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & \multirow[t]{4}{*}{Primary} & \multirow[t]{4}{*}{200.10'} & 10.0" Round Culvert \\
\hline & & & \(\mathrm{L}=60.0^{\prime}\) CPP, square edge headwall, \(\mathrm{Ke}=0.500\) \\
\hline & & & Inlet / Outlet Invert= 200.10' / 199.80' S=0.0050 \(/ 7 \mathrm{Cc}=0.900\) \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 0.55 sf \\
\hline \#2 & Device 1 & 200.30' & 6.0" Vert. Orifice/Grate \(\mathrm{C}=0.600\) Limited to weir flow at low heads \\
\hline \multirow[t]{2}{*}{\#3} & \multirow[t]{2}{*}{Device 1} & \multirow[t]{2}{*}{201.10'} & 48.0 " 48.0 " Horiz. Orifice/Grate \(\mathrm{C}=0.600\) \\
\hline & & & Limited to weir flow at low heads \\
\hline \multirow[t]{5}{*}{\#4} & \multirow[t]{5}{*}{Secondary} & \multirow[t]{5}{*}{201.50'} & 6.0' long x 2.0' breadth Broad-Crested Rectangular Weir \\
\hline & & & Head (feet) \(0.200 .400 .600 .801 .001 .201 .401 .601 .80 \quad 2.00\) \\
\hline & & & 2.503 .003 .50 \\
\hline & & & Coef. (English) 2.542 .612 .612 .602 .662 .702 .772 .892 .88 \\
\hline & & & 2.853 .073 .203 .32 \\
\hline \multirow[t]{2}{*}{\#5} & \multirow[t]{2}{*}{Discarded} & 197.49' & \(1.000 \mathrm{in} / \mathrm{hr}\) Exfiltration over Surface area \\
\hline & & & Conductivity to Groundwater Elevation = 197.41' Phase-In=0.10' \\
\hline
\end{tabular}

Discarded OutFlow Max=2.82 cfs @ 12.51 hrs HW=201.49' (Free Discharge)
\(\Psi_{5=\text { Exfiltration (Controls } 2.82 \mathrm{cfs} \text {) }}\)
Primary OutFlow Max=2.05 cfs @ 12.51 hrs HW=201.49' TW=0.00' (Dynamic Tailwater)
\(1=\) Culvert (Barrel Controls 2.05 cfs @ 3.76 fps)
[-2=Orifice/Grate (Passes < 0.92 cfs potential flow)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=197.49' TW=195.07' (Dynamic Tailwater)
\(\Psi_{4}=\) Broad-Crested Rectangular Weir (Controls 0.00 cfs)

\section*{Summary for Pond 11P: EcoRaster}

\begin{tabular}{rrrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Voids \\
(\%)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 195.07 & 3,707 & 0.0 & 0 & 0 \\
195.08 & 3,707 & 30.0 & 11 & 11 \\
196.08 & 3,707 & 30.0 & 1,112 & 1,123 \\
196.09 & 3,707 & 15.0 & 6 & 1,129 \\
196.33 & 3,707 & 15.0 & 133 & 1,262 \\
196.34 & 3,707 & 5.0 & 2 & 1,264 \\
197.33 & 3,707 & 5.0 & 183 & 1,448 \\
197.34 & 3,707 & 30.0 & 11 & 1,459 \\
197.99 & 3,707 & 30.0 & 723 & 2,182 \\
198.00 & 3,707 & 100.0 & 37 & 2,219 \\
198.01 & 3,707 & 100.0 & 37 & 2,256
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & 198.00' & \(100.0^{\prime}\) long \(\times 50.0^{\prime}\) breadth Broad-Crested Rectangular Weir Head (feet) \(0.20 \quad 0.40 \quad 0.60 \quad 0.801 .001 .201 .401 .60\) \\
\hline \multirow{3}{*}{\#2} & & & Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63 \\
\hline & Discarded & 195.07' & \(1.000 \mathrm{in} / \mathrm{hr}\) Exfiltration over Surface area \\
\hline & & & Conductivity to Groundwater Elevation = 194.83' Phase-In= 0.01' \\
\hline
\end{tabular}

Discarded OutFlow Max=1.10 cfs @ 12.45 hrs HW=197.91' (Free Discharge)
\(\Psi_{2=E x f i l t r a t i o n ~(C o n t r o l s ~}^{1.10 ~ c f s) ~}\)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=195.07' TW=0.00' (Dynamic Tailwater)
t-1=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

\section*{Summary for Pond 12P: Dry Well}
[93] Warning: Storage range exceeded by \(0.20^{\prime}\)
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=105)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev= 199.41' @ 12.16 hrs Surf.Area= 287 sf Storage= 359 cf
Plug-Flow detention time \(=50.1\) min calculated for 0.102 af (\(93 \%\) of inflow)
Center-of-Mass det. time \(=12.7 \mathrm{~min}(875.8-863.1)\)

\begin{tabular}{clrll}
Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Discarded & \(194.25^{\prime}\) & \begin{tabular}{l}
0.300 in/hr Exfiltration over Surface area \\
Conductivity to Groundwater Elevation \(=193.25 ' \quad\) Phase-In= \(0.01 '\)
\end{tabular} \\
\#2 & Primary & \(199.20^{\prime}\) & \begin{tabular}{l}
5.0' long x 0.5' breadth Broad-Crested Rectangular Weir \\
Head (feet) \(0.20 \quad 0.400 .60 \quad 0.801 .00\)
\end{tabular} \\
& & & \begin{tabular}{l}
Coef. (English) 2.802 .923 .083 .303 .32
\end{tabular}
\end{tabular}

Discarded OutFlow Max=0.01 cfs @ 12.16 hrs HW=199.40' (Free Discharge)
—1=Exfiltration (Controls 0.01 cfs)
Primary OutFlow Max=1.28 cfs @ 12.16 hrs HW=199.40' TW=197.24' (Dynamic Tailwater)
\(廿_{2=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r(W e i r ~ C o n t r o l s ~}^{1.28} \mathrm{cfs} @ 1.26 \mathrm{fps}\))

\section*{Summary for Pond CB1: Catch Basin 1}
[58] Hint: Peaked 0.83' above defined flood level

Inlet / Outlet Invert=200.60'/200.50' S=0.0053 '// Cc= 0.900 \(\mathrm{n}=0.013\) Corrugated PE , smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.40 cfs @ 12.09 hrs HW=204.42' TW=204.41' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 0.40 cfs @ 0.33 fps)

\section*{Summary for Pond CB10: Catch Basin 10}
 Routed to Pond CB9 : Catch Basin 9

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=252.73' @ 12.13 hrs
Flood Elev= 256.10'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(252.10^{\prime}\) & \(15.0^{\prime \prime}\) Round Culvert \\
& & \(L=19.0^{\prime}\) CPP, projecting, no headwall, Ke \(=0.900\) \\
& & Inlet \(/\) Outlet Invert= \(252.10^{\prime} / 252.00^{\prime} \mathrm{S}=0.0053 \quad \mathrm{Cl} / \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf
\end{tabular}

Primary OutFlow Max=0.87 cfs @ 12.15 hrs HW=252.72' TW=252.55' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 0.87 cfs @ 2.09 fps)

\section*{Summary for Pond CB11: Catch Basin 11}

\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(208.00^{\prime}\) & \(15.0^{\prime \prime}\) Round Culvert \\
& & \(L=57.0^{\prime}\) CPP, projecting, no headwall, Ke \(=0.900\) \\
& & Inlet \(/\) Outlet Invert \(=208.00^{\prime} / 200.50^{\prime} \quad \mathrm{S}=0.1316^{\prime \prime} \quad \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf
\end{tabular}

Primary OutFlow Max=2.75 cfs @ 12.38 hrs HW=208.98' TW=203.37' (Dynamic Tailwater)
t-1=Culvert (Inlet Controls \(2.75 \mathrm{cfs} @ 2.66 \mathrm{fps}\))

\section*{Summary for Pond CB12: Catch Basin 12}
\begin{tabular}{|c|c|c|c|c|}
\hline Inflow Area = & 3.550 & \multicolumn{3}{|l|}{0.53\% Impervious, Inflow Depth > 2.19" for 50-Year 24-Hour event} \\
\hline Inflow & 5.36 cfs @ & 12.37 hrs , Volume= & 0.648 af & \\
\hline Outflow & 5.36 cfs @ & 12.37 hrs, Volume= & 0.648 af , At & Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\) \\
\hline Primary \(=\) Routed to & \[
\begin{aligned}
& 5.36 \text { cfs @ } \\
& \text { h AP2 : Ana }
\end{aligned}
\] & 12.37 hrs , Volume= lysis Point 2 & 0.648 af & \\
\hline Secondary = Routed to & \[
0.00 \text { cfs @ }
\] & \begin{tabular}{l}
0.00 hrs , Volume= \\
Basin 10
\end{tabular} & 0.000 af & \\
\hline
\end{tabular}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=263.22' @ 12.37 hrs Surf.Area= 56 sf Storage= 11 cf
Plug-Flow detention time \(=0.1 \mathrm{~min}\) calculated for 0.648 af (\(100 \%\) of inflow)
Center-of-Mass det. time \(=0.0 \mathrm{~min}(876.8-876.8)\)

\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \#0 & \multirow[t]{5}{*}{Secondary Primary} & 264.01' & Automatic Storage Overflow (Discharged without head) \\
\hline \multirow[t]{4}{*}{\#1} & & 259.70' & 15.0" Round Culvert \\
\hline & & & \(\mathrm{L}=50.0^{\prime}\) CPP, square edge headwall, \(\mathrm{Ke}=0.500\) \\
\hline & & & Inlet / Outlet Invert=259.70'/259.00'S=0.0140'/' Cc= 0.900 \\
\hline & & & \(\mathrm{n}=0.012\) Concrete pipe, finished, Flow Area= 1.23 sf \\
\hline \multirow[t]{2}{*}{\#2} & Device 1 & 263.00' & 48.0" \(\times 48.0\) " Horiz. Orifice/Grate \(\mathrm{C}=0.600\) \\
\hline & & & Limited to weir flow at low heads \\
\hline \multirow[t]{5}{*}{\#3} & Secondary & 264.00' & 8.0' long x 1.0' breadth Broad-Crested Rectangular Weir \\
\hline & & & \(\begin{array}{llllllllllll}\text { Head (feet) } & 0.20 & 0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60 & 1.80 & 2.00\end{array}\) \\
\hline & & & 2.503 .00 \\
\hline & & & Coef. (English) \(2.692 .722 .752 .85 \quad 2.983 .083 .203 .283 .31\) \\
\hline & & & 3.303 .313 .32 \\
\hline
\end{tabular}

Primary OutFlow Max=5.33 cfs @ 12.37 hrs HW=263.22' TW=0.00' (Dynamic Tailwater)
-1=Culvert (Passes 5.33 cfs of 10.05 cfs potential flow)
L2=Orifice/Grate (Weir Controls 5.33 cfs @ 1.53 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=263.00' TW=252.10' (Dynamic Tailwater)
43=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

\section*{Summary for Pond CB13: Catch Basin 13}
[58] Hint: Peaked 2.06' above defined flood level
[62] Hint: Exceeded Reach RD1 OUTLET depth by 7.45' @ 12.10 hrs

Routed to Pond CB14 : Catch Basin 14
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=272.76' @ 12.10 hrs
Flood Elev=270.70'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(264.20^{\prime}\) & \(18.0^{\prime \prime}\) Round Culvert \\
& & \(L=73.0^{\prime} \mathrm{CPP}\), projecting, no headwall, Ke= 0.900 \\
& & Inlet \(/\) Outlet Invert= \(=264.20^{\prime} / 263.40^{\prime} \mathrm{S}=0.0110^{\prime} / /^{\prime \prime} \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= \(=1.77 \mathrm{sf}\)
\end{tabular}

Primary OutFlow Max=1.74 cfs @ 12.09 hrs HW=272.37' TW=272.30' (Dynamic Tailwater)
——1=Culvert (Inlet Controls 1.74 cfs @ 0.99 fps)

\section*{Summary for Pond CB14: Catch Basin 14}
[58] Hint: Peaked 2.70' above defined flood level
[63] Warning: Exceeded Reach RD2 INLET depth by \(3.39^{\prime}\) @ 12.10 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=272.70' @ 12.10 hrs
Flood Elev=270.00'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(263.30^{\prime}\) & \(18.0^{\prime \prime}\) Round Culvert \\
& & \(L=68.0^{\prime} \mathrm{CPP}\), projecting, no headwall, Ke=0.900 \\
& & Inlet \(/\) Outlet Invert \(=263.30^{\prime} / 262.90^{\prime} \mathrm{S}=0.0059^{\prime} / \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area \(=1.77 \mathrm{sf}\)
\end{tabular}

Primary OutFlow Max=5.66 cfs @ 12.10 hrs HW=272.48' TW=271.77' (Dynamic Tailwater)
\(廿_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 5.66 \mathrm{cfs}\) @ 3.20 fps)

\section*{Summary for Pond CB15: Catch Basin 15}
[58] Hint: Peaked 1.27' above defined flood level
Inflow Area \(=1.285 \mathrm{ac}, 92.38 \%\) Impervious, Inflow Depth \(>6.40\) " for 50 -Year 24-Hour event
Inflow \(=8.07 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume= 0.685 af
Outflow \(=8.07 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume \(=0.685 \mathrm{af}\), Atten \(=0 \%\), Lag= \(=0.0 \mathrm{~min}\)
Primary \(=8.07\) cfs @ 12.10 hrs , Volume \(=0.685 \mathrm{af}\)

Routed to Pond CB16 : Catch Basin 16
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=271.97' @ 12.10 hrs
Flood Elev=270.70'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(262.80^{\prime}\) & \(18.0^{\prime \prime}\) Round Culvert \\
& & \(\mathrm{L}=156.0^{\prime} \mathrm{CPP}\), projecting, no headwall, Ke \(=0.900\) \\
& & Inlet / Outlet Invert \(=262.80^{\prime} / 262.00^{\prime} \mathrm{S}=0.00511^{\prime} \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.77 sf
\end{tabular}

Primary OutFlow Max=8.05 cfs @ 12.10 hrs HW=271.92' TW=270.39' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 8.05 cfs @ 4.56 fps)

\section*{Summary for Pond CB16: Catch Basin 16}
[58] Hint: Peaked 0.13' above defined flood level
Inflow Area \(=\quad 1.824\) ac, \(91.49 \%\) Impervious, Inflow Depth \(>6.36^{\prime \prime}\) for 50 -Year 24-Hour event Inflow \(=11.58\) cfs @ 12.10 hrs , Volume \(=\quad 0.967\) af Outflow = \(11.58 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume= 0.967 af , Atten= \(0 \%\), Lag= 0.0 min Primary \(=11.58\) cfs @ 12.10 hrs , Volume= 0.967 af

Routed to Pond CB17 : Catch Basin 17
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev= 270.43' @ 12.10 hrs
Flood Elev= 270.30'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & Primary & 261.50' & 24.0" Round Culvert \\
\hline & & & \(\mathrm{L}=124.0^{\prime} \mathrm{CPP}\), projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert=261.50' \(260.90^{\prime} \mathrm{S}=0.0048 \mathrm{l} / \mathrm{Cc}=0.900\) \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area=3.14 sf \\
\hline
\end{tabular}

Primary OutFlow Max=11.45 cfs @ 12.10 hrs HW=270.24' TW=269.32' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 11.45 cfs @ 3.64 fps)

Prepared by Jones \& Beach Engineers Inc

\section*{Summary for Pond CB17: Catch Basin 17}
[58] Hint: Peaked 0.50' above defined flood level
[63] Warning: Exceeded Reach RD3 INLET depth by 1.10' @ 12.10 hrs
Inflow Area \(=\quad 2.507 \mathrm{ac}, 85.98 \%\) Impervious, Inflow Depth \(>6.13^{\prime \prime}\) for 50-Year 24-Hour event
\begin{tabular}{lll}
Inflow \(=\) & 14.54 cfs @ 12.10 hrs , Volume= & 1.281 af \\
Outflow \(=\) & \(14.54 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume \(=\) & 1.281 af , Atten= \(0 \%\), Lag \(=0.0 \mathrm{~min}\)
\end{tabular}

Primary \(=14.54\) cfs @ 12.10 hrs, Volume= 1.281 af
Routed to Pond CB18 : Catch Basin 18
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt=0.05 hrs \(/ 9\)
Peak Elev=269.50' @ 12.10 hrs
Flood Elev=269.00'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(260.80^{\prime}\) & \(24.0^{\prime \prime}\) Round Culvert \\
& & \(L=57.0^{\prime}\) CPP, projecting, no headwall, Ke= \(=0.900\) \\
& & Inlet \(/\) Outlet Invert= \(260.80^{\prime} / 260.50^{\prime} \mathrm{S}=0.0053^{\prime} \mathrm{J} / \mathrm{Cc}=0.900\) \\
& & \(n=0.013\) Corrugated PE, smooth interior, Flow Area \(=3.14 \mathrm{sf}\)
\end{tabular}

Primary OutFlow Max=14.52 cfs @ 12.10 hrs HW=269.47' TW=267.99' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 14.52 cfs @ 4.62 fps)

\section*{Summary for Pond CB18: Catch Basin 18}

Primary OutFlow Max=17.71 cfs @ 12.10 hrs HW=267.96' TW=265.76' (Dynamic Tailwater)
廿1=Culvert (Inlet Controls 17.71 cfs @ 5.64 fps)

\section*{Summary for Pond CB19: Catch Basin 19}
\begin{tabular}{|c|c|c|c|c|}
\hline Inflow Area = & \multicolumn{4}{|l|}{0.751 ac, \(90.54 \%\) Impervious, Inflow Depth > 6.31" for 50-Year 24-Hour event} \\
\hline Inflow & 4.92 cfs @ & 12.09 hrs , Volume= & 0.395 af & \\
\hline Outflow & 4.92 cfs @ & 12.09 hrs , Volume= & 0.395 af, A & Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\) \\
\hline Primary & 4.92 cfs @ & 12.09 hrs , Volume= & 0.395 af & \\
\hline
\end{tabular}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=266.13' @ 12.10 hrs
Flood Elev= 266.30'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & \(261.40^{\prime}\) & \(24.0^{\prime \prime}\) Round Culvert
\end{tabular}
\(\mathrm{L}=151.0^{\prime}\) CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\)
Inlet / Outlet Invert=261.40' / 260.60' S=0.0053 '/' Cc=0.900 \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=4.79 cfs @ 12.09 hrs HW=265.86' TW=265.69' (Dynamic Tailwater)
1=Culvert (Inlet Controls 4.79 cfs @ 1.53 fps)

\section*{Summary for Pond CB2: Catch Basin 2}
[58] Hint: Peaked 0.82' above defined flood level
\begin{tabular}{llllll}
Inflow Area \(=\) & 2.129 ac, & \(4.38 \%\) & Impervious, Inflow Depth \(>\) & \(2.56 "\) & for \(50-\) Year \(24-\) Hour event \\
Inflow & \(=\) & \(3.28 \mathrm{cfs} @\) & 12.35 hrs, Volume \(=\) & 0.454 af \\
Outflow & \(=\) & \(3.28 \mathrm{cfs} @\) & 12.35 hrs, Volume \(=\) & 0.454 af, Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\) \\
Primary & \(=\) & \(3.28 \mathrm{cfs} @\) & 12.35 hrs, Volume \(=\) & 0.454 af
\end{tabular} Routed to Pond DMH1 : Drain Manhole 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev= 204.72' @ 12.11 hrs
Flood Elev= 203.90'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & \(200.40^{\prime}\) & \(15.0^{\prime \prime}\) Round Culvert \\
& & \(L=84.0^{\prime}\) CPP, projecting, no headwall, Ke \(=0.900\) \\
& & Inlet / Outlet Invert= \(200.40^{\prime} / 200.00^{\prime} S=0.0048 \quad\) '/ Cc \(=0.900\) \\
& & \(n=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf
\end{tabular}

Primary OutFlow Max=3.28 cfs @ 12.35 hrs HW=203.44' TW=202.95' (Dynamic Tailwater) —1=Culvert (Inlet Controls 3.28 cfs @ 2.67 fps)

\section*{Summary for Pond CB20: Catch Basin 20}
[58] Hint: Peaked 0.69' above defined flood level

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=266.19' @ 12.10 hrs
Flood Elev=265.50'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & Primary & 261.90' & 24.0" Round Culvert \\
\hline & & & \(\mathrm{L}=70.0^{\prime}\) CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert= 261.90' / 261.50' S=0.0057 '/' Cc= 0.900 \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 3.14 sf \\
\hline
\end{tabular}

Primary OutFlow Max=2.79 cfs @ 12.09 hrs HW=265.91' TW=265.86' (Dynamic Tailwater)
\&1=Culvert (Inlet Controls 2.79 cfs @ 0.89 fps)

\section*{Summary for Pond CB3: Catch Basin 3}

Primary OutFlow Max=6.17 cfs @ 12.10 hrs HW=210.57' TW=204.24' (Dynamic Tailwater)
\&1=Culvert (Inlet Controls \(6.17 \mathrm{cfs} @ 5.03 \mathrm{fps}\))

\section*{Summary for Pond CB4: Catch Basin 4}
 Routed to Pond CB3 : Catch Basin 3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

Peak Elev=210.63' @ 12.10 hrs
Flood Elev=216.40'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & \(208.40^{\prime}\) & \(15.0^{\prime \prime}\) Round Culvert \\
& & & L= 19.0' CPP, projecting, no headwall, Ke \(=0.900\) \\
& & Inlet \(/\) Outlet Invert \(=208.40^{\prime} / 208.30^{\prime} \mathrm{S}=0.0053^{\prime} / / \quad \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf
\end{tabular}

Primary OutFlow Max=0.80 cfs @ 12.09 hrs HW=210.57' TW=210.54' (Dynamic Tailwater)
—1=Culvert (Inlet Controls \(0.80 \mathrm{cfs} @ 0.65 \mathrm{fps}\))

\section*{Summary for Pond CB5: Catch Basin 5}

Primary OutFlow Max=4.41 cfs @ 12.10 hrs HW=225.82' TW=219.02' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 4.41 cfs @ 3.59 fps)

\section*{Summary for Pond CB6: Catch Basin 6}

Prepared by Jones \& Beach Engineers Inc

Primary OutFlow Max=0.80 cfs @ 12.09 hrs HW=225.82' TW=225.79' (Dynamic Tailwater)
_1=Culvert (Inlet Controls \(0.80 \mathrm{cfs} @ 0.65 \mathrm{fps}\))

\section*{Summary for Pond CB7: Catch Basin 7}

Primary OutFlow Max=0.83 cfs @ 12.09 hrs HW=239.65' TW=239.56' (Dynamic Tailwater)
亡-1=Culvert (Outlet Controls 0.83 cfs @ 1.56 fps)

\section*{Summary for Pond CB8: Catch Basin 8}

\footnotetext{
Primary OutFlow Max=2.87 cfs @ 12.10 hrs HW=239.56' TW=234.01' (Dynamic Tailwater)
—1=Culvert (Inlet Controls \(2.87 \mathrm{cfs} @ 3.17 \mathrm{fps}\))
}

\section*{Summary for Pond CB9: Catch Basin 9}

Primary OutFlow Max=1.45 cfs @ 12.11 hrs HW=252.56' TW=239.55' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 1.45 cfs @ 2.19 fps)

\section*{Summary for Pond DMH 3: Drain Manhole 3}

Primary OutFlow Max=2.87 cfs @ 12.10 hrs HW=234.01' TW=225.81' (Dynamic Tailwater)
Ł1=Culvert (Inlet Controls 2.87 cfs @ 2.70 fps)

\section*{Summary for Pond DMH 4: Drain Manhole 4}
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=54)
```

Inflow Area = 0.751 ac, 90.54% Impervious, Inflow Depth > 6.31" for 50-Year 24-Hour event
Inflow = 4.92 cfs @ 12.09 hrs, Volume= 0.395 af
Outflow = 4.92 cfs @ 12.09 hrs, Volume= 0.395 af, Atten= 0%, Lag= 0.0 min
Primary = 4.92 cfs @ 12.09 hrs,Volume= 0.395 af

```
 Routed to Pond DMH 5 : Drain Manhole 5

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=265.97' @ 12.10 hrs
Flood Elev=268.40'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & \(260.50^{\prime}\) & \(24.0^{\prime \prime}\) Round Culvert \\
& & \begin{tabular}{ll}
L=9.0' CPP, projecting, no headwall, Ke \(=0.900\) \\
& \\
& \\
& \\
& \(n=0.013\) Corrugated PE, smooth interior, Flow Area \(=3.14 \mathrm{sf}\)
\end{tabular} \\
& &
\end{tabular}

Primary OutFlow Max=4.79 cfs @ 12.09 hrs HW=265.69' TW=265.53' (Dynamic Tailwater)
t—1=Culvert (Inlet Controls 4.79 cfs @ 1.53 fps)

\section*{Summary for Pond DMH 5: Drain Manhole 5}
[80] Warning: Exceeded Pond DMH 4 by \(1.89^{\prime} @ 19.95\) hrs (10.29 cfs 1.465 af)
 Routed to Pond 5P : StormTech

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=265.80' @ 12.10 hrs
Flood Elev=268.60'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & Primary & 260.30' & 24.0" Round Culvert \\
\hline & & & L=14.0' CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert= \(260.30^{\prime} / 260.10^{\prime} \mathrm{S}=0.0143 \mathrm{l} / \mathrm{l}\) Cc= \(=0.900\) \\
\hline & & & \(n=0.013\) Corrugated PE, smooth interior, Flow Area= 3.14 sf \\
\hline
\end{tabular}

Primary OutFlow Max=22.45 cfs @ 12.10 hrs HW=265.70' TW=262.17' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 22.45 cfs @ 7.15 fps)

\section*{Summary for Pond DMH1: Drain Manhole 1}

\(\mathrm{L}=30.0^{\prime} \mathrm{CPP}\), projecting, no headwall, \(\mathrm{Ke}=0.900\)
Inlet / Outlet Invert= 199.90' / 199.70' S=0.0067 '/' Cc= 0.900 \(\mathrm{n}=0.013\) Corrugated PE , smooth interior, Flow Area \(=1.23 \mathrm{sf}\)

Primary OutFlow Max=8.96 cfs @ 12.11 hrs HW=204.25' TW=200.56' (Dynamic Tailwater) —1 \(^{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 8.96 \mathrm{cfs}\) @ 7.30 fps)

\section*{Summary for Pond DMH2: Drain Manhole 2}

Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Peak Elev=219.02' @ 12.10 hrs
Flood Elev=223.30'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(217.50^{\prime}\) & \(15.0^{\prime \prime}\) Round Culvert \\
& & \(L=84.0^{\prime}\) CPP, projecting, no headwall, Ke \(=0.900 \quad\) \\
& & Inlet \(/\) Outlet Invert \(=217.50^{\prime} / 208.30^{\prime} \quad \mathrm{S}=0.1095 \prime^{\prime} / \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf
\end{tabular}

Primary OutFlow Max=4.41 cfs @12.10 hrs HW=219.02' TW=210.59' (Dynamic Tailwater)
L1=Culvert (Inlet Controls 4.41 cfs @ 3.59 fps)

Time span \(=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 481\) points \(\times 9\)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment1S: SUBCATCHMENT1S Runoff Area=279,376 sf 7.68\% Impervious Runoff Depth>3.46" Flow Length=1,018' \(\mathrm{Tc}=34.1 \mathrm{~min} \mathrm{CN}=59\) Runoff=13.71 cfs 1.851 af

Subcatchment10S: SUBCATCHMENT10S Runoff Area \(=3,917\) sf \(19.30 \%\) Impervious Runoff Depth \(>4.30^{\prime \prime}\) Flow Length=79' Tc=9.6 min CN=66 Runoff=0.40 cfs 0.032 af

\section*{Subcatchment11S: Subcatchment11S}

Subcatchment12S: Subcatchment12S
Runoff Area=22,767 sf \(23.93 \%\) Impervious Runoff Depth>4.40" Flow Length=642' Tc=19.9 min CN=67 Runoff=1.82 cfs 0.192 af

Subcatchment20S: Subcatchment20S Runoff Area=207,863 sf \(0.54 \%\) Impervious Runoff Depth \(>3.24{ }^{\prime \prime}\) Flow Length=341' \(\quad\) Tc=25.2 \(\mathbf{~ m i n ~} \mathrm{CN}=57\) Runoff=10.84 cfs 1.289 af

Subcatchment21S: SUBCATCHMENT21S Runoff Area=154,653 sf \(0.53 \%\) Impervious Runoff Depth \(>3.13^{\text {" }}\) Flow Length=358' \(\mathrm{Tc}=24.0 \mathrm{~min} \mathrm{CN}=56\) Runoff=7.89 cfs 0.926 af

Subcatchment22S: SUBCATCHMENT22S Runoff Area \(=83,939\) sf \(9.07 \%\) Impervious Runoff Depth \(>3.82^{\prime \prime}\) Flow Length=348' \(\mathrm{Tc}=17.4 \mathrm{~min} \mathrm{CN}=62\) Runoff=6.10 cfs 0.614 af

Subcatchment23S: SUBCATCHMENT23S Runoff Area=11,755 sf 64.56\% Impervious Runoff Depth>6.56" Flow Length \(=39^{\prime}\) Slope \(=0.0200\) '/ Tc=6.0 \(\mathrm{min} \mathrm{CN}=85\) Runoff \(=1.95 \mathrm{cfs} 0.147\) af

Subcatchment24S: SUBCATCHMENT24S Runoff Area=24,222 sf 0.91\% Impervious Runoff Depth>3.37" Flow Length=204' \(\mathrm{Tc}=12.8 \mathrm{~min} \mathrm{CN}=58\) Runoff=1.71 cfs 0.156 af

Subcatchment25S: SUBCATCHMENT25S Runoff Area=64,195 sf \(11.59 \%\) Impervious Runoff Depth>3.94" Flow Length=368' \(\mathrm{Tc}=16.5 \mathrm{~min} \mathrm{CN}=63\) Runoff=4.91 cfs 0.484 af

\section*{Subcatchment30S: Subcatchment30S Runoff Area=73,162 sf \(0.00 \%\) Impervious Runoff Depth>3.14"} Flow Length=299' \(\mathrm{Tc}=14.2 \mathrm{~min} \quad \mathrm{CN}=56\) Runoff=4.61 cfs 0.439 af

Subcatchment31S: Subcatchment31S Runoff Area=159,045 sf \(0.00 \%\) Impervious Runoff Depth \(>3.36\) " Flow Length=593' \(\quad\) cc=22.7 min \(\mathrm{CN}=58\) Runoff=8.99 cfs 1.022 af

Subcatchment32S: SUBCATCHMENT32S Runoff Area=6,935 sf 0.00\% impervious Runoff Depth>3.72" Flow Length \(=83^{\prime}\) Tc=8.0 min CN=61 Runoff=0.63 cfs 0.049 af

Subcatchment101S: SUBCATCHMENT101SRunoff Area=3,062 sf \(63.65 \%\) Impervious Runoff Depth>6.56" Flow Length=149' \(\quad \mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=85\) Runoff \(=0.51 \mathrm{cfs} 0.038\) af

\section*{Subcatchment102S: SUBCATCHMENT}

Subcatchment103S: SUBCATCHMENT

Runoff Area \(=10,426\) sf \(20.31 \%\) Impervious Runoff Depth \(>4.65\) " Flow Length=202 \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=69\) Runoff \(=1.28 \mathrm{cfs} 0.093\) af

Runoff Area \(=10,615\) sf \(20.41 \%\) Impervious Runoff Depth \(>4.65\) " Flow Length=210' Tc=6.0 \(\mathrm{min} \mathrm{CN}=69\) Runoff=1.30 cfs 0.094 af

\section*{20564-PR}

Prepared by Jones \& Beach Engineers Inc HydroCAD® 10.20-2g s/n 00762 © 2022 HydroCAD Software Solutions LLC

Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
Printed 3/20/2023

Subcatchment104S: SUBCATCHMENT104SRunoff Area=8,563 sf \(24.45 \%\) Impervious Runoff Depth \(>4.77\) " Flow Length=192' \(\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=70\) Runoff \(=1.08 \mathrm{cfs} 0.078\) af

Subcatchment 105S: SUBCATCHMENT105SRunoff Area \(=7,685\) sf \(24.66 \%\) Impervious Runoff Depth \(>4.77^{\prime \prime}\) Flow Length=198' Tc=6.0 \(\mathrm{min} \quad \mathrm{CN}=70\) Runoff \(=0.97 \mathrm{cfs} 0.070\) af

Subcatchment106S: SUBCATCHMENT106SRunoff Area \(=8,480\) sf \(24.96 \%\) Impervious Runoff Depth \(>4.77^{\prime \prime}\) Flow Length \(=150^{\circ} \quad \mathrm{T}=6.0 \mathrm{~min} \quad \mathrm{CN}=70\) Runoff \(=1.07 \mathrm{cfs} 0.077\) af

Subcatchment107S: SUBCATCHMENT107SRunoff Area=9,158 sf \(22.21 \%\) Impervious Runoff Depth \(>4.65^{\prime \prime}\) Flow Length=200' \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=69\) Runoff \(=1.13 \mathrm{cfs} 0.082\) af

Subcatchment108S: SUBCATCHMENT108SRunoff Area=5,109 sf \(41.03 \%\) Impervious Runoff Depth \(>5.48^{\prime \prime}\) Flow Length=108' Tc=6.0 min CN=76 Runoff \(=0.73\) cfs 0.054 af

Subcatchment109S: SUBCATCHMENT109SRunoff Area=4,591 sf \(85.25 \%\) Impervious Runoff Depth \(>7.52^{\text {n }}\) Flow Length=322' Tc=6.0 min CN=93 Runoff= 0.83 cfs 0.066 af

Subcatchment110S: SUBCATCHMENT110SRunoff Area \(=8,954\) sf \(45.07 \%\) Impervious Runoff Depth \(>5.48\) " Flow Length=193' \(\mathrm{Tc}=10.4 \mathrm{~min} \mathrm{CN}=76\) Runoff \(=1.12 \mathrm{cfs} 0.094\) af

Subcatchment111S: SUBCATCHMENT111SRunoff Area=10,066 sf 0.00\% Impervious Runoff Depth>3.72" Flow Length=37' Slope=0.5000 \(\%\) Tc=6.0 min CN=61 Runoff \(=0.98\) cfs 0.072 af

Subcatchment113S: SUBCATCHMENT Runoff Area=4,154 sf \(100.00 \%\) Impervious Runoff Depth \(>8.12^{\prime \prime}\) Flow Length \(=144\) ' Slope \(=0.0330\) ' \(/\) Tc \(=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=0.76 \mathrm{cfs} 0.064\) af

Subcatchment114S: SUBCATCHMENT
Runoff Area=21,297 sf \(83.97 \%\) Impervious Runoff Depth \(>7.39^{n}\) Flow Length=251' \(\mathrm{Tc}=9.0 \mathrm{~min} \mathrm{CN}=92\) Runoff \(=3.47 \mathrm{cfs} 0.301\) af

\section*{Subcatchment115S: SUBCATCHMENT}

Subcatchment116S: SUBCATCHMENT

Subcatchment117S: SUBCATCHMENT Runoff Area=22,327 sf \(61.68 \%\) Impervious Runoff Depth>6.43" Flow Length=172' \(\mathrm{Tc}=14.1 \mathrm{~min} \mathrm{CN}=84\) Runoff=2.89 cfs 0.275 af

Subcatchment118S: SUBCATCHMENT Runoff Area=22,171 sf \(84.69 \%\) Impervious Runoff Depth \(>7.40^{\prime \prime}\) Flow Length=120' Slope=0.0500 \(\%\) Tc=6.0 \(\mathrm{min} \quad \mathrm{CN}=92\) Runoff=3.96 cfs 0.314 af

Subcatchment119S: SUBCATCHMENT Runoff Area=13,601 sf \(92.54 \%\) Impervious Runoff Depth \(>7.76\) " Flow Length=218' \(\quad\) c \(=6.0 \mathrm{~min} \quad \mathrm{CN}=95\) Runoff \(=2.48 \mathrm{cfs} 0.202\) af

Subcatchment120S: SUBCATCHMENT Runoff Area=19,113 sf \(89.12 \%\) Impervious Runoff Depth \(>7.64{ }^{\prime \prime}\) Flow Length=124' Tc=6.0 min CN=94 Runoff=3.46 cfs 0.279 af

Subcatchment204S: SUBCATCHMENT204SRunoff Area=19,442 sf \(0.00 \%\) Impervious Runoff Depth \(>3.24\) " Flow Length=379' Tc=23.2 \(\mathrm{min} \mathrm{CN}=57\) Runoff=1.05 cfs 0.121 af

Subcatchment205S: SUBCATCHMENT205S Runoff Area \(=4,627\) sf \(0.00 \%\) Impervious Runoff Depth \(>3.72^{\text {n }}\) Flow Length \(=92\) ' Slope \(=0.50001 / \mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=61\) Runoff \(=0.45 \mathrm{cfs} 0.033\) af

Subcatchment207S: SUBCATCHMENT207SRunoff Area \(=15,002\) sf \(0.00 \%\) Impervious Runoff Depth \(>3.36^{\prime \prime}\) Flow Length=329' Tc=22.8 \(\mathrm{min} \mathrm{CN}=58\) Runoff=0.85 cfs 0.096 af

Subcatchment211S: SUBCATCHMENT211SRunoff Area=28,592 sf \(0.00 \%\) Impervious Runoff Depth \(>3.13^{\prime \prime}\) Flow Length=328' \(\mathrm{Tc}=19.3 \mathrm{~min} \quad \mathrm{CN}=56\) Runoff=1.59 cfs 0.171 af

Subcatchment305S: SUBCATCHMENT305S Runoff Area \(=1,541\) sf \(0.00 \%\) Impervious Runoff Depth \(>3.03^{\text {" }}\) Flow Length=46' Tc=6.0 \(\mathrm{min} \mathrm{CN}=55\) Runoff= 0.12 cfs 0.009 af

\section*{SubcatchmentROOF 1: Back of Roof}

\section*{SubcatchmentROOF 2: Back of Roof}

SubcatchmentROOF 3: Back of Roof

Runoff Area \(=7,416\) sf \(100.00 \%\) Impervious Runoff Depth \(>8.12^{\prime \prime}\) \(\mathrm{T}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=1.36 \mathrm{cfs} 0.115\) af

Runoff Area=7,416 sf \(100.00 \%\) Impervious Runoff Depth \(>8.12^{\prime \prime}\) \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=1.36 \mathrm{cfs} 0.115\) af

Runoff Area=7,416 sf \(100.00 \%\) Impervious Runoff Depth \(>8.12\) " \(\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98\) Runoff \(=1.36 \mathrm{cfs} 0.115\) af

Avg. Flow Depth=0.82' Max Vel=0.96 fps Inflow=8.99 cfs 1.022 af \(\mathrm{n}=0.400 \mathrm{~L}=40.0^{\prime} \mathrm{S}=0.1500 \mathrm{I} /\) Capacity=62.15 cfs Outflow=8.99 cfs 1.021 af

\section*{Reach 4Rb: Flow Through} \(\mathrm{n}=0.400 \mathrm{~L}=71.0^{\prime} \mathrm{S}=0.2817\) ' \(/\) Capacity=276.81 cfs Outflow=8.98 cfs 1.020 af Reach AP1: Analysis Point 1

Inflow=21.96 cfs 3.211 af Outflow=21.96 cfs 3.211 af

Inflow=24.97 cfs 2.466 af Outflow=24.97 cfs 2.466 af

Inflow=19.22 cfs 3.095 af Outflow \(=19.22 \mathrm{cfs} 3.095\) af

Reach B1R: BENCH Avg. Flow Depth=0.45' Max Vel=1.02 fps Inflow=0.85 cfs 0.096 af \(\mathrm{n}=0.150 \mathrm{~L}=173.0^{\prime} \mathrm{S}=0.0809 \mathrm{I} / \mathrm{l}\) Capacity=\(=6.92 \mathrm{cfs}\) Outflow=0.84 cfs 0.096 af Overflow=0.00 cfs 0.000 af

Reach B2R: BENCH Avg. Flow Depth=0.45' Max Vel=1.24 fps Inflow=1.02 cfs 0.129 af \(\mathrm{n}=0.150 \quad \mathrm{~L}=116.0^{\prime} \mathrm{S}=0.1207\) ' \(/ \mathrm{l}\) Capacity \(=8.45 \mathrm{cfs}\) Outflow=1.02 cfs 0.129 af Overflow=0.00 cfs 0.000 af

Reach B3R: BENCH Avg. Flow Depth=0.60' Max Vel=1.47 fps Inflow=2.12 cfs 0.258 af \(\mathrm{n}=0.150 \mathrm{~L}=103.0\) ' \(\mathrm{S}=0.1165 \mathrm{I} /\) ' Capacity \(=8.30 \mathrm{cfs}\) Outflow=2.11 cfs 0.258 af Overflow=0.00 cfs 0.000 af

Reach B4R: BENCH Avg. Flow Depth=0.88' Max Vel=1.32 fps Inflow=4.08 cfs 0.501 af \(\mathrm{n}=0.150 \mathrm{~L}=232.0\) S \(=0.0560\) ' \(\%\) Capacity \(=5.76 \mathrm{cfs}\) Outflow=4.04 cfs 0.500 af Overflow=0.00 cfs 0.000 af

Reach B5R: BENCH \(n=0.150 \quad \mathrm{~L}=12.0^{\prime} \mathrm{S}=0.0833 \%\) Capacity=7.02 cfs Outflow=0.12 cfs 0.009 af Overflow=0.00 cfs 0.000 af
20564-PR
Reach B6R: BENCH Avg. Flow Depth=0.62' Max Vel=1.03 fps Inflow=1.59 cfs 0.171 af\(\mathrm{n}=0.150 \mathrm{~L}=165.0^{\prime} \mathrm{S}=0.0545 \mathrm{f}\) ' Capacity=5.68 cfs Outflow=1.57 cfs 0.171 af
Reach RD1: RD 1 Avg. Flow Depth=0.35' Max Vel=7.24 fps Inflow=1.36 cfs 0.115 af8.0" Round Pipe \(n=0.013 \mathrm{~L}=264.0^{\prime} \quad \mathrm{S}=0.0417^{\prime \prime} /{ }^{\prime}\) Capacity=2.47 cfs Outflow=1.37 cfs 0.115 af
Reach RD2: RD 2
Avg. Flow Depth=0.34' Max Vel=7.70 fps Inflow=1.36 cfs 0.115 af \(8.0^{\prime \prime}\) Round Pipe \(\mathrm{n}=0.013 \mathrm{~L}=110.0^{\prime} \mathrm{S}=0.0491^{\prime \prime} \mathrm{l}\) Capacity \(=2.68 \mathrm{cfs}\) Outflow=1.37 cfs 0.115 af
Reach RD3: RD 3

Avg. Flow Depth=0.45' Max Vel=5.44 fps Inflow=1.36 cfs 0.115 af 8.0" Round Pipe \(\mathrm{n}=0.013 \mathrm{~L}=100.0^{\prime} \quad \mathrm{S}=0.0200\) '/' Capacity=1.71 cfs Outflow=1.37 cfs 0.115 af
Pond 1P: Infiltration Pocket Peak Elev=198.81' Storage=619 cf Inflow=8.39 cfs 1.485 afDiscarded \(=0.10 \mathrm{cfs} 0.110\) af Primary=8.26 cfs 1.360 af Outflow=8.35 cfs 1.470 af
Pond 2P: StormwaterPondPeak Elev=202.07' Storage=31,568 cf Inflow=14.36 cfs 1.401 afPrimary \(=4.79\) cfs 1.202 af Secondary= 2.08 cfs 0.060 af Outflow=6.86 cfs 1.262 af
Pond 3P: Stormfilter
Peak Elev=198.96' Storage=103 cf Inflow=1.82 cfs 0.192 af Primary \(=1.82\) cfs 0.190 af Secondary \(=0.00\) cfs 0.000 af Outflow=1.82 cfs 0.190 af
Pond 5P: StormTechPeak Elev=264.73' Storage=1.350 af Inflow=27.43 cfs 2.360 afOutflow=7.53 cfs 1.587 af
Pond 6P: Focal PointPeak Elev=257.49' Storage=1,608 cf Inflow=7.76 cfs 1.637 afOutflow=7.73 cfs 1.636 af
Pond 9P: 18" HDPE
Peak Elev=202.50' Storage=216 cf Inflow=4.91 cfs 0.484 af Primary \(=4.91\) cfs 0.483 af Secondary \(=0.00\) cfs 0.000 af Outflow=4.91 cfs 0.483 af

Pond 10P: Bioretention
Peak Elev=201.84' Storage=7,689 cf Inflow=11.01 cfs 1.097 af Discarded=3.07 cfs 0.861 af Primary= 2.44 cfs 0.162 af Secondary \(=3.10\) cfs 0.069 af Outflow=8.60 cfs 1.093 af
Peak Elev=198.06' Storage=2,256 cf Inflow=4.78 cfs 0.354 af Discarded=1.15 cfs 0.265 af Primary= 3.96 cfs 0.089 af Outllow=5.12 cfs 0.354 af

\section*{Pond 12P: Dry Well}
Peak Elev=199.44' Storage=359 cf Inflow=1.71 cfs 0.156 af Discarded \(=0.01\) cfs 0.010 af Primary \(=1.69\) cfs 0.137 af Outflow=1.70 cfs 0.148 af

\section*{Pond CB1: Catch Basin 1}

\section*{Pond CB10: Catch Basin 10}
\(15 .{ }^{\text {2 }}\) Roak Elev=208.89 inflow \(=0.51 \mathrm{cfs} 0.038\) af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=19.0\) ' \(\mathrm{S}=0.0053\) '/' Outflow=0.51 cfs 0.038 af

Peak Elev=252.83' Inflow=1.12 cfs 0.094 af 15.0" Round Culvert n=0.013 L=19.0' \(\mathrm{S}=0.0053\) '/' Outflow=1.12 cfs 0.094 af

Pond CB11: Catch Basin 11
Peak Elev=209.37' Inflow=4.04 cfs 0.500 af 15.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=57.0^{\prime} \mathrm{S}=0.1316\) ' \(f\) ' Outflow=4.04 cfs 0.500 af
Peak Elev=263.28' Storage=15 cf Inflow=7.89 cfs 0.926 af Primary \(=7.89\) cfs 0.926 af Secondary \(=0.00 \mathrm{cfs} 0.000\) af Outflow=7.89 cfs 0.926 afPrepared by Jones \& Beach Engineers Inc

\section*{Pond CB13: Catch Basin 13}

Pond CB14: Catch Basin 14

Pond CB15: Catch Basin 15

Pond CB17: Catch Basin 17 24.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=124.0^{\prime} \mathrm{S}=0.0048^{\prime} / \mathrm{F}\) ' Outflow=13.95 cfs 1.175 af 18.0" Round Culvert \(n=0.013 \quad \mathrm{~L}=73.0^{\prime} \mathrm{S}=0.0110\) ' \(/ \mathrm{h}\) Outflow=2.13 cfs 0.180 af

Peak Elev=278.23' Inflow=6.89 cfs 0.596 af \(18.0^{\prime \prime}\) Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=68.0^{\prime} \mathrm{S}=0.0059\) ' \(/\) ' Outflow=6.89 cfs 0.596 af

Peak Elev=277.18' Inflow=9.72 cfs 0.832 af 18.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=156.0^{\prime} \mathrm{S}=0.0051\) '/' Outflow \(=9.72 \mathrm{cfs} 0.832\) af

Pond CB16: Catch Basin 16
Pond CB16: Catch Basin 16

Peak Elev=273.59' Inflow=17.61 cfs 1.565 af 24.0" Round Culvert \(\mathrm{n}=0.013 \mathrm{~L}=57.0^{\prime} \mathrm{S}=0.0053\) '/ Outflow=17.61 cfs 1.565 af
Pond CB18: Catch Basin 18
Pond CB19: Catch Basin 19
Pond CB2: Catch Basin 2
Pond CB20: Catch Basin 20
Pond CB3: Catch Basin 3
Pond CB4: Catch Basin 4
Pond CB5: Catch Basin 5
Pond CB6: Catch Basin 6
Pond CB7: Catch Basin 7
Pond CB8: Catch Basin 8
Pond CB9: Catch Basin 9
Pond DMH 3: Drain Manhole 3

Peak Elev=234.25' Inflow=3.70 cfs 0.295 af 15.0" Round Culvert \(n=0.013 \mathrm{~L}=104.0^{\prime} \mathrm{S}=0.0827\) '/' Outflow=3.70 cfs 0.295 af

\section*{Summary for Subcatchment 1S: SUBCATCHMENT 1S}

Runoff \(=13.71\) cfs @ 12.50 hrs, Volume \(=1.851\) af, Depth> 3.46" Routed to Reach AP1 : Analysis Point 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100-Year 24-Hour Rainfall=8.36"

\footnotetext{
34.1 1,018 Total
}

\section*{Summary for Subcatchment 10S: SUBCATCHMENT 10S}
Runoff \(=0.40 \mathrm{cfs} @ 12.14 \mathrm{hrs}\), Volume= \(\quad 0.032\) af, Depth> 4.30"
Routed to Pond \(1 \mathrm{P}:\) Infiltration Pocket

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 100 -Year 24 -Hour Rainfall \(=8.36^{\prime \prime}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Area (sf) & CN & Description & & & \\
\hline & \[
\begin{array}{r}
756 \\
1,961 \\
1,200
\end{array}
\] & 98
61
55 & \multicolumn{3}{|l|}{Paved parking, HSG B >75\% Grass cover, Good, HSG B Woods, Good, HSG B} & \\
\hline & \[
\begin{array}{r}
3,917 \\
3,161 \\
756
\end{array}
\] & 66 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Weighted Average \\
80.70\% Pervious Area \\
19.30\% Impervious Area
\end{tabular}} & & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope
\[
(\mathrm{ft} / \mathrm{ft})
\] & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description & \\
\hline 3.6 & 38 & 0.2630 & 0.17 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 5.0 & 33 & 0.0910 & 0.11 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \\
\hline 1.0 & 8 & 0.0400 & - 0.13 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} & \\
\hline 9.6 & 79 & Total & & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 11S: Subcatchment 11S}

Runoff \(=\quad 2.09 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume= \(\quad 0.155\) af, Depth> 3.72"
Routed to Pond 2P : Stormwater Pond
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Area (sf) CN Description} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\frac{21,833}{21,833}
\]}} & \multicolumn{4}{|l|}{61 >75\% Grass cover, Good, HSG B} \\
\hline & & \multicolumn{4}{|c|}{100.00\% Pervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 1.6 & 50 & 0.5000 & 0.52 & & Sheet Flow,
Grass: Short \(n=0.150 \quad\) P2 \(=3.02 \prime\) \\
\hline 5.0 & 50 & 0.0290 & 0.17 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.1 & 37 & 0.5000 & 4.95 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps \\
\hline 6.7 & 137 & Total & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 12S: Subcatchment 12 S}

Runoff \(=1.82\) cfs @ 12.28 hrs, Volume= 0.192 af, Depth> 4.40"
Routed to Pond 3P : Stormfilter
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Area (sf) & CN & Description & & & \\
\hline & \[
\begin{array}{r}
5,448 \\
10,621 \\
6,698
\end{array}
\] & & \multicolumn{4}{|l|}{Paved parking, HSG B Woods, Good, HSG B \(>75 \%\) Grass cover, Good, HSG B} \\
\hline & \[
\begin{array}{r}
22,767 \\
17,319 \\
5,448
\end{array}
\] & 67 & \multicolumn{4}{|l|}{Weighted Average 76.07\% Pervious Area 23.93\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope
\[
(\mathrm{ft} / \mathrm{ft})
\] & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description & \\
\hline 11.5 & 66 & 0.0450 & 0.10 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & P2=3.02" \\
\hline 3.5 & 34 & 0.2350 & 0.16 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.7 & 101 & 0.2180 & 2.33 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.4 & 88 & 0.0450 & 1.06 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.2 & 157 & 0.1910 & 2.19 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.6 & 196 & 0.1730 & 2.08 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 20S: Subcatchment 20 S}

Runoff \(=10.84\) cfs @ 12.37 hrs, Volume= 1.289 af, Depth> 3.24" Routed to Reach AP2 : Analysis Point 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
1,115 & 98 & Roofs, HSG B \\
27,727 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
166,599 & 55 & Woods, Good, HSG B \\
12,422 & 70 & Woods, Good, HSG C \\
\hline 207,863 & 57 & Weighted Average \\
206,748 & & \(99.46 \%\) Pervious Area \\
1,115 & & \(0.54 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 0.4 & 10 & 0.5000 & 0.38 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 19.6 & 90 & 0.0220 & 0.08 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.4 & 30 & 0.0670 & 1.29 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 1.6 & 78 & 0.0256 & 0.80 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 1.2 & 62 & 0.0320 & 0.89 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps \\
\hline 2.0 & 71 & 0.0140 & 0.59 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 25.2 & 341 & Total & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 21S: SUBCATCHMENT 21S}

Runoff \(=\quad 7.89 \mathrm{cfs} @ 12.36 \mathrm{hrs}\), Volume= 0.926 af , Depth> 3.13"
Routed to Pond CB12 : Catch Basin 12
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 9,648 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
819 & 98 & Roofs, HSG B \\
138,282 & 55 & Woods, Good, HSG B \\
5,904 & 70 & Woods, Good, HSG C \\
\hline 154,653 & 56 & Weighted Average \\
153,834 & & \(99.47 \%\) Pervious Area \\
819 & & \(0.53 \%\) Impervious Area
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{aligned}
& \text { Capacity } \\
& \text { (cfs) }
\end{aligned}
\] & Description & \\
\hline 5.0 & 37 & 0.0160 & 0.12 & & Sheet Flow,
Grass: Short \(n=0.150 \quad\) P2 \(=3.02{ }^{\prime \prime}\) & \\
\hline 9.0 & 29 & 0.0160 & 0.05 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \[
P 2=3.02^{\prime \prime}
\] \\
\hline 3.2 & 20 & 0.1000 & 0.10 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & P2= 3.02" \\
\hline 3.4 & 14 & 0.0430 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.5 & 32 & 0.0430 & 1.04 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.2 & 41 & 0.4400 & 3.32 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 2.1 & 132 & 0.0450 & 1.06 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \\
\hline 0.6 & 53 & 0.0800 & 1.41 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline
\end{tabular}
24.0358 Total

\section*{Summary for Subcatchment 22S: SUBCATCHMENT 22S}

Runoff \(=6.10 \mathrm{cfs} @ 12.25 \mathrm{hrs}\), Volume= \(\quad 0.614\) af, Depth> 3.82"
Routed to Pond 10P : Bioretention
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 7,612 & 98 & Paved parking, HSG B \\
39,991 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
36,336 & 55 & Woods, Good, HSG B \\
\hline 83,939 & 62 & Weighted Average \\
76,327 & & 90.93\% Pervious Area \\
7,612 & & \(9.07 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description & \\
\hline 4.3 & 37 & 0.1620 & 0.14 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 3.5 & 43 & 0.3720 & 0.21 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \[
P 2=3.02^{\prime \prime}
\] \\
\hline 5.1 & 20 & 0.0310 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.8 & 44 & 0.0310 & 0.88 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 51 & 0.2350 & 2.42 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.8 & 83 & 0.0240 & 0.77 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 1.5 & 70 & 0.0229 & 0.76 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 23S: SUBCATCHMENT 23S}

Runoff \(=1.95 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume \(=\quad 0.147\) af, Depth> 6.56"
Routed to Pond 11P : EcoRaster
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100 -Year 24 -Hour Rainfall=8.36"

4.739 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 24S: SUBCATCHMENT 24S}

Runoff \(=\quad 1.71 \mathrm{cfs} @ 12.19 \mathrm{hrs}\), Volume= \(\quad 0.156\) af, Depth> 3.37"
Routed to Pond 12P : Dry Well
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Area (sf) & CN & escription & & & \\
\hline & \[
\begin{array}{r}
15,170 \\
8,831 \\
221
\end{array}
\] & \[
\begin{aligned}
& \hline 55 \\
& 61 \\
& 98 \\
& \hline
\end{aligned}
\] & \multicolumn{4}{|l|}{Woods, Good, HSG B \(>75 \%\) Grass cover, Good, HSG B Roofs, HSG B} \\
\hline & \[
\begin{array}{r}
24,222 \\
24,001 \\
221
\end{array}
\] & 58 & \multicolumn{4}{|l|}{Weighted Average 99.09\% Pervious Area 0.91\% Impervious Area} \\
\hline \[
\begin{gathered}
\mathrm{Tc} \\
(\min)
\end{gathered}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description & \\
\hline 8.1 & 70 & 0.1190 & 0.14 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & P2 \(=3.02^{\prime \prime}\) \\
\hline 3.3 & 30 & 0.2110 & 0.15 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(P 2=3.02{ }^{\prime \prime}\) \\
\hline 0.1 & 8 & 0.2110 & 2.30 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \\
\hline 0.3 & 35 & 0.0570 & 1.67 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 1.0 & 61 & 0.0197 & 0.98 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 25S: SUBCATCHMENT 25S}
Runoff \(=\quad 4.91\) cfs @ 12.23 hrs, Volume \(=\quad 0.484\) af, Depth> 3.94"

Routed to Pond 9P : 18" HDPE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{rrl}
Area \((\mathrm{sf})\) & CN & Description \\
\hline 23,000 & 55 & Woods, Good, HSG B \\
33,757 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
7,438 & 98 & Paved parking, HSG B \\
\hline 64,195 & 63 & Weighted Average \\
56,757 & & \(88.41 \%\) Pervious Area \\
7,438 & & \(11.59 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity
(cfs) & Description & \\
\hline 6.9 & 30 & 0.0330 & 0.07 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 2.9 & 23 & 0.1740 & 0.13 & & Sheet Flow, & \\
\hline 2.0 & 25 & 0.4800 & 0.20 & & Woods: Light underbrush \(\mathrm{n}=0.400\)
Sheet Flow, & P2 \(=3.02\) " \\
\hline 2.7 & 22 & 0.1820 & 0.13 & & \begin{tabular}{l}
Woods: Light underbrush \(n=0.400\) \\
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{P} 2=3.02^{\prime \prime} \\
& \mathrm{P} 2=3.02^{\prime \prime}
\end{aligned}
\] \\
\hline 0.2 & 46 & 0.5000 & 4.95 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 1.8 & 222 & 0.0880 & 2.08 & & Shallow Concentrated Flow, Short Grass Pasture \(\mathrm{Kv}=7.0 \mathrm{fps}\) & \\
\hline
\end{tabular}
16.5368 Total

\section*{Summary for Subcatchment 30S: Subcatchment 30S}

Runoff \(=\quad 4.61 \mathrm{cfs}\) @ 12.21 hrs , Volume= 0.439 af, Depth> 3.14" Routed to Reach AP3 : Analysis Point 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Area (sf)} & CN & \multicolumn{4}{|l|}{Description} \\
\hline & \[
\begin{array}{r}
6,678 \\
66,484 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 61 \\
& 55
\end{aligned}
\] & \(75 \%\) Grass oods, Good & \begin{tabular}{l}
s cover, G \\
ad, HSG B
\end{tabular} & od, HSG B & \\
\hline & \[
\begin{aligned}
& 73,162 \\
& 73,162
\end{aligned}
\] & 56 & eighted A \(00.00 \%\) P & verage ervious A & & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ftft)
\end{tabular} & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description & \\
\hline 5.5 & 36 & 0.0830 & 0.11 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 6.9 & 64 & 0.1500 & 0.15 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \[
P 2=3.02^{\prime \prime}
\] \\
\hline 0.1 & 16 & 0.1500 & 1.94 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 40 & 0.1000 & 1.58 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.9 & 67 & 0.0600 & 1.22 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 76 & 0.3420 & 2.92 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 14.2 & 299 & Total & & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 31S: Subcatchment 31S}
Runoff \(=8.99\) cfs @ 12.33 hrs, Volume \(=1.022\) af, Depth> 3.36"

Routed to Reach 4Ra : Flow Through Subcatchment 30S
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & ea (sf) & CN & escription & & \\
\hline & \[
\begin{aligned}
& 17,872 \\
& 15,366 \\
& 25,807
\end{aligned}
\] & \[
\begin{aligned}
& 61 \\
& 55 \\
& 70 \\
& \hline
\end{aligned}
\] & \multicolumn{3}{|l|}{>75\% Grass cover, Good, HSG B Woods, Good, HSG B Woods, Good, HSG C} \\
\hline & \[
\begin{aligned}
& 59,045 \\
& 59,045
\end{aligned}
\] & 58 & \multicolumn{2}{|l|}{Weighted Average 100.00\% Pervious Area} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope
(ft/ft) & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) } \\
\hline
\end{array}
\] & Description \\
\hline 12.8 & 83 & 0.0540 & 0.11 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 1.7 & 17 & 0.3460 & 0.17 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400 \mathrm{P} 2=3.02\) "
\end{tabular} \\
\hline 1.0 & 168 & 0.3460 & 2.94 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 0.2 & 16 & 0.1250 & 1.77 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 1.9 & 53 & 0.0090 & 0.47 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) \\
\hline 5.1 & 256 & 0.0136 & 0.84 & 282.32 & Trap/Vee/Rect Channel Flow, Bot.W=44.00' \(\mathrm{D}=4.00^{\prime} \mathrm{Z}=10.0 \mathrm{I}^{\prime}\) ' Top. \(\mathrm{W}=124.00^{\prime}\) \(\mathrm{n}=0.400\) Sheet flow: Woods+light brush \\
\hline
\end{tabular}

\subsection*{22.7593 Total}

\section*{Summary for Subcatchment 32S: SUBCATCHMENT 32S}

Runoff \(=0.63 \mathrm{cfs} @ 12.12 \mathrm{hrs}\), Volume= \(\quad 0.049\) af, Depth> 3.72" Routed to Pond 6P : Focal Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\)
Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 6,935 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
\hline 6,935 & & \(100.00 \%\) Pervious Area
\end{tabular}

2.4149 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 102S: SUBCATCHMENT 102S}
```

Runoff = 1.28 cfs @ 12.09 hrs, Volume= 0.093 af, Depth> 4.65"
Routed to Pond CB2 : Catch Basin 2

```

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100 -Year 24 -Hour Rainfall \(=8.36^{\prime \prime}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Area (sf)} & CN & Description & & \\
\hline & \[
\begin{aligned}
& 2,117 \\
& 8,309 \\
& \hline
\end{aligned}
\] & & \multicolumn{3}{|l|}{\begin{tabular}{l}
Paved parking, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{array}{r}
10,426 \\
8,309 \\
2,117
\end{array}
\] & 69 & \multicolumn{3}{|l|}{Weighted Average 79.69\% Pervious Area 20.31\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) } \\
\hline
\end{array}
\] & Description \\
\hline 1.4 & 41 & 0.5000 & 0.50 & & Sheet Flow,
Grass: Short \(\mathrm{n}=0.150 \quad \mathrm{P} 2=3.02\) " \\
\hline 1.5 & 19 & 0.0800 & 0.21 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 40 & 0.0800 & 1.94 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 102 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
3.5202 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 103S: SUBCATCHMENT 103S}

\author{
Runoff \(=\quad 1.30 \mathrm{cfs}\) @ 12.09 hrs, Volume= \(\quad 0.094\) af, Depth> 4.65" \\ Routed to Pond CB3 : Catch Basin 3
}

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100 -Year 24-Hour Rainfall=8.36"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & a (sf) & CN & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Paved parking, HSG B >75\% Grass cover, Good, HSG B
\end{tabular}}} \\
\hline & \[
\begin{array}{r}
2,166 \\
8,449 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 98 \\
& 61
\end{aligned}
\] & & & \\
\hline & \[
\begin{array}{r}
10,615 \\
8,449 \\
2,166
\end{array}
\] & 69 & \multicolumn{2}{|l|}{Weighted Average 79.59\% Pervious Area 20.41\% Impervious Area} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity
(cfs) & Description \\
\hline 1.3 & 39 & 0.5000 & 0.50 & & Sheet Flow,
Grass: Short \(\mathrm{n}=0.150 \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 1.7 & 21 & 0.0800 & 0.21 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 40 & 0.0800 & 1.94 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 110 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
3.6210 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 104S: SUBCATCHMENT 104 S}
Runoff \(=\)
Routed to Pond CB4 \(:\) Catch Basin 4 \(\quad 1.08\) cfs @ 12.09 hrs, Volume \(=\quad 0.078\) af, Depth> 4.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100 -Year 24 -Hour Rainfall \(=8.36^{\prime \prime}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN D & \multicolumn{3}{|l|}{Description} \\
\hline & \[
\begin{aligned}
& 2,094 \\
& 6,469
\end{aligned}
\] & \[
\begin{aligned}
& 98 \\
& 61
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
Paved parking, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{aligned}
& 8,563 \\
& 6,469 \\
& 2,094
\end{aligned}
\] & 70 & \[
\begin{aligned}
& \text { Veighted A } \\
& 5.55 \% \text { Per } \\
& 4.45 \% \text { Imp }
\end{aligned}
\] & verage vious Area ervious A & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 1.3 & 40 & 0.5000 & 0.50 & & Sheet Flow, Grass: Short \(n=0.150 \quad P 2=3.02^{\prime \prime}\) \\
\hline 1.8 & 23 & 0.0800 & 0.21 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 37 & 0.0800 & 1.91 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 92 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
3.7192 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 105S: SUBCATCHMENT 105S}
Runoff \(=\quad 0.97 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.070 \mathrm{af}\), Depth> 4.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{rrl}
Area \((\mathrm{sf})\) & CN & Description \\
\hline 1,895 & 98 & Paved parking, HSG B \\
5,790 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
\hline 7,685 & 70 & Weighted Average \\
5,790 & & \(75.34 \%\) Pervious Area \\
1,895 & & \(24.66 \%\) Impervious Area
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{rrrrll}
\begin{tabular}{r}
Tc \\
\((\mathrm{min})\)
\end{tabular} & \begin{tabular}{r}
Length \\
\((\mathrm{ffeet})\)
\end{tabular} & \begin{tabular}{r}
Slope \\
\((\mathrm{ffft})\)
\end{tabular} & \begin{tabular}{r}
Velocity \\
\((\mathrm{ft} / \mathrm{sec})\)
\end{tabular} & \begin{tabular}{r}
Capacity \\
\((\mathrm{cfs})\)
\end{tabular} & Description \\
\hline 1.3 & 40 & 0.5000 & 0.50 & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(\mathrm{n}=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
2.1 & 28 & 0.0800 & 0.22 & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(\mathrm{n}=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
0.3 & 32 & 0.0800 & 1.85 & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(\mathrm{n}=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\) \\
Shallow Concentrated Flow, \\
Paved Kv=20.3 fps
\end{tabular} \\
\hline
\end{tabular}
4.0198 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 106S: SUBCATCHMENT 106S}
Runoff \(=\quad 1.07 \mathrm{cfs}\) @ 12.09 hrs , Volume= \(\quad 0.077\) af, Depth> 4.77"

Routed to Pond CB6 : Catch Basin 6
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100 -Year 24 -Hour Rainfall \(=8.36^{\prime \prime}\)

2.5150 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 107S: SUBCATCHMENT 107 S}

Runoff \(=1.13 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.082\) af, Depth> 4.65" Routed to Pond CB7 : Catch Basin 7

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & escription & & \\
\hline & \[
\begin{aligned}
& 2,034 \\
& 7,124 \\
& \hline
\end{aligned}
\] & & \multicolumn{3}{|l|}{\begin{tabular}{l}
Paved parking, HSG B \\
>75\% Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{aligned}
& 9,158 \\
& 7,124 \\
& 2,034
\end{aligned}
\] & 69 & \multicolumn{2}{|l|}{Weighted Average 77.79\% Pervious Area 22.21\% Impervious Are} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & \begin{tabular}{l}
Capacity \\
(cfs)
\end{tabular} & Description \\
\hline 1.3 & 40 & 0.5000 & 0.50 & & Sheet Flow, Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02\) " \\
\hline 1.4 & 17 & 0.0800 & 0.20 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.4 & 43 & 0.0800 & 1.97 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.3 & 100 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
3.4200 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 108S: SUBCATCHMENT 108S}

Runoff \(=\quad 0.73 \mathrm{cfs}\) @ 12.09 hrs , Volume= \(\quad 0.054\) af, Depth> 5.48"
Routed to Pond CB8 : Catch Basin 8
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & Description & & \\
\hline & \[
\begin{aligned}
& 2,096 \\
& 3,013
\end{aligned}
\] & & \multicolumn{3}{|l|}{Paved parking, HSG B \(>75 \%\) Grass cover, Good, HSG B} \\
\hline & \[
\begin{aligned}
& 5,109 \\
& 3,013 \\
& 2,096
\end{aligned}
\] & 76 & \multicolumn{2}{|l|}{Weighted Average 58.97\% Pervious Area 41.03\% Impervious Area} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 0.6 & 15 & 0.5000 & 0.41 & & Sheet Flow,
Grass: Short \(n=0.150 \quad P 2=3.02^{\prime \prime}\) \\
\hline 1.6 & 20 & 0.0800 & 0.21 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.5 & 65 & 0.0800 & 2.13 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.0 & 8 & 0.0800 & 5.74 & & \begin{tabular}{l}
Shallow Concentrated Flow, \\
Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\)
\end{tabular} \\
\hline
\end{tabular}
2.7108 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 109S: SUBCATCHMENT 109 S}

\author{
Runoff \(=0.83 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.066\) af, Depth> 7.52"
}

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Paved parking, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}}} \\
\hline & \[
\begin{array}{r}
3,914 \\
677
\end{array}
\] & & & & \\
\hline & \[
\begin{array}{r}
4,591 \\
677 \\
3,914
\end{array}
\] & & \multicolumn{2}{|l|}{\begin{tabular}{l}
Weighted Average \\
14.75\% Pervious Area \\
85.25\% Impervious Area
\end{tabular}} & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & \begin{tabular}{l}
Capacity \\
(cfs)
\end{tabular} & Description \\
\hline 4.4 & 35 & 0.0200 & 0.13 & & Sheet Flow,
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 0.7 & 65 & 0.0380 & 1.58 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.2 & 47 & 0.0430 & 4.21 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline 0.1 & 35 & 0.0570 & 4.85 & & Shallow Concentrated Flow, Paved Kv= 20.3 fps \\
\hline 0.4 & 140 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved \(\mathrm{Kv}=20.3 \mathrm{fps}\) \\
\hline
\end{tabular}
5.8322 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 110S: SUBCATCHMENT 1105}

\author{
Runoff \(=\quad 1.12\) cfs @ 12.15 hrs, Volume= 0.094 af, Depth> 5.48"
}

Routed to Pond CB10: Catch Basin 10
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{rrl}
Area \((\mathrm{sf})\) & CN & Description \\
\hline 4,036 & 98 & Paved parking, HSG B \\
3,001 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
1,917 & 55 & Woods, Good, HSG B \\
\hline 8,954 & 76 & Weighted Average \\
4,918 & & 54.93\% Pervious Area \\
4,036 & & \(45.07 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope
\[
(\mathrm{ft} / \mathrm{ft})
\] & Velocity (ft/sec) & Capacity
(cfs) & Description & \\
\hline 4.7 & 40 & 0.1500 & 0.14 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.4\)
\end{tabular} & \[
\mathrm{P} 2=3.02^{\prime \prime}
\] \\
\hline 5.3 & 60 & 0.2500 & 0.19 & & Sheet Flow, & \\
\hline 0.1 & 15 & 0.2500 & 2.50 & & Woods: Light underbrush \(n=0.400\) Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \(\mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.1 & 23 & 0.5000 & 4.95 & & Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps & \\
\hline 0.1 & 14 & 0.0800 & 1.98 & & Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps & \\
\hline 0.1 & 41 & 0.0800 & 5.74 & & Shallow Concentrated Flow, Paved Kv= 20.3 fps & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 111S: SUBCATCHMENT 111S}

Runoff \(=\quad 0.98 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume= \(\quad 0.072 \mathrm{af}\), Depth> 3.72" Routed to Reach B4R : BENCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100 -Year 24 -Hour Rainfall \(=8.36^{\prime \prime}\)

\section*{Summary for Subcatchment 113S: SUBCATCHMENT 1135}
```

Runoff = 0.76 cfs @ 12.09 hrs, Volume= 0.064 af, Depth> 8.12"
Routed to Pond CB13 : Catch Basin 13

```

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{rrl}
Area (sf) & CN & Description \\
\hline 4,154 & 98 & Paved parking, HSG B \\
\hline 4,154 & & \(100.00 \%\) Impervious Area
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min}) \\
\hline
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ff/tt)
\end{tabular} & Velocity (ft/sec) & Capacity
\(\qquad\) & Description \\
\hline 1.0 & 100 & 0.0330 & 1.63 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.2 & 44 & 0.0330 & 3.69 & & Shallow Concentrated Flow, Paved Kv=20.3 fps \\
\hline
\end{tabular}
1.2144 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 114S: SUBCATCHMENT 114S}
Runoff \(=3.47\) cfs @ 12.12 hrs, Volume= \(\quad 0.301\) af, Depth> 7.39" Routed to Pond CB14 : Catch Basin 14

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100-Year 24-Hour Rainfall=8.36"

\section*{Summary for Subcatchment 115S: SUBCATCHMENT 115S}

Runoff \(=\quad 2.87 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume \(=\quad 0.236\) af, Depth> 7.88" Routed to Pond CB15 : Catch Basin 15

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN & \multicolumn{3}{|l|}{Description} \\
\hline & \[
\begin{array}{r}
3,294 \\
11,537 \\
852 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 98 \\
& 98 \\
& 61 \\
& \hline
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
Roofs, HSG B \\
Paved parking, HSG B \\
>75\% Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{array}{r}
15,683 \\
852 \\
14,831
\end{array}
\] & 96 & \multicolumn{3}{|l|}{Weighted Average 5.43\% Pervious Area 94.57\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 0.8 & 40 & 0.0100 & 0.84 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(\mathrm{n}=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 2.1 & 10 & 0.0100 & 0.08 & & Sheet Flow, Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.5 & 50 & 0.0500 & 1.68 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad\) P2 \(=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.6 & 164 & 0.0500 & 4.54 & & Shallow Concentrated Flow, Paved Kv= 20.3 fps \\
\hline
\end{tabular}
4.0264 Total, Increased to minimum \(\mathrm{Tc}=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 116S: SUBCATCHMENT 116S}

Runoff \(=\quad 4.25 \mathrm{cfs}\) @ 12.09 hrs , Volume= 0.343 af, Depth> 7.64" Routed to Pond CB16 : Catch Basin 16

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & rea (sf) & CN D & \multicolumn{3}{|l|}{Description} \\
\hline & \begin{tabular}{l}
3,185 \\
17,824 \\
2,496
\end{tabular} & \[
\begin{aligned}
& 98 \\
& 98 \\
& 61 \\
& \hline
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
Roofs, HSG B \\
Paved parking, HSG B \\
\(>75 \%\) Grass cover, Good, HSG B
\end{tabular}} \\
\hline & \[
\begin{array}{r}
23,505 \\
21,496 \\
21,009
\end{array}
\] & 94 & \multicolumn{3}{|l|}{Weighted Average 10.62\% Pervious Area 89.38\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope
(ft/ft) & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 3.7 & 22 & 0.0120 & 0.10 & & Sheet Flow,
Grass: Short \(n=0.150 \quad \mathrm{P} 2=3.02{ }^{\prime \prime}\) \\
\hline 0.3 & 16 & 0.0200 & 0.93 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(\mathrm{n}=0.011 \quad \mathrm{P} 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline
\end{tabular}
4.038 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 117S: SUBCATCHMENT 1175}

Runoff \(=\quad 2.89\) cfs @ 12.19 hrs, Volume \(=\quad 0.275\) af, Depth> 6.43" Routed to Pond CB17 : Catch Basin 17

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}\), dt= 0.05 hrs Type III 24-hr 100 -Year 24 -Hour Rainfall \(=8.36\) "

\section*{Summary for Subcatchment 118S: SUBCATCHMENT 118S}

Runoff \(=3.96 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume \(=\quad 0.314\) af, Depth> 7.40"
Routed to Pond CB18 : Catch Basin 18
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{rrl}
Area \((\mathrm{sf})\) & CN & Description \\
\hline 4,495 & 98 & Roofs, HSG B \\
14,282 & 98 & Paved parking, HSG B \\
3,394 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
\hline 22,171 & 92 & Weighted Average \\
3,394 & & 15.31\% Pervious Area \\
18,777 & & \(84.69 \%\) Impervious Area
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description \\
\hline 4.6 & 60 & 0.0500 & 0.22 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.4 & 40 & 0.0500 & 1.61 & & \begin{tabular}{l}
Sheet Flow, \\
Smooth surfaces \(n=0.011 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} \\
\hline 0.1 & 20 & 0.0500 & 4.54 & & Shallow Concentrated Flow, Paved Kv=20.3 fps \\
\hline
\end{tabular}
5.1120 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 119S: SUBCATCHMENT 119S}
Runoff \(=\quad 2.48 \mathrm{cfs} @ 12.09\) hrs, Volume \(=\quad 0.202\) af, Depth> 7.76"

Routed to Pond CB19: Catch Basin 19
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100-Year 24-Hour Rainfall=8.36"

4.3124 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 204S: SUBCATCHMENT 204S}
Runoff \(=1.05 \mathrm{cfs} @ 12.34 \mathrm{hrs}\), Volume= \(\quad 0.121\) af, Depth> 3.24"

Routed to Reach B3R : BENCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year 24-Hour Rainfall=8.36"

Summary for Subcatchment 205S: SUBCATCHMENT 205S
Runoff \(=\quad 0.45 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume \(=\quad 0.033 \mathrm{af}\), Depth> 3.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Area (sf) & CN & escription & & & \\
\hline & \[
\begin{array}{r}
4,339 \\
288 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 61 \\
& 55
\end{aligned}
\] & \multicolumn{4}{|l|}{>75\% Grass cover, Good, HSG B Woods, Good, HSG B} \\
\hline & \[
\begin{aligned}
& 4,627 \\
& 4,627
\end{aligned}
\] & 61 & \multicolumn{2}{|l|}{Weighted Average \(100.00 \%\) Pervious Area} & & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity (cfs) & Description & \\
\hline 1.8 & 22 & 0.5000 & 0.20 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(\mathrm{n}=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\prime \prime}\) \\
\hline 2.1 & 70 & 0.5000 & 0.56 & & \begin{tabular}{l}
Sheet Flow, \\
Grass: Short \(n=0.150 \quad P 2=3.02^{\prime \prime}\)
\end{tabular} & \\
\hline
\end{tabular}
3.992 Total, Increased to minimum Tc \(=6.0 \mathrm{~min}\)

\section*{Summary for Subcatchment 207S: SUBCATCHMENT 207S}
Runoff \(=0.85 \mathrm{cfs}\) @ 12.33 hrs , Volume= 0.096 af, Depth> 3.36"

Routed to Reach B1R : BENCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{rrl}
Area \((\mathrm{sf})\) & CN & Description \\
\hline 6,840 & 61 & \(>75 \%\) Grass cover, Good, HSG B \\
8,162 & 55 & Woods, Good, HSG B \\
\hline 15,002 & 58 & Weighted Average \\
15,002 & & \(100.00 \%\) Pervious Area
\end{tabular}

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{rrrrl}
\begin{tabular}{r}
Tc \\
\((\mathrm{min})\)
\end{tabular} & \begin{tabular}{r}
Length \\
\((\mathrm{feet})\)
\end{tabular} & \begin{tabular}{r}
Slope \\
\((\mathrm{ft} / \mathrm{ft})\)
\end{tabular} & \begin{tabular}{r}
Velocity \\
\((\mathrm{ft/sec})\)
\end{tabular} & \begin{tabular}{r}
Capacity \\
\((\mathrm{cfs})\)
\end{tabular} \\
\hline 20.2 & 100 & 0.0250 & 0.08 & \begin{tabular}{l}
Description \\
0.2
\end{tabular} \\
10 & 0.0250 & 0.79 & \begin{tabular}{l}
Sheet Flow, \\
Whads: Light underbrush \(\mathrm{n}=0.400 \quad \mathrm{P} 2=3.02 "\) \\
0.7
\end{tabular} & 56 \\
Shallow Concentrated Flow,
\end{tabular}

\section*{Summary for Subcatchment 211S: SUBCATCHMENT 211S}

Runoff \(=1.59\) cfs @ 12.28 hrs , Volume=
0.171 af, Depth> 3.13"

Routed to Reach B6R : BENCH
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100 -Year 24 -Hour Rainfall=8.36"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Area (sf)} & CN D & \multicolumn{4}{|l|}{Description} \\
\hline & \[
\begin{array}{r}
6,380 \\
22,212
\end{array}
\] & \multicolumn{5}{|l|}{\(61>75 \%\) Grass cover, Good, HSG B 55 Woods, Good, HSG B} \\
\hline \multicolumn{2}{|r|}{\[
\begin{aligned}
& 28,592 \\
& 28,592
\end{aligned}
\]} & 56 & \multicolumn{2}{|l|}{Weighted Average 100.00\% Pervious Area} & & \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity
(cfs) & Description & \\
\hline 15.0 & 83 & 0.0361 & 0.09 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & P2 \(=3.02{ }^{\prime \prime}\) \\
\hline 2.1 & 17 & 0.2140 & 0.14 & & \begin{tabular}{l}
Sheet Flow, \\
Woods: Light underbrush \(n=0.400\)
\end{tabular} & \(\mathrm{P} 2=3.02^{\text {n }}\) \\
\hline 0.1 & 11 & 0.2140 & 2.31 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.3 & 33 & 0.1820 & 2.13 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.4 & 45 & 0.1780 & 2.11 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.2 & 34 & 0.2350 & 2.42 & & Shallow Concentrated Flow, Woodland Kv=5.0 fps & \\
\hline 0.7 & 45 & 0.0440 & 1.05 & & Shallow Concentrated Flow, Woodland Kv= 5.0 fps & \\
\hline 0.4 & 32 & 0.0630 & 1.25 & & Shallow Concentrated Flow, Woodland \(\mathrm{Kv}=5.0 \mathrm{fps}\) & \\
\hline 0.1 & 28 & 0.5000 & 4.95 & & Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps & \\
\hline 19.3 & 328 & Total & & & & \\
\hline
\end{tabular}

\section*{Summary for Subcatchment 305S: SUBCATCHMENT 305S}
Runoff \(=\quad 0.12 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume= \(\quad 0.009\) af, Depth> 3.03" Routed to Reach B5R : BENCH

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}\) Type III 24-hr 100-Year 24-Hour Rainfall=8.36"

\begin{tabular}{|c|c|c|c|c|c|}
\hline & rea (sf) & CN & \multicolumn{3}{|l|}{Description} \\
\hline & 7,416 & 98 R & \multicolumn{3}{|l|}{Roofs, HSG B} \\
\hline & 7,416 & \multicolumn{4}{|c|}{100.00\% Impervious Area} \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & Slope (ft/ft) & Velocity (ft/sec) & \[
\begin{array}{r}
\text { Capacity } \\
\text { (cfs) }
\end{array}
\] & Description \\
\hline 6.0 & & & & & Direct Entry \\
\hline
\end{tabular}

\section*{Summary for Subcatchment ROOF 3: Back of Roof}
Runoff \(=1.36\) cfs @ 12.09 hrs, Volume \(=\quad 0.115\) af, Depth> 8.12" Routed to Reach RD3 : RD 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year 24-Hour Rainfall=8.36"
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Area (sf) & CN D & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Roofs, HSG B}} \\
\hline & 7,416 & 98 & & & \\
\hline & 7,416 & & 100.00\% Im & pervious A & rea \\
\hline \[
\begin{array}{r}
\mathrm{Tc} \\
(\mathrm{~min})
\end{array}
\] & Length (feet) & \begin{tabular}{l}
Slope \\
(ft/ft)
\end{tabular} & Velocity (ft/sec) & Capacity
\(\qquad\) & Description \\
\hline 6.0 & & & & & Direct Entry \\
\hline
\end{tabular}

\section*{Summary for Reach 4Ra: Flow Through Subcatchment 30 S}

Routed to Reach 4Rb : Flow Through Subcatchment 30 S
Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.96 \mathrm{fps}\), Min. Travel Time \(=0.7 \mathrm{~min}\)
Avg. Velocity \(=0.40 \mathrm{fps}\), Avg. Travel Time \(=1.7 \mathrm{~min}\)
Peak Storage= 376 cf @ 12.34 hrs
Average Depth at Peak Storage \(=0.82^{\prime}\), Surface Width= 17.26'
Bank-Fuil Depth \(=2.00^{\prime}\) Flow Area \(=36.0\) sf, Capacity \(=62.15\) cfs
\(27.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush
Length \(=40.0^{\prime}\) Slope \(=0.1500 \mathrm{I} /\)
Inlet Invert=252.00', Outlet Invert=246.00'

\section*{Summary for Reach 4Rb: Flow Through Subcatchment 30 S}
[61] Hint: Exceeded Reach 4Ra outlet invert by 0.41' @ 12.35 hrs
Inflow Area \(=\quad 3.651\) ac, \(\quad 0.00 \%\) Impervious, Inflow Depth \(>3.36\) " for 100-Year 24-Hour event Inflow = 8.99 cfs @ 12.34 hrs , Volume= 1.021 af Outflow = \(8.98 \mathrm{cfs} @ 12.36 \mathrm{hrs}\), Volume= \(\quad 1.020 \mathrm{af}\), Atten= \(0 \%\), Lag= 1.1 min

Routed to Reach AP3 : Analysis Point 3
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.83 \mathrm{fps}, \mathrm{Min}\). Travel Time \(=1.4 \mathrm{~min}\)
Avg. Velocity \(=0.35 \mathrm{fps}\), Avg. Travel Time \(=3.4 \mathrm{~min}\)
Peak Storage= 766 cf @ 12.36 hrs
Average Depth at Peak Storage \(=0.41^{\prime}\), Surface Width= 39.42'
Bank-Full Depth \(=2.00^{\prime}\) Flow Area= 116.0 sf, Capacity= 276.81 cfs
\(87.00^{\prime} \times 2.00^{\prime}\) deep Parabolic Channel, \(n=0.400\) Sheet flow: Woods+light brush
Length= \(71.0^{\prime}\) Slope= 0.2817 '/'
Inlet Invert= 246.00', Outlet Invert= 226.00'

\section*{Summary for Reach AP1: Analysis Point 1}
[40] Hint: Not Described (Outflow=Inflow)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach AP2: Analysis Point 2}
[40] Hint: Not Described (Outflow=Inflow)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach AP3: Analysis Point 3}
[40] Hint: Not Described (Outflow=Inflow)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, \(\mathrm{dt}=0.05 \mathrm{hrs} / 9\)

\section*{Summary for Reach B1R: BENCH}

\section*{Summary for Reach B2R: BENCH}
[62] Hint: Exceeded Reach B1R OUTLET depth by 0.08 ' @ 12.10 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=1.24 \mathrm{fps}\), Min. Travel Time \(=1.6 \mathrm{~min}\)
Avg. Velocity \(=0.61 \mathrm{fps}\), Avg. Travel Time \(=3.2 \mathrm{~min}\)
Peak Storage= 95 cf @ 12.37 hrs
Average Depth at Peak Storage \(=0.45^{\prime}\), Surface Width= \(3.62^{\prime}\)
Bank-Full Depth= \(1.00^{\prime}\) Flow Area= 4.0 sf, Capacity \(=8.45 \mathrm{cfs}\)
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= \(6.02 .0 \mathrm{I} / \mathrm{\prime}\) Top Width= \(8.00^{\prime}\)
Length \(=116.0^{\prime}\) Slope \(=0.1207^{\prime \prime} /\)
Inlet Invert= 264.00', Outlet Invert= 250.00'

\section*{Summary for Reach B3R: BENCH}
[62] Hint: Exceeded Reach B2R OUTLET depth by 0.15 ' @ 12.35 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity= 1.47 fps , Min. Travel Time \(=1.2 \mathrm{~min}\)
Avg. Velocity \(=0.72 \mathrm{fps}\), Avg. Travel Time \(=2.4 \mathrm{~min}\)
Peak Storage= 148 cf @ 12.36 hrs
Average Depth at Peak Storage \(=0.60^{\prime}\), Surface Width=4.79'
Bank-Full Depth= \(1.00^{\prime}\) Flow Area= 4.0 sf , Capacity= 8.30 cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= \(6.02 .0 \mathrm{\prime} / \mathrm{\prime}\) Top Width= 8.00
Length \(=103.0\) ' Slope \(=0.1165\) ' \(/\)
Inlet Invert= 250.00', Outlet Invert= 238.00'

\section*{Summary for Reach B4R: BENCH}
[62] Hint: Exceeded Reach B3R OUTLET depth by \(0.28^{\prime}\) @ 12.35 hrs
Inflow Area \(=1.820 \mathrm{ac}, 0.00 \%\) Impervious, Inflow Depth > 3.30" for 100-Year 24-Hour event
Inflow \(=4.08 \mathrm{cfs}\) @ 12.33 hrs , Volume \(=0.501 \mathrm{af}\)
Outflow = \(4.04 \mathrm{cfs} @ 12.37 \mathrm{hrs}\), Volume \(=\quad 0.500 \mathrm{af}\), Atten \(=1 \%\), Lag= 2.2 min
Routed to Pond CB11 : Catch Basin 11
Overflow = 0.00 cfs @ 0.00 hrs , Volume= 0.000 af
Routed to Pond CB2 : Catch Basin 2
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=1.32 \mathrm{fps}\), Min. Travel Time \(=2.9 \mathrm{~min}\)
Avg. Velocity \(=0.64 \mathrm{fps}\), Avg. Travel Time \(=6.0 \mathrm{~min}\)
Peak Storage= 711 cf @ 12.37 hrs
Average Depth at Peak Storage \(=0.88^{\prime}\), Surface Width= 7.00'
Bank-Full Depth \(=1.00^{\prime}\) Flow Area= 4.0 sf , Capacity= 5.76 cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= 6.02 .0 ' \(/\) Top Width= 8.00'
Length \(=232.0^{\prime}\) Slope \(=0.0560\) '/'
Inlet Invert=238.00', Outlet Invert=225.00'

\section*{Summary for Reach B5R: BENCH}

Routing by Dyn-Stor-Ind method, Time Span \(=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=0.63 \mathrm{fps}\), Min. Travel Time \(=0.3 \mathrm{~min}\)
Avg. Velocity \(=0.28 \mathrm{fps}\), Avg. Travel Time \(=0.7 \mathrm{~min}\)
Peak Storage= 2 cf @ 12.10 hrs
Average Depth at Peak Storage= \(0.22^{\prime}\), Surface Width=1.74'
Bank-Full Depth=1.00' Flow Area= 4.0 sf, Capacity= 7.02 cfs
Any excess flow will be diverted to the secondary overflow
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value=6.0 \(2.0 \mathrm{l} / \mathrm{I}\) Top Width \(=8.00^{\prime}\)
Length= 12.0' Slope= 0.0833 '/'
Inlet Invert=274.00', Outlet Invert= 273.00'

\section*{Summary for Reach B6R: BENCH}

Inflow Area \(=0.656 \mathrm{ac}, \quad 0.00 \%\) Impervious, Inflow Depth > 3.13" for 100-Year 24-Hour event Inflow \(=1.59 \mathrm{cfs}\) @ 12.28 hrs , Volume \(=0.171 \mathrm{af}\) Outflow \(=\quad 1.57 \mathrm{cfs} @ 12.32 \mathrm{hrs}\), Volume= \(\quad 0.171 \mathrm{af}\), Atten= \(1 \%\), Lag= 2.2 min Routed to Reach B4R : BENCH

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=1.03 \mathrm{fps}\), Min. Travel Time \(=2.7 \mathrm{~min}\)
Avg. Velocity \(=0.50 \mathrm{fps}\), Avg. Travel Time \(=5.5 \mathrm{~min}\)
Peak Storage= 252 cf @ 12.32 hrs
Average Depth at Peak Storage= \(0.62^{\prime}\), Surface Width= 4.94'
Bank-Full Depth=1.00' Flow Area= 4.0 sf, Capacity= 5.68 cfs
\(0.00^{\prime} \times 1.00^{\prime}\) deep channel, \(n=0.150\) Sheet flow over Short Grass
Side Slope Z-value= \(6.02 .01 /\) Top Width= 8.00'
Length \(=165.0^{\prime}\) Slope \(=0.0545{ }^{\prime} /\)
Inlet Invert=259.00', Outlet Invert=250.00'

\section*{Summary for Reach RD1: RD 1}
[52] Hint: Inlet/Outlet conditions not evaluated

Routed to Pond CB13 : Catch Basin 13

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=7.24 \mathrm{fps}\), Min. Travel Time \(=0.6 \mathrm{~min}\)
Avg. Velocity \(=2.52 \mathrm{fps}\), Avg. Travel Time \(=1.7 \mathrm{~min}\)
Peak Storage= 50 cf @ 12.10 hrs
Average Depth at Peak Storage= \(0.35^{\prime}\), Surface Width= \(0.67^{\prime}\)
Bank-Full Depth=0.67' Flow Area= 0.3 sf, Capacity \(=2.47\) cfs
8.0" Round Pipe
\(\mathrm{n}=0.013\) Corrugated PE, smooth interior
Length \(=264.0^{\prime}\) Slope \(=0.0417^{\prime} / \prime\)
Inlet Invert=276.00', Outlet Invert=265.00'

\section*{Summary for Reach RD2: RD 2}
[52] Hint: Inlet/Outlet conditions not evaluated
[90] Warning: Qout>Qin may require smaller dt or Finer Routing

Routed to Pond CB14 : Catch Basin 14
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, \(\mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=7.70 \mathrm{fps}\), Min. Travel Time \(=0.2 \mathrm{~min}\)
Avg. Velocity \(=2.67 \mathrm{fps}\), Avg. Travel Time \(=0.7 \mathrm{~min}\)
Peak Storage= 20 cf @ 12.09 hrs
Average Depth at Peak Storage=0.34', Surface Width=0.67'
Bank-Full Depth=0.67' Flow Area= 0.3 sf, Capacity= 2.68 cfs
8.0" Round Pipe
\(\mathrm{n}=0.013\) Corrugated PE , smooth interior
Length \(=110.0^{\prime}\) Slope \(=0.0491\) '/'
Inlet Invert= 269.00', Outlet Invert=263.60'

\section*{Summary for Reach RD3: RD 3}
[52] Hint: Inlet/Outlet conditions not evaluated
[90] Warning: Qout>Qin may require smaller dt or Finer Routing
Inflow Area \(=\quad 0.170 \mathrm{ac}, 100.00 \%\) Impervious, Inflow Depth \(>8.12\) " for 100-Year 24-Hour event Inflow \(=1.36\) cfs @ 12.09 hrs , Volume= 0.115 af
Outflow = \(\quad 1.37 \mathrm{cfs} @ 12.09 \mathrm{hrs}\), Volume= \(\quad 0.115 \mathrm{af}\), Atten= \(0 \%\), Lag= 0.3 min
Routed to Pond CB17 : Catch Basin 17
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Max. Velocity \(=5.44 \mathrm{fps}\), Min. Travel Time \(=0.3 \mathrm{~min}\)
Avg. Velocity \(=1.94 \mathrm{fps}\), Avg. Travel Time \(=0.9 \mathrm{~min}\)
Peak Storage= 25 cf @ 12.09 hrs
Average Depth at Peak Storage= 0.45 ', Surface Width= 0.62 '
Bank-Full Depth=0.67' Flow Area= 0.3 sf , Capacity= 1.71 cfs
8.0" Round Pipe
\(\mathrm{n}=0.013\) Corrugated PE, smooth interior
Length \(=100.0\) ' Slope \(=0.0200\) ' \(/\)
Inlet Invert= 268.00', Outlet Invert= 266.00'

\section*{Summary for Pond 1P: Infiltration Pocket}
[80] Warning: Exceeded Pond 3P by 1.03' @ 8.95 hrs (0.00 cfs 0.000 af)
 Routed to Reach AP1 : Analysis Point 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev= 198.81' @ 11.70 hrs Surf.Area= 393 sf Storage= 619 cf
Plug-Flow detention time \(=8.8 \mathrm{~min}\) calculated for 1.467 af (\(99 \%\) of inflow)
Center-of-Mass det. time= 3.7 min (904.6-901.0)
\begin{tabular}{crrr}
Volume & Invert & Avail.Storage & Storage Description \\
\hline\(\# 1\) & \(195.84^{\prime}\) & 619 cf & Custom Stage Data (Prismatic)_isted below (Recalc)
\end{tabular}
\begin{tabular}{rrrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Voids \\
\((\%)\)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 195.84 & 43 & 0.0 & 0 & 0 \\
195.85 & 43 & 40.0 & 0 & 0 \\
195.99 & 43 & 40.0 & 2 & 3 \\
196.00 & 43 & 100.0 & 0 & 3 \\
197.00 & 197 & 100.0 & 120 & 123 \\
198.00 & 263 & 100.0 & 230 & 353 \\
198.80 & 393 & 100.0 & 262 & 615 \\
198.81 & 393 & 100.0 & 4 & 619
\end{tabular}

Device Routing Invert Outlet Devices
\begin{tabular}{|c|c|c|c|}
\hline \#0 & Primary & 198.81' & Automatic Storage Overflow (Discharged without head) \\
\hline \multirow[t]{2}{*}{\#1} & \multirow[t]{2}{*}{Discarded} & 195.84' & \(0.300 \mathrm{in} / \mathrm{hr}\) Exfiltration over Surface area \\
\hline & & & Conductivity to Groundwater Elevation = 195.83' Phase-In=0.01' \\
\hline \multirow[t]{5}{*}{\#2} & \multirow[t]{5}{*}{Primary} & \(198.80{ }^{\prime}\) & 20.0' long \(\times 1.0{ }^{\prime}\) breadth Broad-Crested Rectangular Weir \\
\hline & & & Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80 \\
\hline & & & 2.503 .00 \\
\hline & & & Coef. (English) \(2.692 .722 .75 \quad 2.85 \quad 2.983 .083 .203 .283 .31\) \\
\hline & & & 3.303 .313 .32 \\
\hline
\end{tabular}

Discarded OutFlow Max=0.10 cfs @ 11.70 hrs HW=198.81' (Free Discharge)
—1=Exfiltration (Controls 0.10 cfs)
Primary OutFlow Max=0.05 cfs @ 12.48 hrs HW=198.81' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Weir Controls \(0.05 \mathrm{cfs} @ 0.27 \mathrm{fps}\))

\section*{Summary for Pond 2P: Stormwater Pond}

\begin{tabular}{rrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 196.00 & 2,494 & 0 & 0 \\
197.00 & 3,194 & 2,844 & 2,844 \\
198.00 & 3,961 & 3,578 & 6,422 \\
199.00 & 4,795 & 4,378 & 10,800 \\
199.49 & 5,237 & 2,458 & 13,257 \\
199.50 & 5,818 & 55 & 13,313 \\
200.00 & 6,296 & 3,029 & 16,341 \\
201.00 & 7,292 & 6,794 & 23,135 \\
202.00 & 8,346 & 7,819 & 30,954 \\
202.80 & 9,005 & 6,940 & 37,895 \\
202.81 & 9,005 & 90 & 37,985
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & \multirow[t]{4}{*}{Primary} & \multirow[t]{4}{*}{199.00'} & 12.0" Round Culvert \\
\hline & & & \(\mathrm{L}=26.0^{\prime} \mathrm{CPP}\), projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert=199.00' / 198.80' S=0.0077 '/ Cc= 0.900 \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 0.79 sf \\
\hline \#2 & Device 1 & 199.00' & 2.0" Vert. Orifice/Grate C=0.600 Limited to weir flow at low heads \\
\hline \#3 & Device 1 & 199.85' & 7.5" Vert. Orifice/Grate \(\mathrm{C}=0.600\) Limited to weir flow at low heads \\
\hline \#4 & Device 1 & 201.70' & 48.0" \(\times 48.0\) ' Horiz. Orifice/Grate \(\mathrm{C}=0.600\) \\
\hline & & & Limited to weir flow at low heads \\
\hline \multirow[t]{5}{*}{\#5} & \multirow[t]{5}{*}{Secondary} & \multirow[t]{5}{*}{201.80'} & 6.0' long x 6.0' breadth Broad-Crested Rectangular Weir \\
\hline & & & \(\begin{array}{llllllllllllll}\text { Head (feet) } & 0.20 & 0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60 & 1.80 & 2.00\end{array}\) \\
\hline & & & \(2.503 .003 .504 .004 .505 .00 \quad 5.50\) \\
\hline & & & Coef. (English) 2.372 .512 .702 .682 .682 .672 .6512 .651 .65 \\
\hline & & & 2.652 .662 .662 .672 .692 .722 .762 .83 \\
\hline
\end{tabular}

Primary OutFlow Max=4.79 cfs @ 12.49 hrs HW=202.07' TW=198.81' (Dynamic Tailwater)
-1=Culvert (Inlet Controls \(4.79 \mathrm{cfs} @ 6.10 \mathrm{fps}\))
-2=Orifice/Grate (Passes < 0.18 cfs potential flow)
-3=Orifice/Grate (Passes < 2.04 cfs potential flow)
4=Orifice/Grate (Passes < 11.86 cfs potential flow)
Secondary OutFlow Max=2.06 cfs @ 12.49 hrs HW=202.07' TW=198.81' (Dynamic Tailwater)
5=Broad-Crested Rectangular Weir(Weir Controls 2.06 cfs @ 1.26 fps)

\section*{Summary for Pond 3P: Stormfilter}
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=2)
Inflow Area \(=\quad 0.523\) ac, \(23.93 \%\) Impervious, Inflow Depth \(>4.40\) " for 100-Year 24-Hour event

Inflow =
Outflow =
Primary =
1.82 cfs @ 12.29 hrs, Volume=

Routed to Pond 1P : Infiltration Pocket
Secondary \(=0.00\) cfs @ 0.00 hrs , Volume= 0.000 af
Routed to Reach AP1 : Analysis Point 1
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

Prepared by Jones \& Beach Engineers Inc

Peak Elev= 198.96' @ 12.29 hrs Surf.Area= 295 sf Storage= 103 cf
Plug-Flow detention time \(=6.0 \mathrm{~min}\) calculated for 0.190 af (\(99 \%\) of inflow)
Center-of-Mass det. time \(=1.6 \mathrm{~min}(841.1-839.6)\)
\begin{tabular}{crrrr}
Volume & Invert & Avail.Storage & Storage Description \\
\hline\(\# 1\) & \(195.00^{\prime}\) & & 7 cf & \(1.00^{\prime} \mathrm{W} \times 2.00^{\prime} \mathrm{L} \times 3.40^{\prime} \mathrm{H}\) Prismatoid \\
\(\# 2\) & \(191.75^{\prime}\) & & 13 cf & \(1.00^{\prime} \mathrm{W} \times 2.00^{\prime} \mathrm{L} \times 6.65^{\prime} \mathrm{H}\) Prismatoid \\
\(\# 3\) & \(198.40^{\prime}\) & & 97 cf & Custom Stage Data (Prismatic)Listed below (Recalc) \\
\hline & & & 117 cf & Total Available Storage \\
Elevation & Surf.Area & Inc.Store & Cum.Store \\
(feet) & (sq-ft) & (cubic-feet) & (cubic-feet) \\
\hline 198.40 & 4 & & 0 & 0 \\
199.00 & 310 & & 94 & 94 \\
199.01 & & 310 & & 3
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & \multirow[t]{4}{*}{Primary} & \multirow[t]{4}{*}{196.10'} & 15.0" Round Culvert \\
\hline & & & \(\mathrm{L}=10.0^{\prime} \mathrm{CPP}\), projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert= 196.10'/ 196.00' S=0.0100'/' Cc= 0.900 \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf \\
\hline \multirow[t]{5}{*}{\#2} & \multirow[t]{5}{*}{Secondary} & \multirow[t]{5}{*}{199.00'} & 20.0' long \(\times 1.0^{\prime}\) breadth Broad-Crested Rectangular Weir \\
\hline & & & Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .80 \\
\hline & & & 2.503 .00 \\
\hline & & & Coef. (English) 2.692 .722 .752 .852 .983 .083 .203 .283 .31 \\
\hline & & & 3.303 .313 .32 \\
\hline
\end{tabular}

Primary OutFlow Max=1.81 cfs @ 12.29 hrs HW=198.96' TW=198.81' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 1.81 cfs @ 1.48 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=191.75' TW=0.00' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

\section*{Summary for Pond 5P: StormTech}
 Routed to Pond 6P : Focal Point

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=264.73' @ 12.48 hrs Surf.Area= 0.393 ac Storage= 1.350 af
Plug-Flow detention time \(=292.3 \mathrm{~min}\) calculated for 1.584 af (\(67 \%\) of inflow)
Center-of-Mass det. time \(=196.0 \mathrm{~min}(958.0-762.0)\)

Prepared by Jones \& Beach Engineers Inc
\begin{tabular}{rrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 256.00 & 620 & 0 & 0 \\
258.00 & 1,345 & 1,965 & 1,965
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & \multirow[t]{4}{*}{Primary} & \multirow[t]{4}{*}{252.75'} & 15.0" Round Culvert \\
\hline & & & \(\mathrm{L}=60.0^{\prime}\) CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert=252.75' \(/ 252.00^{\prime} \mathrm{S}=0.0125^{\prime \prime} / / \mathrm{Cc}=0.900\) \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf \(100.000 \mathrm{in} / \mathrm{hr}\) Exfiltration over Surface area Phase-In=0.10' \\
\hline \multirow[t]{2}{*}{\#3} & Device 3 & 253.75 & \(100.000 \mathrm{in} / \mathrm{hr}\) Extiltration over Surface area Phase-in= 0.10 \\
\hline & Device 1 & 253.25' & \(6.0^{\prime \prime} \mathrm{W} \times 6.0^{\prime \prime} \mathrm{H}\) Vert. Orifice/Grate \(\mathrm{C}=0.600\) Limited to weir flow at low heads \\
\hline \multirow[t]{2}{*}{\#4} & \multirow[t]{2}{*}{Device 1} & 257.00' & 18.0" Horiz. Orifice/Grate C= 0.600 \\
\hline & & & Limited to weir flow at low heads \\
\hline \multicolumn{4}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
Primary OutFlow Max=7.72 cfs @ 12.50 hrs HW=257.49' TW=0.00' (Dynamic Tailwater) \\
\(\leftarrow_{1=C u l v e r t ~(P a s s e s ~} 7.72 \mathrm{cfs}\) of 9.47 cfs potential flow) \\
3=Orifice/Grate (Orifice Controls 2.40 cfs @ 9.62 fps) \\
\(L_{-2}=\) Exfiltration (Passes 2.40 cfs of 4.12 cfs potential flow) \\
4=Orifice/Grate (Weir Controls 5.32 cfs @ 2.29 fps)
\end{tabular}}} \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

\section*{Summary for Pond 9P: 18" HDPE}

\begin{tabular}{rrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 201.00 & 37 & 0 & 0 \\
202.00 & 177 & 107 & 107 \\
202.50 & 258 & 109 & 216 \\
202.51 & 258 & 3 & 218
\end{tabular}
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & \(201.20^{\prime}\) & \begin{tabular}{l}
\(18.0^{\prime \prime}\) Round Culvert \\
\(=38.0^{\prime}\) CPP, square edge headwall, Ke \(=0.500\)
\end{tabular}
\end{tabular}

Inlet / Outlet Invert= 201.20'/201.00' S=0.0053 '/' Cc=0.900 \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.77 sf
\#2 Secondary
\(202.50^{\prime}\)
\(36.0^{\prime}\) long \(\times 1.0^{\prime}\) breadth Broad-Crested Rectangular Weir Head (feet) \(0.20 \quad 0.400 .600 .801 .001 .201 .401 .601 .80 \quad 2.00\) 2.503 .00

Coef. (English) \(2.692 .722 .75 \quad 2.852 .983 .08 \quad 3.20 \quad 3.28 \quad 3.31\) 3.303 .313 .32

Primary OutFlow Max=4.90 cfs @ 12.25 hrs HW=202.50' TW=201.50' (Dynamic Tailwater) —1=Culvert (Barrel Controls 4.90 cfs @ 4.04 fps)

Secondary OutFlow Max=0.00 cfs @ 12.25 hrs HW=202.50' TW=0.00' (Dynamic Tailwater) —2=Broad-Crested Rectangular Weir(Weir Controls \(0.00 \mathrm{cfs} @ 0.03 \mathrm{fps}\))

\section*{Summary for Pond 10P: Bioretention}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=201.84' @ 12.40 hrs Surf.Area= 4,511 sf Storage= \(7,689 \mathrm{cf}\)
Plug-Flow detention time \(=18.7\) min calculated for 1.090 af (\(99 \%\) of inflow)
Center-of-Mass det. time= \(16.1 \mathrm{~min}(863.2-847.1\))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Volume & Invert Av & Avail.Storage & \multicolumn{4}{|l|}{Storage Description} \\
\hline \#1 & 197.49' & 10,895 cf & Custom & age Data (Irre &)_Listed below & calc) \\
\hline Elevation (feet) & \[
\begin{array}{r}
\text { Surf.Area } \\
(\mathrm{sq}-\mathrm{ft})
\end{array}
\] & Perim. (feet) & Voids
(\%) & Inc.Store (cubic-feet) & Cum.Store (cubic-feet) & Wet.Area (sq-ft) \\
\hline 197.49 & 2,341 & 224.0 & 0.0 & 0 & 0 & 2,341 \\
\hline 197.50 & 2,341 & 224.0 & 40.0 & 9 & 9 & 2,343 \\
\hline 198.49 & 2,341 & 224.0 & 40.0 & 927 & 936 & 2,565 \\
\hline 198.50 & 2,341 & 224.0 & 15.0 & 4 & 940 & 2,567 \\
\hline 199.99 & 2,341 & 224.0 & 15.0 & 523 & 1,463 & 2,901 \\
\hline 200.00 & 2,341 & 224.0 & 100.0 & 23 & 1,487 & 2,903 \\
\hline 200.99 & 3,056 & 251.0 & 100.0 & 2,664 & 4,150 & 3,951 \\
\hline 201.00 & 3,826 & 265.0 & 100.0 & 34 & 4,185 & 4,525 \\
\hline 202.00 & 4,646 & 284.0 & 100.0 & 4,229 & 8,414 & 5,400 \\
\hline 202.50 & 5,079 & 293.0 & 100.0 & 2,430 & 10,844 & 5,837 \\
\hline 202.51 & 5,079 & 293.0 & 100.0 & 51 & 10,895 & 5,840 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & \multirow[t]{4}{*}{Primary} & \multirow[t]{4}{*}{200.10'} & 10.0" Round Culvert \\
\hline & & & \(\mathrm{L}=60.0^{\prime}\) CPP, square edge headwall, \(\mathrm{Ke}=0.500\) \\
\hline & & & Inlet / Outlet Invert= 200.10' \(199.80 ' S=0.0050\) '/ Cc= 0.900 \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 0.55 sf \\
\hline \#2 & Device 1 & 200.30' & 6.0" Vert. Orifice/Grate \(\mathrm{C}=0.600\) Limited to weir flow at low heads \\
\hline \multirow[t]{2}{*}{\#3} & \multirow[t]{2}{*}{Device 1} & \multirow[t]{2}{*}{201.10'} & 48.0" \(\times 48.0\) " Horiz. Orifice/Grate \(C=0.600\) \\
\hline & & & Limited to weir flow at low heads \\
\hline \multirow[t]{4}{*}{\#4} & \multirow[t]{4}{*}{Secondary} & \multirow[t]{4}{*}{201.50'} & 6.0' long x 2.0 ' breadth Broad-Crested Rectangular Weir \\
\hline & & & Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .601 .802 .00 \\
\hline & & & 2.503 .003 .50 \\
\hline & & & \(\begin{array}{lllllllllllll}\text { Coef. (English) } & 2.54 & 2.61 & 2.61 & 2.60 & 2.66 & 2.70 & 2.77 & 2.88\end{array}\) \\
\hline \multirow[t]{2}{*}{\#5} & Discarded & 197.49' & \(1.000 \mathrm{in} / \mathrm{hr}\) Exfiltration over Surface area \\
\hline & & & Conductivity to Groundwater Elevation = 197.41' Phase-In= 0.10' \\
\hline
\end{tabular}

Discarded OutFlow Max=3.06 cfs @ 12.40 hrs HW=201.84' (Free Discharge)
\({ }^{-5=E x f i l t r a t i o n ~(C o n t r o l s ~} 3.06 \mathrm{cfs}\))
Primary OutFlow Max=2.43 cfs @ 12.40 hrs HW=201.84' TW=0.00' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 2.43 cfs @ 4.46 fps)
\&-2=Orifice/Grate (Passes < 1.07 cfs potential flow)
3=Orifice/Grate (Passes < 33.30 cfs potential flow)
Secondary OutFlow Max=3.08 cfs @ 12.40 hrs HW=201.84' TW=198.06' (Dynamic Tailwater)

\section*{Summary for Pond 11P: EcoRaster}
[93] Warning: Storage range exceeded by \(0.05^{\prime}\)
[90] Warning: Qout>Qin may require smaller dt or Finer Routing

\begin{tabular}{rrrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Voids \\
\((\%)\)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 195.07 & 3,707 & 0.0 & 0 & 0 \\
195.08 & 3,707 & 30.0 & 11 & 11 \\
196.08 & 3,707 & 30.0 & 1,112 & 1,123 \\
196.09 & 3,707 & 15.0 & 6 & 1,129 \\
196.33 & 3,707 & 15.0 & 133 & 1,262 \\
196.34 & 3,707 & 5.0 & 2 & 1,264 \\
197.33 & 3,707 & 5.0 & 183 & 1,448 \\
197.34 & 3,707 & 30.0 & 11 & 1,459 \\
197.99 & 3,707 & 30.0 & 723 & 2,182 \\
198.00 & 3,707 & 100.0 & 37 & 2,219 \\
198.01 & 3,707 & 100.0 & 37 & 2,256
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & 198.00' & \(100 . \mathbf{0}^{\prime}\) long \(\times 50.0^{\prime}\) breadth Broad-Crested Rectangular Weir Head (feet) \(0.200 .40 \quad 0.60 \quad 0.801 .001 .201 .401 .60\) \\
\hline \multirow{3}{*}{\#2} & \multirow{3}{*}{Discarded} & & Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63 \\
\hline & & 195.07' & \(1.000 \mathrm{in} / \mathrm{hr}\) Exfiltration over Surface area \\
\hline & & & Conductivity to Groundwater Elevation \(=194.83\) ' Phase-In= \(0.01{ }^{\prime}\) \\
\hline
\end{tabular}

Discarded OutFlow Max=1.15 cfs @ 12.40 hrs HW=198.06' (Free Discharge)
-2=Exfiltration (Controls 1.15 cfs)
Primary OutFlow Max=3.89 cfs @ \(12.40 \mathrm{hrs} \mathrm{HW}=198.06^{\prime} \mathrm{TW}=0.00^{\prime}\) (Dynamic Tailwater)
1=Broad-Crested Rectangular Weir(Weir Controls \(3.89 \mathrm{cfs} @ 0.65 \mathrm{fps}\))

\section*{Summary for Pond 12P: Dry Well}
[93] Warning: Storage range exceeded by \(0.23^{\prime}\)
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=110)

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev= 199.44' @ 12.18 hrs Surf.Area= 287 sf Storage= 359 cf
Plug-Flow detention time \(=37.3 \mathrm{~min}\) calculated for 0.148 af (\(95 \%\) of inflow)
Center-of-Mass det. time \(=9.4 \mathrm{~min}\) (862.3-852.9)
\begin{tabular}{crrl}
Volume & Invert & Avail.Storage & Storage Description \\
\hline\(\# 1\) & \(194.25^{\prime}\) & 318 cf & Custom Stage Data (Prismatic)Listed below (Recalc) \\
& & & 815 cf Overall -21 cf Embedded \(=794 \mathrm{cf} \times 40.0 \%\) Voids \\
\(\# 2\) & \(195.08^{\prime}\) & 21 cf & \(3.00^{\prime} \mathrm{D} \times 3.00^{\prime} \mathrm{H}\) Vertical Cone/CylinderInside \#1 \\
\(\# 3\) & \(198.08^{\prime}\) & 2 cf & 1.67'D \(^{\text {P 0.92'H Vertical ConelCylinder }}\) \\
\(\# 4\) & \(198.79^{\prime}\) & 18 cf & Custom Stage Data (Prismatic)Listed below (Recalc) \\
\hline
\end{tabular}
\begin{tabular}{rrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 194.25 & 220 & 0 & 0 \\
195.06 & 220 & 178 & 178 \\
195.07 & 211 & 2 & 180 \\
198.08 & 211 & 635 & 815
\end{tabular}
\begin{tabular}{rrrr}
\begin{tabular}{r}
Elevation \\
(feet)
\end{tabular} & \begin{tabular}{r}
Surf.Area \\
(sq-ft)
\end{tabular} & \begin{tabular}{r}
Inc.Store \\
(cubic-feet)
\end{tabular} & \begin{tabular}{r}
Cum.Store \\
(cubic-feet)
\end{tabular} \\
\hline 198.79 & 9 & 0 & 0 \\
199.20 & 74 & 17 & 17 \\
199.21 & 74 & 1 & 18
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{2}{*}{\#1} & Discarded & 194.25' & \(0.300 \mathrm{in} / \mathrm{hr}\) Exfiltration over Surface area \\
\hline & & & Conductivity to Groundwater Elevation = 193.25' Phase-In=0.01' \\
\hline \multirow[t]{3}{*}{\#2} & Primary & 199.20' & 5.0' long x 0.5 ' breadth Broad-Crested Rectangular Weir \\
\hline & & & Head (feet) 0.200 .400 .600 .801 .00 \\
\hline & & & Coef. (English) 2.802 .923 .083 .303 .32 \\
\hline
\end{tabular}

Discarded OutFlow Max=0.01 cfs @ 12.18 hrs HW=199.44' (Free Discharge)
①=Exfiltration (Controls 0.01 cfs)
Primary OutFlow Max=1.67 cfs @ 12.18 hrs HW=199.44' TW=198.00' (Dynamic Tailwater)
_2=Broad-Crested Rectangular Weir(Weir Controls 1.67 cfs @ 1.39 fps)

\section*{Summary for Pond CB1: Catch Basin 1}
[58] Hint: Peaked 4.99' above defined flood level

Inlet / Outlet Invert=200.60' \(/ 200.50\) ' \(\mathrm{S}=0.0053 \mathrm{f} / \mathrm{rc} \quad \mathrm{Cc}=0.900\) \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.50 cfs @ 12.09 hrs HW=208.23' TW=208.22' (Dynamic Tailwater)
-1=Culvert (Inlet Controls 0.50 cfs @ 0.40 fps)

\section*{Summary for Pond CB10: Catch Basin 10}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt=0.05 hrs \(/ 9\)
Peak Elev=252.83' @ 12.13 hrs
Flood Elev=256.10'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(252.10^{\prime}\) & \(\mathbf{1 5 . 0 ^ { \prime \prime }}\) Round Culvert \\
& & \(L=19.0^{\prime}\) CPP, projecting, no headwall, Ke=0.900 \\
& & Inlet \(/\) Outlet Invert= \(252.10^{\prime} / 252.00^{\prime} \mathrm{S}=0.00531 / \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf
\end{tabular}

Primary OutFlow Max=1.12 cfs @ 12.15 hrs HW=252.82' TW=252.65' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 1.12 cfs @ 2.18 fps)

\section*{Summary for Pond CB11: Catch Basin 11}

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=209.37' @ 12.37 hrs
Flood Elev=221.00'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(208.00^{\prime}\) & \(15.0^{\prime \prime}\) Round Culvert \\
& & \(L=57.0^{\prime} \quad C P P\), projecting, no headwall, Ke \(=0.900\) \\
& & Inlet \(/\) Outlet Invert \(=208.00^{\prime} / 200.50^{\prime} \quad \mathrm{S}=0.1316^{\prime} /{ }^{\prime} \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf
\end{tabular}

Primary OutFlow Max=4.02 cfs @ 12.37 hrs HW=209.37' TW=205.87' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 4.02 cfs @ 3.27 fps)

\section*{Summary for Pond CB12: Catch Basin 12}

Routing by Dyn-Stor-Ind method, Time Span= \(0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs} / 9\)
Peak Elev=263.28' @ 12.36 hrs Surf.Area= 60 sf Storage= 15 cf
Plug-Flow detention time \(=0.1 \mathrm{~min}\) calculated for 0.924 af (\(100 \%\) of inflow)
Center-of-Mass det. time \(=0.0 \mathrm{~min}(866.1-866.1)\)

Primary OutFlow Max=7.88 cfs @ 12.36 hrs HW=263.28' TW=0.00' (Dynamic Tailwater)
\(\mathcal{L}_{1}=\) Culvert (Passes 7.88 cfs of 10.16 cfs potential flow)
t2=Orifice/Grate (Weir Controls 7.88 cfs @ 1.74 fps)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=263.00' TW=252.10' (Dynamic Tailwater)

\section*{Summary for Pond CB13: Catch Basin 13}
[58] Hint: Peaked 7.63' above defined flood level
[63] Warning: Exceeded Reach RD1 INLET depth by 1.98 @ 12.10 hrs

Primary OutFlow Max=2.09 cfs @ 12.09 hrs HW=277.75' TW=277.65' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 2.09 cfs @ 1.18 fps)

\section*{Summary for Pond CB14: Catch Basin 14}
[58] Hint: Peaked 8.23' above defined flood level
[63] Warning: Exceeded Reach RD2 INLET depth by 8.89 @ 12.10 hrs
Inflow Area \(=\quad 0.925\) ac, \(91.53 \%\) Impervious, Inflow Depth \(>7.73^{\prime \prime}\) for 100-Year 24-Hour event
Inflow \(=6.89\) cfs @ 12.10 hrs , Volume= 0.596 af
Outflow \(=6.89 \mathrm{cfs}\) @ 12.10 hrs , Volume \(=\quad 0.596 \mathrm{af}\), Atten \(=0 \%\), Lag \(=0.0 \mathrm{~min}\)
Primary \(=\quad 6.89 \mathrm{cfs} @ 12.10 \mathrm{hrs}\), Volume= 0.596 af
Routed to Pond CB15 : Catch Basin 15
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=278.23' @ 12.10 hrs
Flood Elev= 270.00'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline \#1 & Primary & \(263.30^{\prime}\) & \(\mathbf{1 8 . 0 ^ { \prime \prime } \text { Round Culvert }}\) \\
& & \(L=68.0^{\prime}\) CPP, projecting, no headwall, Ke=0.900 \\
& & Inlet \(/\) Outlet Invert= \(263.30^{\prime} / 262.90^{\prime} \quad \mathrm{S}=0.0059^{\prime} / \prime \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.77 sf
\end{tabular}

Primary OutFlow Max=6.82 cfs @ 12.10 hrs HW=277.92' TW=276.89' (Dynamic Tailwater)
—1=Culvert (Inlet Controls \(6.82 \mathrm{cfs} @ 3.86 \mathrm{fps}\))

\section*{Summary for Pond CB15: Catch Basin 15}
[58] Hint: Peaked 6.48' above defined flood level

Routed to Pond CB16 : Catch Basin 16
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=277.18' @ 12.10 hrs
Flood Elev= 270.70'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(262.80^{\prime}\) & \(18.0^{\prime \prime}\) Round Culvert \\
& & \(L=156.0^{\prime} \mathrm{CPP}\), projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
& & Inlet \(/\) Outlet Invert= \(262.80^{\prime} / 262.00^{\prime} \mathrm{S}=0.00511 / \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= \(=1.77 \mathrm{sf}\)
\end{tabular}

Primary OutFlow Max=9.70 cfs @ 12.10 hrs HW=277.10' TW=274.88' (Dynamic Tailwater)
t-1=Culvert (Outlet Controls 9.70 cfs @ 5.49 fps)

\section*{Summary for Pond CB16: Catch Basin 16}
[58] Hint: Peaked 4.65' above defined flood level

\section*{Summary for Pond CB17: Catch Basin 17}
[58] Hint: Peaked 4.59' above defined flood level
[63] Warning: Exceeded Reach RD3 INLET depth by 5.14 @ 12.10 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev= 273.59' @ 12.10 hrs
Flood Elev=269.00'
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(260.80^{\prime}\) & \(24.0^{\prime \prime}\) Round Culvert \\
& & \(L=57.0^{\prime}\) CPP, projecting, no headwall, Ke \(=0.900\) \\
& & Inlet \(/\) Outlet Invert= \(260.80^{\prime} / 260.50^{\prime} \quad \mathrm{S}=0.0053^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900\) \\
& & \(n=0.013\) Corrugated PE, smooth interior, Flow Area=3.14 sf
\end{tabular}

Primary OutFlow Max=17.57 cfs @ 12.10 hrs HW=273.55' TW=271.38' (Dynamic Tailwater)
—1=Culvert (Inlet Controls \(17.57 \mathrm{cfs} @ 5.59 \mathrm{fps}\))

\section*{Summary for Pond CB18: Catch Basin 18}
[58] Hint: Peaked 2.71' above defined flood level
```

Inflow Area = 3.016 ac, 85.76% Impervious, Inflow Depth > 7.47" for 100-Year 24-Hour event
Inflow = 21.53 cfs @ 12.10 hrs, Volume= 1.879 af
Outflow = 21.53 cfs @ 12.10 hrs, Volume= 1.879 af, Atten= 0%, Lag= 0.0 min
Primary = 21.53 cfs @ 12.10 hrs, Volume= 1.879 af
Routed to Pond DMH 5: Drain Manhole 5
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 9$
Peak Elev=271.41' @ 12.10 hrs
Flood Elev=268.70'

```
\begin{tabular}{clrl}
Device & Routing & Invert & Outlet Devices \\
\hline\(\# 1\) & Primary & \(260.40^{\prime}\) & \(24.0^{\prime \prime}\) Round Culvert \\
& & \(L=11.0^{\prime}\) CPP, projecting, no headwall, Ke=0.900 \\
& & Inlet \(/\) Outlet Invert \(=260.40^{\prime} / 260.30^{\prime} \quad \mathrm{S}=0.00911^{\prime \prime} \mathrm{Cc}=0.900\) \\
& & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 3.14 sf
\end{tabular}

Primary OutFlow Max=21.44 cfs @ 12.10 hrs HW=271.33' TW=268.11' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 21.44 cfs @ 6.82 fps)

\section*{Summary for Pond CB19: Catch Basin 19}
[58] Hint: Peaked 2.35' above defined flood level

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=268.65' @ 12.10 hrs
Flood Elev= 266.30'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & Primary & 261.40' & 24.0" Round Culvert \\
\hline & & & L= 151.0' CPP, projecting, no headwall, \(\mathrm{Ke=} 0.900\) \\
\hline & & & Inlet / Outlet Invert=261.40'/260.60'S=0.0053 \(/ 7 / \mathrm{Cc}=0.900\) \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 3.14 sf \\
\hline
\end{tabular}

Primary OutFlow Max=5.78 cfs @12.09 hrs HW=268.25' TW=268.02' (Dynamic Tailwater)
_-1=Culvert (Inlet Controls 5.78 cfs @ 1.84 fps)

\section*{Summary for Pond CB2: Catch Basin 2}
[58] Hint: Peaked 4.98' above defined flood level

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev= 208.88' @ 12.11 hrs
Flood Elev= 203.90'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & \multirow[t]{4}{*}{Primary} & \multirow[t]{4}{*}{200.40'} & 15.0" Round Culvert \\
\hline & & & \(\mathrm{L}=84.0^{\prime}\) CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert=200.40'/200.00'S=0.0048 \(/ / \mathrm{Cc}=0.900\) \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf \\
\hline
\end{tabular}

Primary OutFlow Max=4.71 cfs @12.34 hrs HW=206.04' TW=205.02' (Dynamic Tailwater)
——1=Culvert (Inlet Controls 4.71 cfs @ 3.83 fps)

\section*{Summary for Pond CB20: Catch Basin 20}
[58] Hint: Peaked 3.23' above defined flood level

Primary OutFlow Max=3.37 cfs @ 12.09 hrs HW=268.34' TW=268.26' (Dynamic Tailwater)
\&-1=Culvert (Inlet Controls \(3.37 \mathrm{cfs} @ 1.07 \mathrm{fps}\))

\section*{Summary for Pond CB3: Catch Basin 3}

Primary OutFlow Max=8.04 cfs @ 12.10 hrs HW=211.79' TW=207.83' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 8.04 cfs @ 6.55 fps)

\section*{Summary for Pond CB4: Catch Basin 4}

Routed to Pond CB3 : Catch Basin 3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=211.90' @ 12.10 hrs
Flood Elev=216.40'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & Primary & 208.40' & 15.0" Round Culvert \\
\hline & & & \(\mathrm{L}=19.0^{\prime}\) CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert= 208.40' \(/ 208.30^{\prime} \mathrm{S}=0.0053 \mathrm{l} / \mathrm{Cc}=0.900\) \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf \\
\hline
\end{tabular}

Primary OutFlow Max=1.06 cfs @ 12.09 hrs HW=211.80' TW=211.74' (Dynamic Tailwater) \&1=Culvert (Inlet Controls \(1.06 \mathrm{cfs} @ 0.86 \mathrm{fps}\))

\section*{Summary for Pond CB5: Catch Basin 5}

Primary OutFlow Max=5.70 cfs @ 12.10 hrs HW=226.42' TW=219.62' (Dynamic Tailwater)
\&1=Culvert (Inlet Controls 5.70 cfs @ 4.65 fps)

\section*{Summary for Pond CB6: Catch Basin 6}

\(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf
Primary OutFlow Max=1.05 cfs @ 12.09 hrs HW=226.43' TW=226.38' (Dynamic Tailwater)
_1=Culvert (Inlet Controls \(1.05 \mathrm{cfs} @ 0.85 \mathrm{fps}\))

\section*{Summary for Pond CB7: Catch Basin 7}

Primary OutFlow Max=1.11 cfs @ 12.09 hrs HW=239.80' TW=239.71' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 1.11 cfs @ 1.63 fps)

\section*{Summary for Pond CB8: Catch Basin 8}
 Routed to Pond DMH 3 : Drain Manhole 3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=239.72' @ 12.10 hrs
Flood Elev=242.80'

Primary OutFlow Max=3.69 cfs @ 12.10 hrs HW=239.72' TW=234.25' (Dynamic Tailwater)
—1=Culvert (Inlet Controls 3.69 cfs @ 3.44 fps)

\section*{Summary for Pond CB9: Catch Basin 9}

Primary OutFlow Max=1.83 cfs @ 12.11 hrs HW=252.66' TW=239.70' (Dynamic Tailwater)
——1=Culvert (Inlet Controls \(1.83 \mathrm{cfs} @ 2.34 \mathrm{fps}\))

\section*{Summary for Pond DMH 3: Drain Manhole 3}

Primary OutFlow Max=3.69 cfs @ 12.10 hrs HW=234.25' TW=226.42' (Dynamic Tailwater)
\(亡_{1}=\) Culvert (Inlet Controls 3.69 cfs @ 3.01 fps)

\section*{Summary for Pond DMH 4: Drain Manhole 4}
[58] Hint: Peaked 0.01' above defined flood level
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=34)

Primary OutFlow Max=5.78 cfs @ 12.09 hrs HW=268.02' TW=267.79' (Dynamic Tailwater)
\(亡_{1=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 5.78 \mathrm{cfs}\) @ 1.84 fps)

\section*{Summary for Pond DMH 5: Drain Manhole 5}
[80] Warning: Exceeded Pond DMH 4 by 0.02 @ 23.35 hrs (1.51 cfs 0.091 af)

Routed to Pond 5P : StormTech
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)
Peak Elev=268.17' @ 12.10 hrs
Flood Elev= 268.60'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & Primary & \(260.30^{\prime}\) & 24.0" Round Culvert \\
\hline & & & \(\mathrm{L}=14.0^{\prime} \mathrm{CPP}\), projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert=260.30' \(/ 260.10^{\prime} \mathrm{S}=0.01431 / \mathrm{Cc}=0.900\) \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area=3.14 sf \\
\hline
\end{tabular}

Primary OutFlow Max=27.15 cfs @ 12.10 hrs HW=268.03' TW=262.86' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 27.15 cfs @ 8.64 fps)

\section*{Summary for Pond DMH1: Drain Manhole 1}

Routed to Pond 2P : Stormwater Pond
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= \(0.05 \mathrm{hrs} / 9\)

Peak Elev=208.05' @ 12.11 hrs
Flood Elev=211.00'
\begin{tabular}{|c|c|c|c|}
\hline Device & Routing & Invert & Outlet Devices \\
\hline \multirow[t]{4}{*}{\#1} & Primary & 199.90' & 15.0" Round Culvert \\
\hline & & & \(\mathrm{L}=30.0^{\prime}\) CPP, projecting, no headwall, \(\mathrm{Ke}=0.900\) \\
\hline & & & Inlet / Outlet Invert=199.90' \(199.70^{\prime} \mathrm{S}=0.0067 \mathrm{l} / \mathrm{Cc}=0.900\) \\
\hline & & & \(\mathrm{n}=0.013\) Corrugated PE, smooth interior, Flow Area= 1.23 sf \\
\hline
\end{tabular}

Primary OutFlow Max=12.14 cfs @ 12.11 hrs HW=207.88' TW=201.11' (Dynamic Tailwater) ——1=Culvert (Inlet Controls 12.14 cfs @ 9.89 fps)

\section*{Summary for Pond DMH2: Drain Manhole 2}

Primary OutFlow Max=5.70 cfs @ 12.10 hrs HW=219.62' TW=211.82' (Dynamic Tailwater)
L-1=Culvert (Inlet Controls 5.70 cfs @ 4.65 fps)

\section*{APPENDIX III}

\section*{Extreme Precipitation Estimates}
\begin{tabular}{|c|}
\hline About this Pro \\
\hline Select Product? \\
\hline Extreme Precipitation Tables - HTML ? \\
\hline \begin{tabular}{l}
Extreme Precipitation \\
Tables - Text/CSV
\end{tabular} \\
\hline Partial Duration Series by Point \\
\hline Partial Duration Series by Station \\
\hline Distribution Curves \(=\) Graphicalis \\
\hline Distribution Curves Text/TBL \\
\hline Intensity Frequency Duration Graphs \({ }^{\text {I }}\) \\
\hline Precipitation Frequency Duration Graphst \\
\hline GIS Data Files \({ }^{\text {T/ }}\) \\
\hline Regional/State Mapsil \\
\hline
\end{tabular}

Select Location Double-click the map to place a marker, or enter address or latitude/longitude.
 Technologies, USDA/FPAC/GEO
Select Options?
\begin{tabular}{|c|}
\hline Smoothing \({ }^{\text {? }}\) \\
\hline Yes \(v\)
\end{tabular}\(\quad\)\begin{tabular}{|c|}
\hline Delivery \({ }^{\text {? }}\) \\
\hline Popup \\
\hline
\end{tabular}

Submit

Version 1.12 Copyright 2010-2022.
This project is a joint collaboration between:
Northeast Regional Climate Center (NRCC)

Comell University
Natural Resources Conservation Service (NRCS)
Contact: precip@cornell.edu

\section*{Extreme Precipitation Tables}

\section*{Northeast Regional Climate Center}

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.
\begin{tabular}{||cl|}
\hline Smoothing & Yes \\
State & New Hampshire \\
Location & \\
Longitude & 71.177 degrees West \\
Latitude & 43.029 degrees North \\
Elevation & 0 feet \\
Date/Time & Wed, 27 Apr 2022 16:47:06 -0400 \\
\hline
\end{tabular}

\section*{Extreme Precipitation Estimates}
\begin{tabular}{|c|}
\hline & 5 min & 10min & 15 min & 30min & 60min & 120min & & 1hr & 2hr & 3hr & 6hr & 12hr & 24hr & 48hr & & 1 day & 2day & 4day & 7day & 10day & \\
\hline 1 yr & 0.26 & 0.40 & 0.50 & 0.65 & 0.82 & 1.03 & 1 yr & 0.71 & 0.98 & 1.20 & 1.54 & 1.97 & 2.54 & 2.74 & 19r & 2.25 & 2.64 & 3.05 & 3.74 & 4.34 & 1yr \\
\hline 2yr & 0.32 & 0.49 & 0.6 & 0.81 & 1.02 & 1.29 & 2 yr & 0.88 & 1.17 & 1.50 & 1.89 & 2.39 & 3.04 & 3.38 & 2 yr & 2.69 & 3.25 & 3.76 & 4.46 & 5.09 & yr \\
\hline 5yr & 0.38 & 0.58 & 0.73 & 0.98 & 1.26 & 1.61 & 5 yr & 1.09 & 1.46 & 1.88 & 2.39 & 3.03 & 3.85 & 4.33 & 5 yr & 3.4 & 4.16 & 4.78 & 5.66 & 6.40 & 5 r \\
\hline 10 yr & 0.42 & 0.66 & 0.83 & 1.13 & 1.48 & 1.91 & 10yr & 1.27 & 1.73 & 2.24 & 2.85 & 3.63 & 4.60 & 5.22 & 10 yr & 4.07 & 5.02 & 5.73 & 6.79 & 7.62 & 10yr \\
\hline 25 & 0.49 & 0.78 & 1.00 & 1.37 & 1.82 & 2.38 & 25 yr & 1.57 & 2.16 & 2.81 & 3.60 & 4.59 & 5.8 & 6.69 & 25y & 5.16 & 6.44 & 7.30 & 8.6 & 9.59 & \(25 y \mathrm{r}\) \\
\hline 50 yr & 0.56 & 0.89 & 1.14 & 1.60 & 2.15 & 2.83 & 50 yr & 1.85 & 2.55 & 3.34 & 4.31 & 5.50 & 6.98 & 8.09 & 50yr & 6.18 & 7.78 & 8.77 & 10.37 & 11.44 & 50yr \\
\hline 100 yr & 0.63 & 1.01 & 1.31 & 1.85 & 2.53 & 3.36 & 100 yr & 2.18 & 3.02 & 3.99 & 5.15 & 6.59 & 8.36 & 9.77 & 100 yr & 7.40 & 9.40 & 10.53 & 12.46 & 13.64 & 100 yr \\
\hline 200 yr & 0.71 & 1.16 & 1.51 & 2.16 & 2.98 & 3.99 & 200 yr & 2.57 & 3.58 & 4.75 & 6.15 & 7.88 & 10.01 & 11.81 & 200 yr & 8.86 & 11.36 & 12.66 & 14.98 & 16.27 & 200yr \\
\hline 500 yr & 0.85 & 1.39 & 1.82 & 2.64 & 3.71 & 5.01 & 500yr & 3.20 & 4.48 & 5.99 & 7.79 & 10.00 & 12.72 & 15.19 & 500yr & 11.26 & 14.60 & 16.14 & 19.13 & 20.58 & 500 yr \\
\hline
\end{tabular}

\section*{Lower Confidence Limits}
\begin{tabular}{|c|}
\hline & 5min & 10 min & 15min & 30min & 60 min & 120min & & 1hr & 2hr & 3hr & 6hr & 12 hr & 24hr & 48hr & & 1day & 2day & 4day & 7day & 10day & \\
\hline 1 yr & 0.23 & 0.35 & 0.43 & 0.58 & 0.7 & 0.88 & 1 yr & 0.62 & 0.86 & 1.01 & 1.30 & 1.56 & 2.12 & 2.53 & 1 yr & 1.87 & 2.43 & 2.83 & 3.45 & 3.84 & yr \\
\hline yr & 0.31 & 0.48 & 0.59 & 0.80 & 0.99 & 1.18 & yr & 0.86 & 1.15 & 1.34 & 1.78 & 2.28 & 2.94 & 3.23 & 2 yr & 2.60 & 3.11 & 3.62 & 4.27 & 4.88 & 2yr \\
\hline 5 yr & 0.35 & 0.55 & 0.68 & 0.93 & 1.18 & 40 & 5 yr & 1.02 & 1.37 & 1.59 & 2.08 & 2.67 & 3.48 & 3.86 & 5 yr & 3.08 & 3.71 & 4.28 & 5.29 & 5.80 & 5 yr \\
\hline 10 & 0.39 & 0.60 & 0.75 & 1.04 & . 35 & . 60 & 10yr & 1.1 & 1.57 & 1.80 & 2.35 & 3.00 & 3.94 & 4.40 & 10y & 3.49 & 4.23 & 4.85 & 6.15 & 6.53 & 10 yr \\
\hline \(25 y \mathrm{r}\) & 0.45 & 0.69 & 0.85 & 22 & 1.61 & 1.90 & 25 & 1.39 & 1.86 & 2.11 & 2.73 & 3.50 & 4.61 & 5.20 & \(25 y r\) & 4.08 & 5.00 & 5.74 & 7.50 & 8.28 & 25 yr \\
\hline 50 yr & 0.50 & 0.76 & 0.95 & 1.36 & . 83 & 2.17 & 50yr & 1.58 & 2.12 & 2.38 & 3.07 & 3.94 & 5.18 & 5.87 & 50yr & 4.59 & 5.65 & 6.48 & 8.72 & 9.51 & 50yr \\
\hline 100 yr & 0.56 & 0.85 & 06 & 1.54 & 2.11 & 2.47 & 10 & 1.82 & 2.42 & 2.69 & 3.44 & 4.42 & 5.81 & 6.63 & 100 yr & 5.14 & 6.37 & 7.34 & 10.14 & 10.91 & 100 yr \\
\hline 200 yr & 0.63 & 0.94 & 1.20 & 1.73 & 2.41 & 2.82 & 200 yr & 2.08 & 2.75 & 3.02 & 3.85 & 4.97 & 6.49 & 8.74 & 200 yr & 5.74 & 8.40 & 8.32 & 11.82 & 12.52 & 200 yr \\
\hline 500 yr & 0.73 & 1.09 & 1.41 & 2,04 & 2.90 & 3.36 & 500 yr & 2.51 & 3.29 & 3.55 & 4.48 & 5.81 & 7.47 & 10.58 & 500 yr & 6.61 & 10.18 & 9.79 & 14.48 & 14.99 & 500y \\
\hline
\end{tabular}

\section*{Upper Confidence Limits}
\begin{tabular}{|c|}
\hline & 5 min & 10 min & 15 min & 30min & 60 min & 120min & & 1hr & 2hr & 3hr & 6hr & 12hr & 24hr & 48hr & & 1day & 2day & 4day & 7day & 10day & \\
\hline 1 yr & 0.29 & 0.45 & 0.54 & 0.73 & 0.90 & 1.08 & 1 yr & 0.78 & 1.05 & 1.24 & 1.66 & 2.10 & 2.78 & 3.13 & 1 yr & 2.46 & 3.01 & 3.45 & 4.05 & 4.80 & 1 yr \\
\hline 2 yr & 0.33 & 0.51 & 0.63 & 0.85 & 1.05 & 1.25 & 2 yr & 0.91 & 1.23 & 1.44 & 1.90 & 2.42 & 3.21 & 3.56 & 2 yr & 2.84 & 3.43 & 3.96 & 4.67 & 5.38 & 2 yr \\
\hline 5 yr & 0.41 & 0.63 & 0.78 & 1.06 & 1.35 & 1.60 & 5 yr & 1.17 & 1.56 & 1.84 & 2.41 & 3.07 & 4.23 & 4.86 & 5 yr & 3.74 & 4.67 & 5.32 & 6.07 & 7.07 & 5yr \\
\hline 10 yr & 0.48 & 0.74 & 0.92 & 1.28 & 1.66 & 1.95 & 10yr & 1.43 & 1.91 & 2.23 & 2.90 & 3.68 & 5.27 & 6.17 & 10 yr & 4.66 & 5.94 & 6.68 & 7.49 & 8.81 & 10 y \\
\hline 25 yr & 0.61 & 0.92 & 1.15 & 1.64 & 2.16 & 2.53 & 25 yr & 1.86 & 2.48 & 2.88 & 3.72 & 4.68 & 7.05 & 8.52 & \(25 y r\) & 6.24 & 8.19 & 9.04 & 9.92 & 10.96 & 25yr \\
\hline 50 yr & 0.72 & 1.09 & 1.36 & 1.95 & 2.63 & 3.08 & 50 yr & 2.27 & 3.02 & 3.50 & 4.50 & 5.63 & 8.80 & 10.91 & 50 yr & 7.79 & 10.49 & 11.38 & 12.27 & 13.45 & 50yr \\
\hline 100 yr & 0.86 & 1.29 & 1.62 & 2.34 & 3.21 & 3.76 & 100yr & 2.77 & 3.67 & 4.25 & 5.44 & 6.77 & 10.98 & 13.94 & 100 yr & 9.72 & 13.40 & 14.32 & 15.20 & 16.53 & 100 yr \\
\hline 200 yr & 1.02 & 1.53 & 1.94 & 2.80 & 3.91 & 4.59 & 200 yr & 3.38 & 4.48 & 5.18 & 6.59 & 8.14 & 13.76 & 15.52 & 200 yr & 12.18 & 14.92 & 18.04 & 18.82 & 20.36 & 200 yr \\
\hline 500 yr & 1.29 & 1.91 & 2.46 & 3.58 & 5.08 & 5.97 & 500 yr & 4.39 & 5.83 & 6.72 & 8.49 & 10.41 & 18.55 & 20.98 & 500 yr & 16.42 & 20.17 & 24.49 & 25.00 & 26.85 & 500 yr \\
\hline
\end{tabular}

\section*{Pefowern}

Climate Center

\section*{APPENDIX IV}

\section*{Test Pit Logs}

Gove Environmental Services, Inc.

> Test Pit Log
> 109 Main Street, Raymond
> Logged by: Luke Hurley, CSS 095, 2/24/22

\section*{Test Pit \#1:}

0-8 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
8-20 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
20-32 INCHES, \(2.5 Y 4 / 3\), FINE SANDY LOAM , GRANULAR, FRIABLE
32-64 INCHES, \(2.5 Y 4 / 3\), SAND/GRVEL, MASSIVE, FIRM IN PLACE, REDOX 15\%
ESHWT: 32 INCHES REFUSAL: N/A OBSERVED WATER: N/A

Test Pit \#2:
0-8 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
8-16 INCHES, 10 YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
16-36 INCHES, \(2.5 Y 4 / 3\), FINE SANDY LOAM , GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: 36 INCHES OBSERVED WATER: N/A

Test Pit \#3:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-18 INCHES, 10YR 4/4, FINE SANDY LOAM, GRANULAR, FRIABLE
18-40 INCHES, \(2.5 Y 5 / 3\), SAND, GRANULAR, FRIABLE
40-60 INCHES, \(2.5 Y\) 5/4, SAND, GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: N/A OBSERVED WATER: N/A

\section*{Test Pit \#4:}

0-6 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
6-20 INCHES, 10YR 4/4, FINE SANDY LOAM, GRANULAR, FRIABLE
20-40 INCHES, 2.5Y 5/4, FINE SANDY LOAM, GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: 40 INCHES OBSERVED WATER: N/A

Test Pit \#5:
0-6 INCHES, 10YR 3/2, FINE SANDY LOAM, GRANULAR, FRIABLE
6-12 INCHES, 10YR 5/6, FINE SANDY LOAM, GRANULAR, FRIABLE
12-20 INCHES, 10YR3/6, FINE SANDY LOAM , GRANULAR FRIABLE
20-40 INCHES, 2.5Y 4/6, SAND/GRAVEL, SINGLE GRAIN, LOOSE
ESHWT: N/A REFUSAL: 40 INCHES OBSERVED WATER: N/A

Test Pit \#6: DONE AT STATOIN 6+00
0-6 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
6-16 INCHES, 10YR 4/4, FINE SANDY LOAM, GRANULAR, FRIABLE
16-28 INCHES, 10YR4/6, FINE SANDY LOAM , GRANULAR, FRIABLE
28-50 INCHES, 2.5Y4/4, FINE SAND, GRANULAR, FRIABLE
ESHWT: N/A
REFUSAL: 50 INCHES
OBSERVED WATER: N/A

Gove Environmental Services, Inc.
Test Pit \#7:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-10 INCHES, 10YR 5/6, FINE SANDY LOAM, GRANULAR, FRIABLE
10-30 INCHES, 10Y4/4, FINE SAND, GRANULAR, FRIABLE
ESHWT: N/A . REFUSAL: N/A OBSERVED WATER: N/A

Test Pit \#8:
0-2 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
2-12 INCHES, 10YR 5/6, FINE SANDY LOAM , GRANULAR, FRIABLE
12-24 INCHES, 10Y4/4, FINE SAND, GRANULAR, FRIABLE
24-50 INCHES, \(2.5 Y 5 / 3\), SAND/GRAVEL, SINGLE GRAIN, LOOSE, REDOX \(15 \%\)
ESHWT: 24 INCHES REFUSAL: N/A OBSERVED WATER: N/A

Test Pit \#9:
0-6 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
6-12 INCHES, \(10 Y\) 5/4, FINE SANDY LOAM , GRANULAR, FRIABLE
12-30 INCHES, 2.5Y5/6, FINE SANDY LOAM, GRANULAR, FRIABLE
30-60 INCHES, 2.5Y5/3, SAND/GRAVEL, SINGLE GRAIN, LOOSE
ESHWT: N/A REFUSAL: 60 INCHES OBSERVED WATER: N/A

Test Pit \#10:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM, GRANULAR, FRIABLE
4-24 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
24-40 INCHES, 2.5Y5/3, FINE SANDY LOAM , GRANULAR, FRIABLE, REDOX 15\%
40-60 INCHES, 2.5Y5/3, SAND/GRAVEL, SINGLE GRAIN, LOOSE, REDOX 15\%
ESHWT: 24 REFUSAL: 60 INCHES OBSERVED WATER: N/A

Test Pit \#11:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-14 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
14-56 INCHES, 2.5Y4/4, SAND/GRAVEL, MASSIVE, FIRM IN PLACE
ESHWT: N/A REFUSAL: 54 INCHES OBSERVED WATER: N/A

Test Pit \#12:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM, GRANULAR, FRIABLE
4-18 INCHES, 10YR 5/4, FINE SANDY LOAM, GRANULAR, FRIABLE
18-40 INCHES, \(2.5 Y 5 / 4\), SAND/GRAVEL, MASSIVE, FIRM IN PLACE
ESHWT: N/A
REFUSAL: 40 INCHES
OBSERVED WATER: N/A

Test Pit \#13:
0-4 INCHES, 10 YR 3/2, FINE SANDY LOAM, GRANULAR, FRIABLE
4-16 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
16-36 INCHES, 10YR5/6, FINE SANDY LOAM , GRANULAR, FRIABLE
ESHWT: N/A
REFUSAL: 36 INCHES
OBSERVED WATER: N/A

Test Pit \#14:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-14 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
14-36 INCHES, 10YR5/6, FINE SANDY LOAM , GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: 36 INCHES OBSERVED WATER: N/A

Test Pit \#15:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM, GRANULAR, FRIABLE
4-16 INCHES, 10YR 5/4, FINE SANDY LOAM, GRANULAR, FRIABLE
16-24 INCHES, 2.5Y5/6, FINE SANDY LOAM, GRANULAR, FRIABLE
24-50 INCHES, 2.5Y4/4, SAND, MASIVE, FIRM IN PLACE
50-62 INCHES, 2.5Y5/3, SAND/GRAVEL, MASIVE, FIRM IN PLACE
ESHWT: 50 INCHES REFUSAL: N/A OBSERVED WATER: N/A

Test Pit \#16:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-15 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
ESHWT: 15 INCHES REFUSAL: N/A OBSERVED WATER: 15 INCHES

\section*{Test Pit \#17:}

0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-20 INCHES, 10YR 5/6, FINE SANDY LOAM, GRANULAR, FRIABLE
20-42 INCHES, 2.5Y5/3, FINE SANDY LOAM, GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: 42 INCHES OBSERVED WATER: N/A

Test Pit \#18:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM, GRANULAR, FRIABLE
4-12 INCHES, 10YR 4/6, FINE SANDY LOAM, GRANULAR, FRIABLE
12-24 INCHES, 10YR4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
24-52 INCHES, 2.5Y5/3, SAND, GRNAULAR, FIRM IN PLACE
ESHWT: N/A REFUSAL: 52 INCHES OBSERVED WATER: N/A

Gove Environmental Services, Inc.
TEST PIT DATA
Project - 109C Main Street, Raymond, NH
Client - Tuck Realty
GES Project No. 2020234
MM/DD/YY Staff 10-20-2022 JPG Observed by Paul Ayer, Raymond Code Enforcement
Test Pit No. 19
ESHWT: 50"
Termination @ 65"
Refusal: None
Obs. Water: None
\begin{tabular}{rccccl}
Depth & Color & Texture & Structure & Consistence & Redox \%, Layer \\
\(0-9 "\) & 10YR 3/2 & LS & GR & FR & NONE, Ap \\
\(9-50 "\) & 10YR 5/6 & LS & GR & FR & NONE, Bw \\
\(50-65 "\) & \(2.5 Y 5 / 4\) & LS & OM & FR & \(10 \%\), C
\end{tabular}

Test Pit No. 20
ESHWT: 43"
Termination@65"
Refusal: None
Obs. Water: None
\begin{tabular}{rccccl}
Depth & Color & Texture & Structure & Consistence & Redox \%, Layer \\
\(0-17^{\prime \prime}\) & 10YR 3/2 & LS & GR & FR & NONE,Ap \\
\(17-43^{\prime \prime}\) & \(10 Y R ~ 5 / 6\) & LS & GR & FR & NONE, Bw \\
\(43-65 "\) & \(2.5 Y 5 / 4\) & LS & PL & FR & \(20 \%\), C
\end{tabular}

Test Pit No. 21
ESHWT: 46"
Termination @ 72"
Refusal: None
Obs. Water: None
\begin{tabular}{rccccl}
Depth & Color & Texture & Structure & Consistence & Redox \%, Layer \\
\(0-7 "\) & \(10 Y R ~ 3 / 2\) & FLS & GR & FR & NONE,Ap \\
\(7-46^{\prime \prime}\) & \(10 Y R ~ 5 / 6\) & FSL & GR & FR & NONE, Bw \\
\(46-72 "\) & \(2.5 Y 5 / 4\) & FSL & OM & FR & \(20 \%\), C
\end{tabular}

Gove Environmental Services, Inc.
TEST PIT DATA

Hydrologic Soil Group of this Hinckley soil test pit is A.

\section*{APPENDIX V}

\author{
Site Specific Soil Map
}

\title{
SITE-SPECIFIC SOIL SURVEY REPORT
}

\author{
For \\ Tuck Realty \\ Main Street, Raymond
}
1. MAPPING STANDARDS

Site-Specific Soil Mapping Standards for New Hampshire and Vermont. SSSNNE Special Publication No. 3, Version 5.0, December 2017. This map product is within the technical standards of the National Cooperative Soil Survey. It is a special product, intended for the submission to NH DES Alteration of Terrain. It was produced by a professional soil scientist and is not a product of the USDA Natural Resource Conservation Service.

Hydrologic Soil Group was determined using SSSNNE Special Publication No. 5.
Scale of soil map:
Approximately 1" equals
Contours:
Intervals of 2 feet

\section*{2. DATE SOIL MAP PRODUCED}

Date(s) of on-site field work: 11/2/22
Date(s) of test pits: \(\quad 10 / 20 / 22\)
Test pits recorded by: Jim Gove, GES Inc.
3. GEOGRAPHIC LOCATION AND SIZE OF SITE

City or town where soil mapping was conducted: Raymond
Location: Main Street
Size of area: approximately 45 acres
Was the map for the entire lot? yes
If no, where was the mapping conducted on the parcel:
The parcel is a heavily wooded and rolling site. Steep rocky slopes are common and the topography rises sharply from Main Street to the middle of the site and down again towards the rear. Several wetlands are present on site.
4. PURPOSE OF THE SOIL MAP

Was the map prepared to meet the requirement of Alteration of Terrain? Yes
If no, what was the purpose of the map?
Who was the map prepared for? Jones and Beach Engineers, Inc.

\section*{5. SOIL IDENTIFICATION LEGEND}

SSSM SYM. SSS MAP NAME
42 Canton
89
444
657/P

Chatfield
Newfields
Ridgebury Very Stony
-
路

HISS SYM. HYDROLOGIC SOIL GRP.
221 B
228 B
321 B
528

C

SLOPE PHASE:
\(0-8 \% \quad\) B \(\quad 8-15 \%\) C \(\quad 15-25 \%\) D \(25 \%+\) E

\section*{6. SOIL MAP UNIT DESCRIPTIONS}

42 Canton
221
B
The Canton series consists of very deep, well drained soils formed in a loamy mantle underlain by sandy till. They are on nearly level to very steep moraines, hills, and ridges. Slope ranges from 0 to 45 percent. Saturated hydraulic conductivity is moderately high or high in the solum and high or very high in the substratum. These soils arew found throughout the parcel in the hoigher reaches. They are dominated by sandy loam over sandy material. No ESHWT was encountered with in \(40^{\prime \prime}\) and no significant ledge was encountered.
Typical profile is
\begin{tabular}{ccccc}
\(0-8 \%\) & \(10 Y R ~ 3 / 2\) & FSL & GR & FR \\
\(8-20 "\) & \(10 \mathrm{YR} \mathrm{5/6}\) & FSL & GR & FR \\
\(20-45 \%\) & \(2.5 Y 5 / 4\) & LS & OM & FR \\
No ESHWT, No Ledge & & &
\end{tabular}

\section*{89}

\section*{Chatfield}

228
B
The Chatfield series consists of well drained soils formed in loamy melt-out till. They are moderately deep to bedrock. They are nearly level to very steep soils on bedrock-controlled hills and ridges. Slope ranges from 0 to 70 percent. Crystalline bedrock is at depths of 50 to 100 cm . Saturated hydraulic conductivity is moderately high or high in the mineral soil. Thes soils are found througough on the high areas as well as side slopes. These soils are dominated by sandy loam material on top of sandy material and or shallow to deep ledge between 20-40".
Typical Profile is
\begin{tabular}{cclll}
\(0-10 "\) & \(10 Y R ~ 3 / 2\) & FSL & GR & FR \\
\(10-28 "\) & \(10 Y R ~ 4 / 4\) & FSL & GR & FR \\
\(28-42 "\) & \(2.5 Y 5 / 4\) & LS & GR & FR
\end{tabular}

Ledge at 42", No ESHWT
444 Newfields
321
B
The Newfields series consists of very deep, moderately well drained soils formed in a loamy mantle underlain by sandy till on upland hills, moraines, till plains, and mountain side slopes. Saturated hydraulic conductivity is moderately high to very high. Slope ranges from 0 through 25 percent. These soils are found along the lower side slopes and low areas throughout the site. They are dominated by fine sandy loam over loamy sand and sand. ESHWT is between 15-40 and no significant ledge was encountered.
Typical profile is
\begin{tabular}{cclll}
\(0-10 "\) & \(10 Y R ~ 3 / 2\) & FSL & GR & FR \\
\(10-18^{\prime \prime}\) & 10YR 4/3 & FSL & GR & FR \\
\(18-24 "\) & \(2.5 Y 5 / 4\) & LS & GR & FR \\
\(24-18^{\prime \prime}\) & \(2.5 Y 5 / 3\) & FSL & GR & FR
\end{tabular}

657/P Ridgebury Very Stony 528 C
The Ridgebury series consists of very deep, somewhat poorly and poorly drained soils formed in lodgment till derived mainly from granite, gneiss and/or schist. They are commonly shallow to a densic contact. They are nearly level to gently sloping soils in depressions in uplands. They also occur in drainageways in uplands, in toeslope positions of hills, drumlins, and ground moraines, and in till plains. Slope ranges from 0 to 15 percent. Saturated hydraulic conductivity is moderately high or high in the solum and very low to moderately low in the substratum
7. RESPONSIBLE SOIL SCIENTIST

Name: Luke Hurley
Certified Soil Scientist Number: 095
8. OTHER DISTINGUISHING FEATURES OF SITE

Is the site in a natural condition? Yes
If no, what is the nature of the disturbance?

\section*{APPENDIX VI}

\section*{NRCS Soil Map}

\section*{Map Unit Legend}
\begin{tabular}{|c|c|c|c|}
\hline Map Unit Symbol & Map Unit Name & Acres in AOI & Percent of AOI \\
\hline 12A & Hinckley loamy sand, 0 to 3 percent slopes & 3.0 & 1.1\% \\
\hline 12B & Hinckley loamy sand, 3 to 8 percent slopes & 30.6 & 11.1\% \\
\hline 97 & Freetown and Natchaug mucky peats, ponded, 0 to 2 percent slopes & 12.4 & 4.5\% \\
\hline 140 B & Chatfield-Hollis-Canton complex, 0 to 8 percent slopes, rocky & 34.1 & 12.4\% \\
\hline 140C & Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, rocky & 111.6 & 40.5\% \\
\hline 140D & Chatfield-Hollis-Canton complex, 15 to 35 percent slopes, rocky & 61.9 & 22.5\% \\
\hline 295 & Freetown mucky peat, 0 to 2 percent slopes & 6.8 & 2.5\% \\
\hline 395 & Swansea mucky peat, 0 to 2 percent slopes & 5.3 & 1.9\% \\
\hline 495 & Natchaug mucky peat, 0 to 2 percent slopes & 5.4 & 2.0\% \\
\hline 547B & Walpole very fine sandy loam, 3 to 8 percent slopes, very stony & 4.5 & 1.6\% \\
\hline \multicolumn{2}{|l|}{Totals for Area of Interest} & 275.7 & 100.0\% \\
\hline
\end{tabular}

\section*{APPENDIX VII}

Rip Rap Calculations

\title{
RIP RAP CALCULATIONS
}

\author{
White Rock Place
}

109A\&C Main Street
Raymond, NH 03077
Jones \& Beach Engineers, Inc.
P.O. Box 219

Stratham, NH 03885
\(16-\mathrm{Nov}-22\)

Rip Rap equations were obtained from the Stormwater Management and Erosion
Control Handbook for Urban and Developing Areas in New Hampshire.
Aprons are sized for the 25-Year storm event.

TAILWATER < HALF THE \(D_{0}\)
\(\mathrm{L}_{\mathrm{a}}=(1.8 \times \mathrm{Q}) / \mathrm{D}_{0}{ }^{3 / 2}+\left(7 \times \mathrm{D}_{0}\right)\)
\(W=L_{a}+\left(3 \times D_{0}\right)\) or defined channel width
\(d_{50}=\left(0.02 \times Q^{4 / 3}\right) /\left(T_{w} \times D_{0}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Culvert or \\
Catch Basin \\
(Sta. No.)
\end{tabular} & Tailwater (Feet) Tw & Discharge (C.F.S.) Q & ```
Diameter
 of Pipe
 D
``` & Length of Rip Rap \(\mathrm{L}_{\mathrm{a}}\) (feet) & \begin{tabular}{l}
Width of \\
Rip Rap \\
W (feet)
\end{tabular} & \[
\begin{gathered}
\mathrm{d}_{50} \text {-Median Stone } \\
\text { Rip Rap } \\
\mathrm{d} 50 \text { (feet) }
\end{gathered}
\] \\
\hline 12" HDPE (Pond 5P) & 0.28 & 1.26 & 1.25 & 10.4 & 14 & 0.08 \\
\hline 10" HDPE (Pond 10P) & 0.38 & 0.67 & 0.83 & 7.4 & 10 & 0.04 \\
\hline 12" HDPE (Pond 6P) & 0.36 & 1.29 & 1.25 & 10.4 & 14 & 0.06 \\
\hline \(15^{\prime \prime}\) HDPE (Pond CB12) & 0.59 & 3.45 & 1.25 & 13.2 & 17 & 0.14 \\
\hline
\end{tabular}

TAILWATER \(>\) HALF THE \(D_{0}\)
\(\mathrm{L}_{\mathrm{a}}=(3.0 \times \mathrm{Q}) / \mathrm{D}_{0}^{3 / 2}+\left(7 \times \mathrm{D}_{0}\right)\)
\(\mathrm{W}=\left(0.4 \times \mathrm{L}_{\mathrm{a}}\right)+\left(3 \times \mathrm{D}_{0}\right)\) or defined channel width
\(\mathrm{d}_{50}=\left(0.02 \times \mathrm{Q}^{4 / 3}\right) /\left(\mathrm{T}_{\mathrm{w}} \times \mathrm{D}_{0}\right)\)
\begin{tabular}{lcccccc} 
Culvert or & Tailwater & Discharge & Diameter & Length of & Width of & \(\mathrm{d}_{50}\)-Median Stone \\
Catch Basin & (Feet) & (C.F.S.) & \begin{tabular}{c} 
of Pipe
\end{tabular} & Rip Rap & Rip Rap & Rip Rap \\
(Sta. No.) & \(\mathrm{T}_{\mathrm{w}}\) & Q & \(\mathrm{D}_{0}\) & \(\mathrm{~L}_{\mathrm{a}}\) (feet) & W (feet) & d50 (feet) \\
& & & & & & \\
& & & & \#DIV/0! & \#DIV/0! & \#DIV/0!
\end{tabular}

Table 7-24 -- Recommended Rip Rap Gradation Ranges
\begin{tabular}{|lccc|}
\hline \(\mathrm{d}_{50}\) Size \(=\) & 0.25 & Feet & 3
\end{tabular}

Table 7-24 -- Recommended Rip Rap Gradation Ranges
\begin{tabular}{|lccc|}
\hline \(\mathrm{d}_{50}\) Size \(=\) & 0.5 & Feet & 6
\end{tabular}

\section*{APPENDIX VIII}

Stormwater Operations and Maintenance Manual

\title{
STORMWATER MANAGEMENT OPERATION AND MAINTENANCE MANUAL
}

\author{
White Rock Place 109A\&C Main Street \\ Raymond, NH 03077 \\ Tax Map 23, Lots 24, 25, \& 29
}

\author{
Prepared for: \\ Tuck Realty Corporation \\ PO Box 190
}

Exeter, NH 03833
ATTN: Michael Garrepy
mgarrepy@gmail.com
(603) 944-7530

Prepared by: Jones \& Beach Engineers, Inc.

85 Portsmouth Avenue
P.O. Box 219

Stratham, NH 03885
(603) 772-4746

November 22, 2022
REVISED December 12, 2022
REVISED March 20, 2023
JBE Project No. 20564

JONES\&BEACH

\title{
Inspection and Maintenance of Facilities and Property
}

\section*{A. Maintenance of Common Facilities or Property}
1. Tuck Realty Corporation., future owners and assigns are responsible to perform the maintenance obligations or hire a Professional Engineer to review the site on an annual basis for maintenance and certification of the stormwater system. Tuck Realty Corporation, future owners and assigns shall keep receipts and records of all maintenance companies hired throughout the year to submit along with the following form. All record keeping required by this manual shall be maintained by the responsible party(ies) and be made available to NHDES upon request.

\section*{B. General Inspection and Maintenance Requirements}
1. Permanent stormwater and sediment and erosion control facilities to be maintained on the site include, but are not limited to, the following:
a. Pavement
b. Sediment Forebay
c. Wet Pond
d. Bioretention System
e. ADS Stormtech System
f. ACF Focal Point
g. Permeable Pavers
h. Catch Basins \& Dry Well
i. Drain Manholes
j. Culverts
k. Rip Rap Outlet Protection
1. Contech StormFilter
m . Vegetation and landscaping
2. Maintenance of permanent measures shall follow the following schedule:
a. Normal winter roadway maintenance including plowing and snow removal. Road and parking lot sweeping at the end of every winter, preferably at the start of the spring rain season. Snow removal shall be performed by Sno-Pro certified personnel to keep road salt from contaminating the river or groundwater.
b. Cleaning Criteria for all Sedimentation Forebays: Sediment should be removed from the sedimentation chamber (forebay) when it accumulates to a depth of more than 12 inches \((30 \mathrm{~cm})\) or 10 percent of the pretreatment volume. The sedimentation forebay should be cleaned of vegetation if persistent standing water and wetland vegetation becomes dominant. The cleaning interval is once every year. A dry sedimentation forebay is the optimal condition while in practice this condition is rarely achieved. The sedimentation chamber, forebay, and treatment cell outlet devices should be cleaned when drawdown
times exceed 60 to 72 hours. Materials can be removed with heavy construction equipment; however this equipment should not track on the wetland surface. Revegetate disturbed areas as necessary. Removed sediments should be dewatered (if necessary) and disposed of in an acceptable manner.
c. Wet Ponds should require little maintenance, but should be inspected frequently during the first year of operation, and annually thereafter. Every five years, the services of a professional engineer should be retained to perform a thorough inspection of all the aspects of the pond and its infrastructure. Any debris and sediment accumulations should be removed from the outlet structure(s) and emergency spillway(s) and disposed of properly. Inspect outlet structure for deterioration and or clogging. Wet Pond berms should be mowed at least once annually so as to prevent the establishment of woody vegetation - trees should never be allowed to grow on a Wet Pond berm, as they may destabilize the structure and increase the potential for failure. Areas showing signs of erosion or thin or dying vegetation should be repaired immediately by whatever means necessary, with the exception of fertilizer. Rodent burrows are to be repaired immediately and the suspect animals apprehended with non-lethal traps if the problem persists.

The wet pond should remain full to the elevation of the lowest outlet in the pond.
d. Bioretention Systems:
- Visually inspect monthly and repair erosion. Use small stones to stabilize erosion along drainage paths.
- Check the pH once a year if grass is not surviving. Apply an alkaline product, such as limestone, if needed.
- Re-seed any bare areas by hand as needed.
- Immediately after the completion of cell construction, water grass for 14 consecutive days unless there is sufficient natural rainfall.
- Once a month (more frequently in the summer), residents are encouraged to visually inspect vegetation for disease or pest problems and treat as required.
- During times of extended drought, look for physical features of stress. Water in the early morning as needed.
- Weed regularly, if needed.
- After rainstorms, inspect the cell and make sure that drainage paths are clear and that ponding water dissipates over 4-6 hours. (Water may pond for longer times during the winter and early spring.)
- Twice annually, inspect the outlet control structures to ensure that they are not clogged and correct any clogging found as needed.
KEEP IN MIND, THE BIORETENTION CELL IS NOT A POND. IT SHOULD NOT PROVIDE A BREEDING GROUND FOR MOSQUITOES. MOSQUITOES NEED AT LEAST FOUR (4) DAYS OF STANDING WATER TO DEVELOP AS LARVA.
e. ADS Stormtech System:
- Removal of debris from inlet and outlet structures.
- Removal of accumulated sediment.
- Inspection and repair of outlet structures and appurtenances.
- Inspection of infiltration components at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24 hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Inspection of pretreatment measures at least twice annually, and removal of accumulated sediment as warranted by inspection, but no less than once annually.
- If an infiltration system does not drain within 72-hours following a rainfall event, then a qualified professional should assess the condition of the facility to determine measures required to restore infiltration function, including but not limited to removal of accumulated sediments or reconstruction of the infiltration trench.
- Camera inspections of the system should be done on an annual basis.
- See also attachment from ADS.

\section*{f. ACF Focal Point: See attachment from ACF}

\section*{g. Permeable Pavers:}

A short stretch of the emergency access road is constructed from EcoRaster permeable pavers and the remainder is constructed from gravel. The following recommendations will help assure that the pavers are maintained to preserve its hydrologic effectiveness.

\section*{Winter maintenance:}
- Sanding for winter traction is prohibited. Deicing is permitted ( \(\mathrm{NaCl}, \mathrm{MgCl}_{2}\), or equivalent). Reduced salt application is possible and can be a cost savings for winter maintenance. Nontoxic, organic deicers, applied either as blended, magnesium chloride-based liquid products or as pretreated salt, are preferable.
- Plowing is allowed, blade should be set approximately 1 " above the paver surface. Ice and light snow accumulation are generally not as problematic as for standard asphalt. Snow will accumulate during heavier storms and should be plowed. (more than usual, about an inch).

\section*{Routine maintenance:}
- Seal coating is absolutely forbidden. Surface seal coating is not reversible.
- The paver surface should be vacuumed 2 or 3 times per year, and at any additional times sediment is spilled, eroded, or tracked onto the surface.
- Planted areas adjacent to permeable pavers should be well maintained to prevent soil washout onto the pavers. If any bare spots or eroded areas are
observed within the planted areas, they should be replanted and/or stabilized at once.
- Immediately clean any soil deposited on pavers. Superficial dirt does not necessarily clog the paver voids. However, dirt that is ground in repeatedly by tires can lead to clogging. Therefore, trucks or other heavy vehicles should be prevented from tracking or spilling dirt onto the pavers.
- Do not allow construction staging, soil/mulch storage, etc. on unprotected paver surface. Contractor to lay down tarps, plywood or removable item and take care not to track material onto unprotected pavers.
- Repairs: Potholes or other surface blemishes shall be replaced in kind. Any required repair of drainage structures should be done promptly to ensure continued proper functioning of the system.
- Written and verbal communication to the future owner should make clear the pavement's special purpose and special maintenance requirements such as those listed here.
h. Annual inspection of catch basins to determine if they need to be cleaned. Catch basin is to be cleaned if the depth of deposits is greater than one-half the depth from the basin bottom to the invert of the lowest pipe or opening into or out of the basin. If a catch basin significantly exceeds the one-half depth standard during the inspection, then it should be cleaned more frequently. If woody debris or trash accumulates in the catch basin, then it should be cleaned on a weekly basis. The Catch basin can be cleaned either manually or by specially designed equipment including, but not limited to, bucket loaders and vacuum pumps. Before any materials can be disposed, it is necessary to perform a detailed chemical analysis to determine if the materials meet the EPA criteria for hazardous waste. This will help determine how the materials should be stored, treated, and disposed. Grease hoods are to be wiped clean and the rags disposed of properly. Debris obscuring the grate inlet should also be removed.
i. Annual inspection of drain manholes to determine if they need to be cleaned. Manholes should be cleaned of any material upon inspection. Manholes can be cleaned either manually or by specially designed equipment including, but not limited to, bucket loaders and vacuum pumps. Before any materials can be disposed, it is necessary to perform a detailed chemical analysis to determine if the materials meet the EPA criteria for hazardous waste. This will help determine how the materials should be stored, treated, and disposed.
j. Inspection of culvert inlets and outlets at least once per month during the rainy season (March to November). Any debris is to be removed and disposed of properly.
k. Rock riprap should be inspected annually in order to ensure that it has not been displaced, undermined, or otherwise damaged. Displaced rock should be replaced, or additional rock added in order to maintain the structure(s) in their undamaged state. Woody vegetation should not be allowed to become established in riprap areas, and/or any debris removed from the void spaces between the rocks. If the riprap is adjacent to a
stream or other waterbody, the water should be kept clear of obstructions, debris, and sediment deposits.
1. Contech StormFilter: See attachment from Contech.
m . Annual inspection of site's vegetation and landscaping. Any areas that are bare shall be reseeded and mulched with hay or, if the case is extreme, loamed and seeded or sodded to ensure adequate vegetative cover. Landscape specimens shall be replaced in kind, if they are found to be dead or dying. The site shall remain in a stabilized condition at all times. A site is considered stable if one of the following has occurred.
b.a. A minimum of \(85 \%\) vegetative cover has been established;
b.b. A minimum of 3 inches of non-erosive material such as stone or riprap has been installed; or
b.c. Erosion control blankets have been installed in accordance with Env-Wq 1506.03.
n. Annual inspection of the site for erosion, destabilization, settling, and sloughing. Any needed repairs are to be conducted immediately.

See attached sample forms as a guideline.
Any inquiries in regards to the design, function, and/or maintenance of any one of the above mentioned facilities or tasks shall be directed to the project engineer:

Jones \& Beach Engineers, Inc.
85 Portsmouth Avenue
P.O. Box 219

Stratham, NH 03885
T\#: (603) 772-4746
Email: jcoronati@jonesandbeach.com
!

\section*{Commitment to maintenance requirements}

I agree to complete and/or observe all of the required maintenance practices and their respective schedules as outlined above.

Tuck Realty Corporation

By: Print Name

\section*{Signature}

\section*{Title}

\section*{Email Address}

Phone Number

Date

\section*{Commitment to maintenance requirements}

This signature page shall be provided to NHDES upon the change of Ownership, Transfer or Assignment. Contact information is to remain updated and the responsibility of the applicable party responsible for this Operation and Maintenance Manual.

I agree to complete and/or observe all of the required maintenance practices and their respective schedules as outlined above.

\section*{Property Owner or future assigns}

By: Print Name

\section*{Signature}

Title

Email Address

Phone Number

\section*{Date}

\section*{Annual Operations and Maintenance Report}

Tuck Realty Corporation, future owners and assigns, are responsible to perform the maintenance obligations or hire a Professional Engineer to review the site on an annual basis for maintenance and certification of the stormwater system. Tuck Realty Corporation, future owners and assigns shall keep receipts and records of all maintenance companies hired throughout the year to submit along with the following form. All record keeping required by this manual shall be maintained by the responsible party(ies) and be made available to NHDES upon request.

Tuck Realty Corporation, future owners and assigns, are responsible for submitting a report to the Planning Department or their designated agent by September 1 every two years, with the first report due within two years of receipt of an Occupancy Permit. The report shall be signed and stamped by a qualified professional engineer that all stormwater management and erosion control measures are functioning per the approved stormwater management plan. The report shall note if any stormwater infrastructure has needed any repairs other than routine maintenance and the results of those repairs. If the stormwater infrastructure is not functioning per the approved stormwater management plan the landowner shall report on the malfunction in their report and include detail regarding when the infrastructure shall be repaired and functioning as approved.

If no report is filed by September 1 in the year the report is due, the Select Board or their designated agent shall have site access to complete routine inspections to ensure compliance with the approved stormwater management and sediment and erosion control plans. Such inspections shall be performed at a time agreed upon with the landowner.
\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{l} 
Construction \\
Activity
\end{tabular} & \begin{tabular}{c} 
Date of \\
Inspection
\end{tabular} & \begin{tabular}{c} 
Who \\
Inspected
\end{tabular} & Findings of Inspector \\
\hline Pavement & & & \\
\hline Sediment Forebays & & & \\
\hline Wet Pond & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Bioretention System & & & \\
\hline ADS Stormtech & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Culverts & & & \\
\hline \begin{tabular}{l} 
Rip-Rap Outlet \\
Protection
\end{tabular} & & & \\
\hline Contech StormFilter & & & \\
\hline Vegetation and & & & \\
Landscaping & & & \\
\hline Other: & & & \\
\hline
\end{tabular}

Comments:
\begin{tabular}{|c|l|l|}
\hline Deicing Log & Type of Deicing Material & Amount Applied \\
\hline Date Applied & & \\
\hline & & \\
\hline
\end{tabular}

\section*{CONTROL OF INVASIVE PLANTS}

During maintenance activities, check for the presence of invasive plants and remove in a safe manner as described on the following pages. They should be controlled as described on the following pages.

\section*{Background:}

Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm by:
- becoming weedy and overgrown;
- killing established shade trees;
- obstructing pipes and drainage systems;
- forming dense beds in water;
- lowering water levels in lakes, streams, and wetlands;
- destroying natural communities;
- promoting erosion on stream banks and hillsides; and
- resisting control except by hazardous chemical.


\section*{University of New Hampshire Methods for Disposing COOPERATIVE EXTENSION} Non-Native Invasive Plants

Prepared by the Invasives Species Outreach Group, volunteers interested in helping people control invasive plants. Assistance provided by the Piscataquog Land Conservancy and the NH Invasives Species Committee. Edited by Karen Bennett, Extension Forestry Professor and Specialist.


Tatarian honeysuckle Lonicera tatarica
USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 3: 282.

Non-native invasive plants crowd out natives in natural and managed landscapes. They cost taxpayers billions of dollars each year from lost agricultural and forest crops, decreased biodiversity, impacts to natural resources and the environment, and the cost to control and eradicate them.

Invasive plants grow well even in less than desirable conditions such as sandy soils along roadsides, shaded wooded areas, and in wetlands. In ideal conditions, they grow and spread even faster. There are many ways to remove these nonnative invasives, but once removed, care is needed to dispose the removed plant material so the plants don't grow where disposed.

Knowing how a particular plant reproduces indicates its method of spread and helps determine the appropriate disposal method. Most are spread by seed and are dispersed by wind, water, animals, or people. Some reproduce by vegetative means from pieces of stems or roots forming new plants. Others spread through both seed and vegetative means.

Because movement and disposal of viable plant parts is restricted (see NH Regulations), viable invasive parts can't be brought to most transfer stations in the state. Check with your transfer station to see if there is an approved, designated area for invasives disposal. This fact sheet gives recommendations for rendering plant parts nonviable.

Control of invasives is beyond the scope of this fact sheet. For information about control visit www.nhinvasives.org or contact your UNH Cooperative Extension office.

\section*{New Hampshire Regulations}

Prohibited invasive species shall only be disposed of in a manner that renders them nonliving and nonviable. (Agr. 3802.04)

No person shall collect, transport, import, export, move, buy, sell, distribute, propagate or transplant any living and viable portion of any plant species, which includes all of their cultivars and varieties, listed in Table 3800.1 of the New Hampshire prohibited invasive species list. (Agr 3802.01)

\section*{How and When to Dispose of Invasives?}

To prevent seed from spreading remove invasive plants before seeds are set (produced). Some plants continue to grow, flower and set seed even after pulling or cutting. Seeds can remain viable in the ground for many years. If the plant has flowers or seeds, place the flowers and seeds in a heavy plastic bag "head first" at the weeding site and transport to the disposal site. The following are general descriptions of disposal methods. See the chart for recommendations by species.

Burning: Large woody branches and trunks can be used as firewood or burned in piles. For outside burning, a written fire permit from the local forest fire warden is required unless the ground is covered in snow. Brush larger than 5 inches in diameter can't be burned. Invasive plants with easily airborne seeds like black swallow-wort with mature seed pods (indicated by their brown color) shouldn't be burned as the seeds may disperse by the hot air created by the fire.

Bagging (solarization): Use this technique with softertissue plants. Use heavy black or clear plastic bags (contractor grade), making sure that no parts of the plants poke through. Allow the bags to sit in the sun for several weeks and on dark pavement for the best effect.

Tarping and Drying: Pile material on a sheet of plastic


Japanese knotweed Polygonum cuspidatum USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 1: 676. and cover with a tarp, fastening the tarp to the ground and monitoring it for escapes. Let the material dry for several weeks, or until it is clearly nonviable.

Chipping: Use this method for woody plants that don't reproduce vegetatively.
Burying: This is risky, but can be done with watchful diligence. Lay thick plastic in a deep pit before placing the cut up plant material in the hole. Place the material away from the edge of the plastic before covering it with more heavy plastic. Eliminate as much air as possible and toss in soil to weight down the material in the pit. Note that the top of the buried material should be at least three feet underground. Japanese knotweed should be at least 5 feet underground!

Drowning: Fill a large barrel with water and place soft-tissue plants in the water. Check after a few weeks and look for rotted plant material (roots, stems, leaves, flowers). Wellrotted plant material may be composted. A word of caution- seeds may still be viable after using this method. Do this before seeds are set. This method isn't used often. Be prepared for an awful stink!

Composting: Invasive plants can take root in compost. Don't compost any invasives unless you know there is no viable (living) plant material left. Use one of the above techniques (bagging, tarping, drying, chipping, or drowning) to render the plants nonviable before composting. Closely examine the plant before composting and avoid composting seeds.

Be diligent looking for seedlings for years in areas where removal and disposal took place.

\section*{Suggested Disposal Methods for Non-Native Invasive Plants}

This table provides information concerning the disposal of removed invasive plant material. If the infestation is treated with herbicide and left in place, these guidelines don't apply. Don't bring invasives to a local transfer station, unless there is a designated area for their disposal, or they have been rendered non-viable. This listing includes wetland and upland plants from the New Hampshire Prohibited Invasive Species List. The disposal of aquatic plants isn't addressed.
\begin{tabular}{|c|c|c|}
\hline Woody Plants & \begin{tabular}{c} 
Method of \\
Reproducing
\end{tabular} & \multicolumn{1}{c|}{ Methods of Disposal }
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Non-Woody Plants & Method of Reproducing & Methods of Disposal \\
\hline \begin{tabular}{l}
garlic mustard \\
(Alliaria petiolata) spotted knapweed \\
(Centaurea maculosa) \\
- Sap of related knapweed can cause skin irritation and tumors. Wear gloves when handling. \\
black swallow-wort \\
(Cynanchum nigrum) \\
- May cause skin rash. Wear gloves and long sleeves when handling. \\
pale swallow-wort \\
(Cynanchum rossicum) giant hogweed \\
(Heracleum mantegazzianum) \\
- Can cause major skin rash. Wear gloves and long sleeves when handling. \\
dame's rocket \\
(Hesperis matronalis) perennial pepperweed \\
(Lepidium latifolium) purple loosestrife \\
(Lythrum salicaria) \\
Japanese stilt grass \\
(Microstegium vimineum) mile-a-minute weed (Polygonum perfoliatum)
\end{tabular} & Fruits and Seeds & \begin{tabular}{l}
Prior to flowering \\
Depends on scale of infestation \\
Small infestation \\
- Pull or cut plant and leave on site with roots exposed. \\
Large infestation \\
- Pull or cut plant and pile. (You can pile onto or cover with plastic sheeting). \\
- Monitor. Remove any re-sprouting material. \\
During and following flowering \\
Do nothing until the following year or remove flowering heads and bag and let rot. \\
Small infestation \\
- Pull or cut plant and leave on site with roots exposed. \\
Large infestation \\
- Pull or cut plant and pile remaining material. (You can pile onto plastic or cover with plastic sheeting). \\
- Monitor. Remove any re-sprouting material.
\end{tabular} \\
\hline \begin{tabular}{l}
common reed \\
(Phragmites australis) \\
Japanese knotweed \\
(Polygonum cuspidatum) \\
Bohemian knotweed (Polygonum x bohemicum)
\end{tabular} & Fruits, Seeds, Plant Fragments Primary means of spread in these species is by plant parts. Although all care should be given to preventing the dispersal of seed during control activities, the presence of seed doesn't materially influence disposal activities. & \begin{tabular}{l}
Small infestation \\
- Bag all plant material and let rot. \\
- Never pile and use resulting material as compost. \\
- Burn. \\
Large infestation \\
- Remove material to unsuitable habitat (dry, hot and sunny or dry and shaded location) and scatter or pile. \\
- Monitor and remove any sprouting material. \\
- Pile, let dry, and burn.
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
UNH Cooperative Extension programs and policies are consistent with pertinent Federal and State laws and regulations, and prohibits discrimination in its programs, activities and employment on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sex, sexual orientation, or veteran's, marital or family status. College of Life Sciences and Agriculture, County Governments, NH Dept. of Resources and Economic Development, Division of Forests and Lands, NH Fish and Game, and U.S. Dept of Agriculture cooperating.
}

\begin{tabular}{|c|c|c|c|}
\hline 12 & 3/19/23 & ERTAC, TOWN ENGINEER, AND AOT COMMENTS & DIM \\
\hline 11 & 214423 & RENSEO PERTOWN ENGIMEEA COMMENTS & \\
\hline 10 & 12712122 & Dramage nevilins for aot & DJM \\
\hline - & \({ }^{1+1 / 22222}\) &  & DJM \\
\hline \% 8 & \(\frac{81 / 22}{}\) & \(\frac{\text { ADDED Drainage }}{\text { REVISION }}\) & \({ }_{\text {Br }}\) \\
\hline
\end{tabular}





\section*{APPENDIX IX}

Pre- and Post-Construction Watershed Plans









\title{
Raymond NH Planning Board Waiver Request Form \\ Applicable to Site Plan Review and Subdivision Regulations
}

\section*{Project Name \& Application Number: White Rock Place}

Regulation, Article \& Section from which a waiver is being sought:

\section*{Site Plan Regulations Section 6.03.03(c) - Licensed Landscape Architect Requirement}

Where the Planning Board finds that unnecessary hardship may result from strict compliance with these regulations with respect to a particular tract of land, the Board may modify or waive these regulations so that substantial justice may be done and the public interest is secured, provided that:

\section*{Please respond to the criteria below:}
a. Explain how the granting of the waiver will not be detrimental to public safety, health, or welfare or injurious to other adjacent property;

We are requesting a waiver from the requirement to hire a Licensed Landscape Architect to draft and stamp the landscape plan as we have hired Lise McNaughton of LM Land Design from Brentwood, NH to do the planting design work. Lise is more than qualified to provide landscape plans as you can see from the variety of plantings selected. A sufficient variety of plantings has been selected for this proposed development.
b. Explain how granting this waiver shall not have the effect of nullifying the intent and purpose of these regulations, the Zoning Ordinance, Master Plan or Official Zoning Map;

We meet the intent of this regulation by hiring Lise McNaughton, who is an experienced landscape designer but not a landscape architect. Lise is more than qualified to provide landscape plans as you can see from the variety of plantings selected.

In granting waivers, the Planning Board may require such conditions as will, in the Board's judgment, secure substantially the objectives of the standards or requirements of these regulations.

A petition for waiver shall be submitted by the applicant at the time when the application is filed for consideration by the Planning Board. All petitions shall be made in writing using the Town's Waiver Request Form. The petition shall state fully the grounds for the waiver and all of the facts relied upon by the petitioner.

Any granted waivers must be noted on the final approved plan.
\\srv03\appdata\public\Community Development Dept\Forms
Updated September 21, 2017

\title{
Raymond NH Planning Board Waiver Request Form \\ Applicable to Site Plan Review and Subdivision Regulations
}

\section*{Project Name \& Application Number: White Rock Place}

Regulation, Article \& Section from which a waiver is being sought:

\section*{Site Plan Regulations Section 6.06.01 - Parking Requirements}

Where the Planning Board finds that unnecessary hardship may result from strict compliance with these regulations with respect to a particular tract of land, the Board may modify or waive these regulations so that substantial justice may be done and the public interest is secured, provided that:

\section*{Please respond to the criteria below:}
a. Explain how the granting of the waiver will not be detrimental to public safety, health, or welfare or injurious to other adjacent property;

We are requesting 281 parking spaces which is 1.80 spaces per unit, where 3 spaces per unit are required. We are asking for this waiver to be granted as providing 3 spaces per unit is excessive for apartments. There are overlapping use of parking spaces when you have this many units. People are coming and going and we will have 841 -bedroom units. Some of these will certainly be occupied by one person with one vehicle. Based on empirical observations, 1.80 spaces per unit is plenty for this combination of 1-and 2-bedroom units.
b. Explain how granting this waiver shall not have the effect of nullifying the intent and purpose of these regulations, the Zoning Ordinance, Master Plan or Official Zoning Map;

This provides sufficient off-street parking for the proposed use based on empirical observations. The intent of the parking standards is to prevent parking public rights of way, and the proposed parking layout provides enough parking. Having less parking will also help us to minimize disturbance to the extent possible. This is particularly important on a sloping site such as this one, where steep slope areas are protected under Zone G. Therefore, this helps us also meet the intent and purpose of the Zoning Ordinance by minimizing disturbance in Zone G land.

In granting waivers, the Planning Board may require such conditions as will, in the Board's judgment, secure substantially the objectives of the standards or requirements of these regulations.

A petition for waiver shall be submitted by the applicant at the time when the application is filed for consideration by the Planning Board. All petitions shall be made in writing using the Town's Waiver Request Form. The petition shall state fully the grounds for the waiver and all of the facts relied upon by the petitioner.

Any granted waivers must be noted on the final approved plan.
\\srv03\appdata\public\Community Development Dept\Forms
Updated September 21, 2017

\title{
Raymond NH Planning Board Waiver Request Form
}

\title{
Applicable to Site Plan Review and Subdivision Regulations
}

\section*{Project Name \& Application Number: White Rock Place}

\section*{Regulation, Article \& Section from which a waiver is being sought:}

\author{
Subdivision Regulations 5.6.D. 1 - Maximum Road Grade
}

Where the Planning Board finds that unnecessary hardship may result from strict compliance with these regulations with respect to a particular tract of land, the Board may modify or waive these regulations so that substantial justice may be done and the public interest is secured, provided that:

\section*{Please respond to the criteria below:}
a. Explain how the granting of the waiver will not be detrimental to public safety, health, or welfare or injurious to other adjacent property;

\begin{abstract}
We are requesting to permit a graveled emergency access road with a maximum slope of \(9.0 \%\) where a maximum slope of \(8.0 \%\) is allowed. As the name of it suggests, this road will only be used for emergencies and the primary route of ingress and egress will be via a 25 ' wide paved private road with a maximum slope of \(8.0 \%\). The first 200 approximately of the emergency access road will need to be constructed at a slope of no greater than \(2 \%\) in order for grading to remain on the subject parcel. Beyond this there is more land area to work with and the proposed road begins to climb a steep hill. The end of this road needs to meet the site approximately at elevation 266.2 , and should not be at a steep slope when it does so. Therefore there needs to be a transition of grade when the emergency access road ends and meets the site. The road therefore must retain a slope of \(9.0 \%\). The road is 967 feet long and cannot be made any longer while still keeping with existing topography to the extent practicable. This is not detrimental to public safety because there is not likely to be oncoming traffic along this road - It will be used infrequently by emergency vehicles going up the hill, and then these vehicles may either go back down this road or utilize the main driveway to return to Main Street. The curves in the road are enough to provide adequate sight distance as well. Additionally, guardrail will be utilized along the low side, and there will be a ditch to prevent stormwater run-on along the high side of the road. This is not injurious to other adjacent property because the road will be screened by both landscaping and natural woods, and all runoff from the road will be treated and detained so that post-construction peak flows are below the existing conditions. We request that this waiver be granted because it is unavoidable for the emergency access road to have a steep slope and because appropriate steps are being taken to ensure that the road is safe for emergency vehicles.
\end{abstract}
b. Explain how granting this waiver shall not have the effect of nullifying the intent and purpose of these regulations, the Zoning Ordinance, Master Plan or Official Zoning Map;

The intent of this regulation is to ensure safety along proposed roadways. For the reasons stated above, the road grade being slightly higher than the maximum requirement will not compromise this intent, and the road cannot reasonably be made any less steep. Additionally, if the road is steeper it can be made shorter, which results in a lower volume of stormwater runoff. Another purpose of the site plan regulations is to lessen stormwater runoff from development sites. For these reasons, the proposed waiver does not have the effect of nullifying the intent and purpose of the site plan regulations, and road grade not a matter of zoning.

In granting waivers, the Planning Board may require such conditions as will, in the Board's judgment, secure substantially the objectives of the standards or requirements of these regulations.

A petition for waiver shall be submitted by the applicant at the time when the application is filed for consideration by the Planning Board. All petitions shall be made in writing using the Town's Waiver Request Form. The petition shall state fully the grounds for the waiver and all of the facts relied upon by the petitioner.

Any granted waivers must be noted on the final approved plan.
\\srv03\appdata\public\Community Development Dept\Forms
Updated September 21, 2017

\title{
Raymond NH Planning Board Waiver Request Form \\ Applicable to Site Plan Review and Subdivision Regulations
}

\section*{Project Name \& Application Number: White Rock Place}

Regulation, Article \& Section from which a waiver is being sought:

\author{
Subdivision Regulations - ROW Design Matrix - Sidewalk Requirement
}

Where the Planning Board finds that unnecessary hardship may result from strict compliance with these regulations with respect to a particular tract of land, the Board may modify or waive these regulations so that substantial justice may be done and the public interest is secured, provided that:

\section*{Please respond to the criteria below:}
a. Explain how the granting of the waiver will not be detrimental to public safety, health, or welfare or injurious to other adjacent property;

Per the right of way design matrix within the Subdivision Regulations, sidewalks are required for all private roads that serve 20 units or more. This is a 156 -unit development with a private access drive, so this project meets the threshold for technically requiring a sidewalk. However, we believe that it would be inadvisable to place a sidewalk along White Rock Drive for several reasons. The road climbs 70 ' in elevation at an \(8 \%\) slope. A sidewalk at this slope would be unsafe during the winter and would not be compliant with ADA regulations. Additionally, there is barely enough room on the subject parcel to grade side slopes for the roadway itself. A sidewalk would only encumber more land with grading and also cause additional stormwater runoff.

As an alternative to a sidewalk, the emergency access road can be used by bicyclists and pedestrians to access Main Street and downtown Raymond by foot or bicycle. Pedestrian ingress and egress from the site will still be possible without a sidewalk.
b. Explain how granting this waiver shall not have the effect of nullifying the intent and purpose of these regulations, the Zoning Ordinance, Master Plan or Official Zoning Map;

While a traditional sidewalk would be inadvisable along White Rock Drive, the emergency access road can be utilized by pedestrians as an alternative path to Main Street. This substantially meets the objective of the sidewalk requirement by providing pedestrian access to downtown on a road that is almost never going to be used by motor vehicles.

In granting waivers, the Planning Board may require such conditions as will, in the Board's judgment, secure substantially the objectives of the standards or requirements of these regulations.

A petition for waiver shall be submitted by the applicant at the time when the application is filed for consideration by the Planning Board. All petitions shall be made in writing using the Town's Waiver Request Form. The petition shall state fully the grounds for the waiver and all of the facts relied upon by the petitioner.

Any granted waivers must be noted on the final approved plan.
\\srv03\appdata\public\Community Development Dept\Forms
Updated September 21, 2017

\title{
JONES\&BEACH \\ 85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885 \\ 603.772.4746 - JonesandBeach.com
}

February 14, 2023
Raymond Planning Board
Attn. Brad Reed, Chair
4 Epping Street
Raymond, NH 03077

\author{
Re: Response Letter \\ White Rock Place \\ 109A,B,C,\&D Main Street, Raymond, NH \\ Tax Map 23, Lots 24, 25, 28 \& 29 \\ JBE Project No. 20564
}

Dear Mr. Reed,
We received comments from Jeffery Adler with Dubois \& King, Inc. dated January 11, 2023. Original review comments are italicized, and we offer the following responses below in bold. Please also note the changes in plan sheet numbering.

\section*{Waiver Requests:}
1. We understand that the Applicant is requesting a waiver from Town of Raymond, Site Plan Regulations Section 6.06.01 Parking Requirements, and is proposing to provide 281 parking spaces instead of the calculated 468 spaces required. We recommend that the Applicant provide supporting documentation to justify the reduced number of parking spaces.
Response: A waiver request letter is included with this resubmission.
2. We understand that the Applicant is requesting a waiver from having a Licensed Landscape Architect draft and stamp the Landscape Plan. However, in accordance with the Site Plan Review Regulations Section 6.10.06 the Planning Board may require the applicant to engage the services of a Licensed Landscape Architect to prepare any landscaping plan presented.
Response: A waiver request is included with this resubmission.
3. We understand that the Applicant is requesting a waiver from Town of Raymond, Subdivision Regulations, Section 5.6.D.1, regarding the geometric design standard for the emergency access road.
Response: A waiver request is included with this resubmission.
4. We understand that the Applicant is requesting a waiver from Town of Raymond, Subdivision Regulations, Right of Way Design Matrix regarding the minimum width for the emergency access road.
Response: A waiver request is included with this resubmission.

\section*{Traffic Impact Analysis:}
1. We recommend that the Applicant provide a Traffic Impact Analysis for the proposed industrial development, in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.03.13.
Response: A traffic impact analysis will be submitted next month. The data collection has been completed and we are awaiting the report from Vanasse \& Associates.

\section*{Existing Conditions Plans. (OVREX, C1 and C2; Now C1-C12):}
1. We recommend that the Applicant indicate the location of site, tax map and lot number, current name and address of the owner of record for Lot 24, in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.02.02.
Response: Lot 24 is part of this project, so the owner information is included in the owner of record block.
2. A graphic scale of \(1^{\prime \prime}=20^{\prime}\) up to \(1^{\prime \prime}=50^{\prime}\) is recommended in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.02.03.
Response: Existing conditions plans are now shown at 1" \(=40\), scale.
3. We recommend that the Applicant indicate the boundary lines of the areas included in the site, including distance and bearing of the lines, dimensions and lot area, in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.02.04.
Response: Bearings and distances as well as total areas of all lots involved with the application are included on the plan.
4. Locations and widths of adjacent streets, buildings and drives within 200 feet of the site boundaries are not shown in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.02.06. Response: The locations and widths of the adjacent streets, buildings, and drives within 200 feet of the site boundaries have been added to the plans.

ENGINEERS INC
5. The shape, height and size of the existing buildings on the site and within 200 feet of the site boundaries are not shown in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.02.07. Response: The size and heights of existing buildings on site and within \(\mathbf{2 0 0}\) feet of the site boundaries have been added to the existing conditions plans and additionally the shape of each building is shown.
6. The use of the abutting buildings is not identified in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.02.09.
Response: Each building on abutting lots is now labelled with its use (residential, commercial, etc.).
7. We recommend that the Applicant revise the plans to show the size, location and elevation of all existing public and private utilities onsite and off-site with which connection is planned in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.02.10.
Response: The sizes and locations of all public and private utilities with which connection is planned, as well as information as to whether they are above ground or underground, have been added on the plans.
8. We recommend that the Applicant revise the plans and identify all soil types and approximate soil boundaries in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.02.11.
Response: The plans have been revised to show all soil types and approximate soil boundaries. There was only a field soil survey performed on the front section of the lot where the development is proposed, so soils for the remainder of the lots were filled in via NRCS Web Soil Survey.
9. We recommend that the Applicant submit copies of existing covenants, easements, right-of-ways in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.02.12.
Response: A copy of the deeded 30 ' right of way (to be extinguished) is included with this submission.
10. The location of all building setbacks (Lot 24 \& 29) are not shown in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.02.13.
Response: All building setbacks are now shown on the plans.
Lot Line Adjustments Plans. (Sheets A1 to A2, Now Subdivision Plans):
1. In accordance with Section 5.02.04, Site Plan Review Regulations, all boundary lines shall indicate the bearings and distance.
Response: Bearings and distances have been added to the plan.

\section*{Site Layout Plans. (Sheets OVRS, C3 and C4; Now C13-C15):}
1. In Site Notes, note \(5 B\) is not referring to the right Section in the Site Plan Review Regulations.
Response: Note 5B has been revised to reference Section 3.03.03(c).
2. We recommend that the Applicant revise the plan to provide a minimum 25 ' wide paved travel way for White Rock Drive in accordance with Town of Raymond, Site Plan Review Regulations, Section 6.02.01.a. Response: White Rock Drive has been increased to \(\mathbf{2 5}^{\prime}\) wide.
3. In accordance with the Right of Way Design Matrix, sidewalks are required for roads serving 20 units or more. We recommend revising the plans accordingly.
Response: It would be inadvisable to place a sidewalk along White Rock Drive for a number of reasons. As an alternative, the proposed emergency access road will rarely be used by vehicles and therefore can be used as an access path for pedestrians and bicycle riders to directly access Main Street and provide a walkable path to downtown. A waiver request letter from the sidewalk requirement is included with this resubmission.
4. We recommend adding the size and height of the proposed buildings in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.03.02.
Response: The size and height of the proposed buildings has been added to the site plans. Architectural plans are also being provided.
5. In accordance with Section 5.03.03, indication of travel for streets and drives, and inside radii of all curves shall be provided on the plans. Additionally, we recommend providing a minimum 5' radius for the curbed islands in the parking lot.
Response: Arrows to indicate travel direction along the drives and any curve radii that were missing have been added to the plans. Radii on the curbed islands have been increased to \(5^{\prime}\) minimum where possible, with one exception as it is not feasible to provide a 5 ' radius on the island between Buildings \#2 and \#3.
6. The minimum parking requirement for a residential / multi-family is 3 spaces per unit for a total of 468 spaces. The Applicant is proposing 281 space and requesting a waiver from Town of Raymond.
Response: As stated above, a waiver request letter is included with this resubmission.
7. We recommend that each building is numbered in future submissions for ease of reference.
Response: Each building is now numbered.
8. The emergency access drive shows a width of 16' in lieu of the required 20'. The Applicant is requesting a waiver from Town of Raymond.
Response: As stated above, a waiver request letter is included with this resubmission.
9. The labels for the proposed parking spaces located between the center island and emergency access road appear to be incorrect. Response: The parking space labels have been corrected.
10. We recommend that the Applicant meet with the Fire Department to review the protection activities, in accordance with Town of Raymond, Site Plan Review Regulations, Section 6.09.01.

Response: This can be discussed at the upcoming Technical Review Committee meeting.

\section*{Grading and Drainage Plans. (Sheets OVRG, C5 to C6; Now C16-C18):}
1. It appears that the proposed grading on the south side of White Rock Drive will direct a large volume of stormwater runoff over the proposed access road. We recommend that the Applicant revise the plan to provide means for sufficient stormwater peak flow attenuation and treatment. Also, the proposed benches which divert some of the stormwater should be stabilized with riprap to prevent severe erosion of these slopes during major storm events.
Response: Underdrains are proposed within cut sections adjacent to White Rock Drive. All road runoff as well as runoff from the bottom of the side slopes is caught into a closed drainage system which is routed into the proposed wet pond. This wet pond attenuates and treats stormwater and as a result, the postconstruction peak rate of runoff is below that of the existing condition in the 2-, 10-, 25-, and 50-Year storms. As shown on the Benched/Terraced Slope Detail, the benches will be lined with rip rap.
2. The north side of the proposed White Rock Drive (Sta 6 to Sta 8+50) has proposed grades that are 2H:1V adjacent to the road. We recommend that the Applicant revise the plan and provide guardrail to protect motorists from the steep embankment.
Response: Guardrail is proposed on the north side of White Rock Drive adjacent to the 2H:1V embankment within the cut section.
3. We recommend that the Applicant revise the plans to provide more information regarding the proposed retaining walls (dimensions, top and bottom elevations, etc.).
Response: Additional top and bottom elevations have been added to the grading and drainage plans. Additionally, the length of each wall was already provided on the site plans and the width of each wall has been added to the site plans as well. We have provided a detail for the proposed retaining walls within the detail sheets.
4. We recommend that the Applicant revise the proposed grading behind the building on the south side to provide stormwater conveyance away from the building.
Response: Additional spotgrades have been added behind Building \#1 to clarify the design intent.
5. On White Rock Drive, it appears that there are multiple conflicts regarding the proposed grading, rim elevations and pipe/culvert cover. We recommend that the Applicant revise the plan and address these issues.
Response: All stormwater pipes and culverts will be buried at least 2' below proposed grade. We have checked to confirm that the proposed rim elevations match proposed grade at their respective locations.
6. We recommend that the Applicant indicate the proposed door locations and provide spot elevations at the proposed building, ADA parking spaces, proposed 5' concrete sidewalk (to confirm that the proposed pedestrian walkways have ADA-compliant slope) and where slope is less than \(2 \%\).
Response: Spot elevations are provided at door locations and the ADA parking spaces and along the proposed concrete sidewalk to confirm ADA-compliant slope. Additionally, spotgrades are provided wherever the slope is less than \(2 \%\).
7. We recommend that the Applicant indicate where proposed roof drainage will be located, and how it will tie into the proposed stormwater management system.
Response: As shown on the grading and drainage plans, the proposed roof drains from Building \#1 and \#3 will tie into subsurface stone infiltration basins. Each subsurface stone infiltration basin will have an associated cleanout and a perforated underdrain and are intended to infiltrate roof runoff. Roof runoff from Building \#2, on the other hand, will be allowed to flow directly toward the analysis point as treatment is not required for residential roofs per NHDES regulations and additional detention is not required in order to cause a decrease in runoff toward each analysis point.

\section*{Utility Plans. (Sheets C7 to C8; Now C19-C20):}
1. We recommend that the Applicant meet with the Fire Department to review the proposed protection activities, in accordance with Town of Raymond Zoning Ordinance Section 6.09.01.
Response: This can be discussed at the upcoming Technical Review Committee meeting.
2. We recommend that the Applicant revise the plans to show the size, location and elevation of all existing public and private utilities (water, electric) onsite and off-site (Main Street) with which connection is planned in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.02.10.
Response: The sizes and locations of all public and private utilities with which connection is planned, as well as information as to whether they are above ground or underground, have been added on the plans.
3. It appears in multiple locations that the proposed water and underground electrical lines are very close or in conflict with the drainage system.
Response: The proposed water and underground electric lines have been modified to minimize conflicts with each other and with the proposed drainage system. The profile sheets have been revised to show the elevations of water and drainage lines at all water/drainage crossings. Where any utilities or drainage lines horizontally cross each other in, the utility lines can be vertically bent to avoid direct conflicts.
4. The proposed septic system and proposed underground propane tanks appear conceptual in nature with no details provided.
Response: The proposed septic systems are not being designed at this time. The appropriate sizes as calculated per the Env-Wq 1000 rules and proposed location of each leach field and associated septic tanks are shown on the utility plans, assuming that pre-treatment is provided for size reduction. The dimensions of the propane tanks shown match typical dimensions of \(\mathbf{1 , 0 0 0}\) gallon propane tanks and these are at least 10 feet from the buildings, as required.

\section*{Plan and Profile Plans. (Sheets P1 to P2; Now P1-P4):}
1. We recommend that the Applicant revise the plan to show rim and invert elevation for catch basins and drain manhole, and length, size and slope for the proposed pipes. Additionally, we recommend that the submitted plans should have a scale of maximum \(1 "=40^{\prime}\) (horizontal) and 1 " \(=4\) ' (vertical)
Response: The rim and invert elevations at catch basins and drain manholes are listed on the grading plans for consistency, as the same information is shown on the grading plans for catch basins and drain manholes that are not shown in the profile. The profile shows the station of each drainage structure and graphically depicts them along the road. To avoid duplication of text, the rims and inverts are not copied on to the profile sheets. The plan and profile sheets now have a scale of \(1 "=40^{\prime} \mathrm{H} \& 1^{\prime \prime}=4^{\prime} \mathrm{V}\).

\section*{Landscape Plans. (Sheets L1 to L2):}
1. We recommend that the Applicant add a note that states "All planting areas intended to be mowed or maintained shall receive a minimum of four inches of compacted loam free of sod, clay and stones over one inch in diameter" as specified in Town of Raymond, Site Plan Review Regulations 6.10.04.
Response: Note \#20 on Sheet L1 states "All planting areas intended to be mowed or maintained shall receive a minimum of four inches of loam free of sod, clay and stones over one inch in diameter". However, it is our opinion that the loam should not be compacted.
2. It appears there are multiple conflicts between the proposed trees and the underground utilities. (i.e., underground drainage pipes, underground propane tanks, proposed stormtech). We recommend that the Applicant revise the locations accordingly.
Response: The locations of the trees and underground utilities have been revised on the plans to avoid conflicts.

\section*{Lighting Plans. (Sheets L3 to L4):}
1. The light fixture at the beginning of the entrance drive appears to exceed the maximum 0.2 foot-candle requirement at the property line in accordance with of the Town of Raymond Outdoor Lighting Standards. Also, adjacent to residential property, no direct light source will be visible at the property line at ground level or above
Response: This issue has been corrected on the lighting plans.

\section*{Soil Erosion and Sediment Control Plans:}
1. We recommend that the Applicant submit separate plans for Soil Erosion and Sediment Control in accordance with Town of Raymond. Site Plan Review Regulations, Section 5.03.14.d.
Response: Sheets E1 and E2 show details of erosion and sediment control BMPs, and the implementation of these BMPs are shown on the grading plans. Therefore, these function as erosion and sediment control plans. This is what we have done in the past.

\section*{Detail Plans. (Sheets D1 to D7):}
1. We recommend that the Applicant provide details for all proposed ponds. Response: Standard details for each type of pond that is used are included in the detail sheets.

\section*{Drainage Analysis Report and Existing Watershed Plan. (Sheets W1):}
1. We recommend that the Applicant submit plans with a graphic scale of \(1 "=20^{\prime}\) up to 1 " \(=50\) ' for a better visualization in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.02.03.
Response: Watershed plans are now provided at \(1 "=40\) ' scale.
2. We recommend that the Applicant annotate all existing contours and change the line type for the existing subcatchments for a better visualization and review. Additionally, we recommend to check and revise the labels on the plan to match the drainage report.
Response: While it would be cumbersome to label *all* existing contours, they have been labelled at appropriate increments. The linetype of the watershed lines has been modified for better visualization. The watershed labels on the plans have been checked and revised as necessary to match the drainage report.
3. On the existing watershed plan it is unclear how the runoff is flowing from wet channel \(1 R\) and the depression \(3 P\) ( \(6 P\) in the drainage report) to Analysis Point 3 and from depression \(2 P\) to low point \(1 P\) towards Analysis Point 1
Response: When depression 3P fills up, the overflow will crest over a berm and flow downhill toward Channel 2R. Channel 2R represents a channel which discharges directly into Analysis Point 3; representing the wetland on the west side of the site. This is simply due to the topography of the hill adjacent to 3P.

It is evident that runoff from depression 2P does not flow toward low point 1P. Instead, when the depression fills up and overflows, the water runs down the slope of the hill adjacent to Main Street and directly toward the catch basin.
4. We recommend that the Applicant submit a complete summary for the 25 -year storm.
Response: A complete summary for the 25-year storm has been added to the revised drainage report.

\section*{Drainage Analysis Report and Proposed Watershed Plan. (Sheets W2):}
1. We recommend Applicant submit plans with a graphic scale of \(1 "=\) \(20^{\prime}\) up to \(I^{\prime \prime}=50^{\prime}\) for a better visualization in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.02.03.
Response: Watershed plans are now provided at \(1 "=40\) ' scale.
2. We recommend that the Applicant annotate all existing contours and change the line type for the proposed subcatchments for a better visualization and review. Additionally, we recommend checking and revising the labels on the plan to match the drainage report.
Response: While it would be cumbersome to label *all* existing contours, they have been labelled at appropriate increments. The linetype of the watershed lines has been modified for better visualization. The watershed labels on the plans have been checked and revised as necessary to match the drainage report.
3. We recommend that the Applicant submit a complete summary for the 25-year storm.
Response: A complete summary for the 25-year storm has been added to the drainage report.
4. We recommend that the Applicant revise the drainage report for the post developed watershed. In multiple locations, the storm peak elevation exceeds the flood elevations for the 50-year storm.
Response: In order to model the extent of any flooding, additional storage has been modelled above the flood elevation on any device that is shown to overflow. This represents temporary puddling in the proposed roadway above the rim of each device and it should be noted that these areas flood in the existing condition as they are at existing low points. The devices for which this occurs include both dry wells and the Jellyfish treatment device. Any overflow above the ponding area provided over the Jellyfish and dry well \#1 is routed directly toward Analysis Point \#1, and any overflow above the ponding area provided over dry well \#2 is routed to the Eco-Raster. Due to the existing topography and water tables, puddling in these areas is unavoidable during large storm events, but we have revised the post-developed drainage analysis in order to better model the extent of flooding and to ensure that the peak flow in the proposed condition is below that of the existing condition toward all analysis points.

The following items are provided in support of this Letter:
1. Six (6) Full Size Plan Sets.
2. Ten (10) Half Size Plan Sets.
3. One (1) Architectural Floor Plan Set.
4. One (1) Revised Drainage Report.
5. Recorded Copy of 30' Deeded Right of Way.
6. Waiver Request Letters.

If you have any questions or need any additional information, please feel free to contact our office. Thank you very much for your time.

Very truly yours,
JONES \& BEACH ENGINEERS, INC.


Daniel Meditz, E.I.T.
Project Engineer
cc: Michael Garrepy, Tuck Realty Corp. (via email)
Jeffery Adler, DuBois \& King (via email \& U.S. Mail)

\section*{BK2690 P1117}

\section*{QUITCLAIM DEED}

BARBARA L. WIESON, of 41 Loring Road, Weston, Masaschusetts, Eor consideration pald. grants to PREDERICR S. WBLCH and JOAN E. WELCH, ae joint tenants with the rights of survivorship, both of 15 Nottingham Road, Raymond, New Hanpshire, all of my right, title and interest in and to the following described parcel:

A certain tract or percel of land situated in Raymond, County of Rockingham, State of New Hampshire, being the 7.8t acre portion of the Gregg lot shown on a plan entitled Two Remaining portions of the Gregg Lot (1346-496 less Route \(101)^{\circ}\), by David R. Noyes, Scale \(1^{\prime}=100^{\circ}+\) dated June \(i\). 1984 and recorded in the Rockingham County Registry of Deeds as Plan No. D-13046. which parcel is more particularly bounded and described as follows:

Beginning at a point located on the northerly sideline of Route 101-Raymond By-Pass and on the easterly side of land now or Eormerly of Prederick Welch; thence North \(313 / 4^{\circ}\) east. \(569.00+\) feet to aranite bound and stones found; thence
1. Turning and running south \(633 / 4^{\circ}\) East, \(271.00+\) "Hisbuslir feet to a points thence

3. North \(90^{\circ}\) West, \(84.00 \pm\) feet along said Route 101 to a concrete bound; thence
4. North \(88 \mathrm{l} / 2^{\circ}\) West. 750.00 t feet along sald Route 101 to a concrete bounds thence
5. North \(861 / 2^{\circ}\) West, \(488.00+\) feet along said Route 101 to the point of beginning.

Together with a \(30^{\circ}\) right-of-way as shown on plan entitled centerline of \(30^{\circ}\) Right-of-way across land of Josephine welch" by David R. Noyes, Scale \(1^{\circ}=100^{\circ}\). dated August 23. 1982 and recorded in the Rockingham County Registry of Deeds as Plan No. D-11967.

Meaning and intending to convey a portion of the premises conveyed to Thomas McGall by deed of abbe 3 . Lamprey, dated August 26, 1949 and recorded in the Rockingham County Registry of Deeds at Book 1369, Page 496, which parcel was made a separate and distinct lot by the construction of the new Route 101 -Raymond By-Pass through the prenises. Barbara L. Wilson inherited the same premises under the will
\[
-2-
\]

BK2690 P1118
of Ruth M. ReGal who died on December 13. 1981. see Rockingham County Probate No. 49219. Ruth M. Mccall inherited the property from Thomas J. Mccall who died January 27. 1963 . See Rockingham County probate No. 46020. Ala o meaning and intending to convey the right-of-way conveyed by Josephine Wolch to Barbara L. Wilson.

This is not homestead property of the Granter.
Dated this 2 day of July. 1987.


Barbara L. Wilson

STATE OP NEW RMMPGHIRE
COUNTY OP
The foregoing instrument was acknowledged before me this \(\mathbf{o n}^{\text {red }}\) day of \(\qquad\) - 1987 by Barbara L. Wilson.

\begin{tabular}{l} 
CENTRALANGLE \\
\hline \(57^{\circ}\) oo \\
\(41^{\circ} 45^{\prime}\) \\
\(12^{\circ} 15^{\prime}\) \\
\(8^{\circ} 30^{\prime}\) \\
\(18^{\circ} 00^{\prime}\) \\
\(10^{\circ} 45^{\prime}\) \\
\(59^{\circ} 15^{\prime}\) \\
\(28^{\circ} 30^{\prime}\) \\
\(60^{\circ} 15^{\prime}\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Radius & tangent & Chord \\
\hline so': & 49: & \(582 \cdot \mathrm{~W}\) \\
\hline 110': & 42, & S \(893 / 4.1\) \\
\hline 265's & 28. & 575.w \\
\hline 6es's & \(51 \%\) & s \(05 \%\) \% \\
\hline \(365 \%\) & 58't & S \(80 \% 12{ }_{2} \mathrm{~W}\) \\
\hline 215's & 20.1 & 566\%\%\% \\
\hline 160't & 87' & s89\%m \\
\hline 110's & \(28{ }^{\prime}\) & \(4.7844^{\circ} \mathrm{W}\) \\
\hline 100': & 58': & N63 \(3 / \mathrm{mw}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Curve & Central Angle & Radius & Tangent \\
\hline 1 & \(10^{10} 15\) & 485 't & 43: \\
\hline 2 & \(47^{\circ} 0{ }^{\circ}\) & 200's & 87': \\
\hline 3 & \(21^{\circ} 30^{\prime}\) & 300 ' & 57's \\
\hline 4 & \(37^{15}\) & \(75 . \pm\) & 25's \\
\hline 5 & \(33.45^{\prime}\) & 180': & 55: \\
\hline 6 & \(41^{15}\) & 265': & 26's \\
\hline 7 & 70.15' & 55': & 39': \\
\hline 8 & \(62^{\prime} 15\) & 40': & 24: \\
\hline
\end{tabular}

\title{
Raymond NH Planning Board Waiver Request Form \\ Applicable to Site Plan Review and Subdivision Regulations
}

\section*{Project Name \& Application Number: White Rock Place}

\section*{Regulation, Article \& Section from which a waiver is being sought:}

Site Plan Regulations Section 6.03.03(c) - Licensed Landscape Architect Requirement

Where the Planning Board finds that unnecessary hardship may result from strict compliance with these regulations with respect to a particular tract of land, the Board may modify or waive these regulations so that substantial justice may be done and the public interest is secured, provided that:

\section*{Please respond to the criteria below:}
a. Explain how the granting of the waiver will not be detrimental to public safety, health, or welfare or injurious to other adjacent property;

We are requesting a waiver from the requirement to hire a Licensed Landscape Architect to draft and stamp the landscape plan as we have hired Lise McNaughton of LM Land Design from Brentwood, NH to do the planting design work. Lise is more than qualified to provide landscape plans as you can see from the variety of plantings selected. A sufficient variety of plantings has been selected for this proposed development.
b. Explain how granting this waiver shall not have the effect of nullifying the intent and purpose of these regulations, the Zoning Ordinance, Master Plan or Official Zoning Map;

We meet the intent of this regulation by hiring Lise McNaughton, who is an experienced landscape designer but not a landscape architect. Lise is more than qualified to provide landscape plans as you can see from the variety of plantings selected.

In granting waivers, the Planning Board may require such conditions as will, in the Board's judgment, secure substantially the objectives of the standards or requirements of these regulations.

A petition for waiver shall be submitted by the applicant at the time when the application is filed for consideration by the Planning Board. All petitions shall be made in writing using the Town's Waiver Request Form. The petition shall state fully the grounds for the waiver and all of the facts relied upon by the petitioner.

Any granted waivers must be noted on the final approved plan.
\\srv03\appdata\public\Community Development Dept\Forms
Updated September 21, 2017

\title{
Raymond NH Planning Board Waiver Request Form
}

Applicable to Site Plan Review and Subdivision Regulations

\section*{Project Name \& Application Number: White Rock Place}

\section*{Regulation, Article \& Section from which a waiver is being sought:}

Site Plan Regulations Section 6.06.01 - Parking Requirements

Where the Planning Board finds that unnecessary hardship may result from strict compliance with these regulations with respect to a particular tract of land, the Board may modify or waive these regulations so that substantial justice may be done and the public interest is secured, provided that:

\section*{Please respond to the criteria below:}
a. Explain how the granting of the waiver will not be detrimental to public safety, health, or welfare or injurious to other adjacent property;

We are requesting 281 parking spaces which is 1.80 spaces per unit, where 3 spaces per unit are required. We are asking for this waiver to be granted as providing 3 spaces per unit is excessive for apartments. There are overlapping use of parking spaces when you have this many units. People are coming and going and we will have 841 -bedroom units. Some of these will certainly be occupied by one person with one vehicle. Based on empirical observations, 1.80 spaces per unit is plenty for this combination of 1 -and 2-bedroom units.
b. Explain how granting this waiver shall not have the effect of nullifying the intent and purpose of these regulations, the Zoning Ordinance, Master Plan or Official Zoning Map;

This provides sufficient off-street parking for the proposed use based on empirical observations. The intent of the parking standards is to prevent parking public rights of way, and the proposed parking layout provides enough parking. Having less parking will also help us to minimize disturbance to the extent possible. This is particularly important on a sloping site such as this one, where steep slope areas are protected under Zone G. Therefore, this helps us also meet the intent and purpose of the Zoning Ordinance by minimizing disturbance in Zone G land.

In granting waivers, the Planning Board may require such conditions as will, in the Board's judgment, secure substantially the objectives of the standards or requirements of these regulations.

A petition for waiver shall be submitted by the applicant at the time when the application is filed for consideration by the Planning Board. All petitions shall be made in writing using the Town's Waiver Request Form. The petition shall state fully the grounds for the waiver and all of the facts relied upon by the petitioner.

Any granted waivers must be noted on the final approved plan.
\\srv03\appdata\public\Community Development Dept\Forms
Updated September 21, 2017

\title{
Raymond NH Planning Board Waiver Request Form
}

\section*{Applicable to Site Plan Review and Subdivision Regulations}

\section*{Project Name \& Application Number: White Rock Place}

\section*{Regulation, Article \& Section from which a waiver is being sought:}

Subdivision Regulations 5.6.D.1 - Maximum Road Grade

Where the Planning Board finds that unnecessary hardship may result from strict compliance with these regulations with respect to a particular tract of land, the Board may modify or waive these regulations so that substantial justice may be done and the public interest is secured, provided that:

\section*{Please respond to the criteria below:}
a. Explain how the granting of the waiver will not be detrimental to public safety, health, or welfare or injurious to other adjacent property;

\begin{abstract}
We are requesting to permit a graveled emergency access road with a maximum slope of \(9.0 \%\) where a maximum slope of \(8.0 \%\) is allowed. As the name of it suggests, this road will only be used for emergencies and the primary route of ingress and egress will be via a 25 ' wide paved private road with a maximum slope of \(8.0 \%\). The first 200 approximately of the emergency access road will need to be constructed at a slope of no greater than \(2 \%\) in order for grading to remain on the subject parcel. Beyond this there is more land area to work with and the proposed road begins to climb a steep hill. The end of this road needs to meet the site approximately at elevation 266.2, and should not be at a steep slope when it does so. Therefore there needs to be a transition of grade when the emergency access road ends and meets the site. The road therefore must retain a slope of \(9.0 \%\). The road is 967 feet long and cannot be made any longer while still keeping with existing topography to the extent practicable. This is not detrimental to public safety because there is not likely to be oncoming traffic along this road - It will be used infrequently by emergency vehicles going up the hill, and then these vehicles may either go back down this road or utilize the main driveway to return to Main Street. The curves in the road are enough to provide adequate sight distance as well. Additionally, guardrail will be utilized along the low side, and there will be a ditch to prevent stormwater run-on along the high side of the road. This is not injurious to other adjacent property because the road will be screened by both landscaping and natural woods, and all runoff from the road will be treated and detained so that posi-construction peak flows are below the existing conditions. We request that this waiver be granted because it is unavoidable for the emergency access road to have a steep slope and because appropriate steps are being taken to ensure that the road is safe for emergency vehicles.
\end{abstract}
b. Explain how granting this waiver shall not have the effect of nullifying the intent and purpose of these regulations, the Zoning Ordinance, Master Plan or Official Zoning Map;

The intent of this regulation is to ensure safety along proposed roadways. For the reasons stated above, the road grade being slightly higher than the maximum requirement will not compromise this intent, and the road cannot reasonably be made any less steep. Additionally, if the road is steeper it can be made shorter, which results in a lower volume of stormwater runoff. Another purpose of the site plan regulations is to lessen stormwater runoff from development sites. For these reasons, the proposed waiver does not have the effect of nullifying the intent and purpose of the site plan regulations, and road grade not a matter of zoning.

In granting waivers, the Planning Board may require such conditions as will, in the Board's judgment, secure substantially the objectives of the standards or requirements of these regulations.

A petition for waiver shall be submitted by the applicant at the time when the application is filed for consideration by the Planning Board. All petitions shall be made in writing using the Town's Waiver Request Form. The petition shall state fully the grounds for the waiver and all of the facts relied upon by the petitioner.

Any granted waivers must be noted on the final approved plan.
\\srv03\appdata\public\Community Development Dept\Forms
Updated September 21, 2017

\title{
Raymond NH Planning Board Waiver Request Form
}

Applicable to Site Plan Review and Subdivision Regulations

\section*{Project Name \& Application Number: White Rock Place}

\section*{Regulation, Article \& Section from which a waiver is being sought:}

Subdivision Regulations - Right of Way Design Matrix - Minimum Road Width (for emergency access road only)

Where the Planning Board finds that unnecessary hardship may result from strict compliance with these regulations with respect to a particular tract of land, the Board may modify or waive these regulations so that substantial justice may be done and the public interest is secured, provided that:

\section*{Please respond to the criteria below:}
a. Explain how the granting of the waiver will not be detrimental to public safety, health, or welfare or injurious to other adjacent property;

\begin{abstract}
We are requesting to permit a graveled emergency access road with a width of \(16^{\prime}\) where \(20^{\prime}\) is required for a private road. The road needs to be this width in order for the road itself as well as associated grading to fit within the narrow corridor between two abutting properties, Tax Map 28-3, Lots \(5 \& 6\). This is not detrimental to public safety, health, or welfare because due to the unique use of the proposed road. It will be used infrequently and most traffic will be one way. Emergency vehicles accessing the site will use this road, and then they can either return to Main Street using this road or utilize Main Street. It will be made clear through signage at both ends of the road that the road is for "Authorized Vehicles Only". There is guardrail and a ditch on the low and high side of the road, respectively. The main access driveway to the site is designed in accordance with all regulations, while this emergency access way can only be 16 ' wide for the reasons that were stated. Emergency vehicles will be able to safely utilize this access road despite it not meeting the required road width because they will not be subject to oncoming traffic.
\end{abstract}
b. Explain how granting this waiver shall not have the effect of nullifying the intent and purpose of these regulations, the Zoning Ordinance, Master Plan or Official Zoning Map;

The intent of this regulation is to ensure safety along proposed roadways. Because this is intended to be primarily a one-way road and it will only be used by emergency vehicles in rare situations, a reduction in width will not compromise this intent, and the road cannot reasonably be made any lwider. Additionally, with a narrower road and therefore less impervious surface, there is a lower volume of stormwater runoff. Another purpose of the site plan regulations is to lessen stormwater runoff from development sites. For these reasons, the proposed waiver does not have the effect of nullifying the intent and purpose of the site plan regulations, and road width is not a matter of zoning.

In granting waivers, the Planning Board may require such conditions as will, in the Board's judgment, secure substantially the objectives of the standards or requirements of these regulations.

A petition for waiver shall be submitted by the applicant at the time when the application is filed for consideration by the Planning Board. All petitions shall be made in writing using the Town's Waiver Request Form. The petition shall state fully the grounds for the waiver and all of the facts relied upon by the petitioner.

Any granted waivers must be noted on the final approved plan.
\\srv03\appdata\public\Community Development Dept\Forms
Updated September 21, 2017

\section*{Raymond NH Planning Board Waiver Request Form}

\section*{Applicable to Site Plan Review and Subdivision Regulations}

\author{
Project Name \& Application Number: White Rock Place
}

Regulation, Article \& Section from which a waiver is being sought:

\section*{Subdivision Regulations - ROW Design Matrix - Sidewalk Requirement}

Where the Planning Board finds that unnecessary hardship may result from strict compliance with these regulations with respect to a particular tract of land, the Board may modify or waive these regulations so that substantial justice may be done and the public interest is secured, provided that:

\section*{Please respond to the criteria below:}
a. Explain how the granting of the waiver will not be detrimental to public safety, health, or welfare or injurious to other adjacent property;

Per the right of way design matrix within the Subdivision Regulations, sidewalks are required for all private roads that serve 20 units or more. This is a 156 -unit development with a private access drive, so this project meets the threshold for technically requiring a sidewalk. However, we believe that it would be inadvisable to place a sidewalk along White Rock Drive for several reasons. The road climbs \(70^{\prime}\) in elevation at an \(8 \%\) slope. A sidewalk at this slope would be unsafe during the winter and would not be compliant with ADA regulations. Additionally, there is barely enough room on the subject parcel to grade side slopes for the roadway itself. A sidewalk would only encumber more land with grading and also cause additional stormwater runoff.

As an alternative to a sidewalk, the emergency access road can be used by bicyclists and pedestrians to access Main Street and downtown Raymond by foot or bicycle. Pedestrian ingress and egress from the site will still be possible without a sidewalk.
b. Explain how granting this waiver shall not have the effect of nullifying the intent and purpose of these regulations, the Zoning Ordinance, Master Plan or Official Zoning Map;

While a traditional sidewalk would be inadvisable along White Rock Drive, the emergency access road can be utilized by pedestrians as an alternative path to Main Street. This substantially meets the objective of the sidewalk requirement by providing pedestrian access to downtown on a road that is almost never going to be used by motor vehicles.

In granting waivers, the Planning Board may require such conditions as will, in the Board's judgment, secure substantially the objectives of the standards or requirements of these regulations.

A petition for waiver shall be submitted by the applicant at the time when the application is filed for consideration by the Planning Board. All petitions shall be made in writing using the Town's Waiver Request Form. The petition shall state fully the grounds for the waiver and all of the facts relied upon by the petitioner.

Any granted waivers must be noted on the final approved plan.
\\srv03\appdata\public\Community Development Dept\Forms
Updated September 21, 2017


\title{
100 feet Abutters List Report
}

Raymond, NH
February 08, 2023

\section*{Subject Properties:}
\begin{tabular}{lll} 
Parcel Number: & \(023-000-024-000\) & Mailing Address: \\
CAMA Number: & TUCK REALTY CORPORATION \\
Property Address: & ROUTE 101 & \\
& & \\
& & EXE. BOX 190
\end{tabular}
\begin{tabular}{lll} 
Parcel Number: & 023-000-025-000 & Mailing Address: \\
CAMA Number: & WELCH,JOSEPH \& JOHN \& ARDELL \& \\
Property Address: & MAIN STREET & \\
& & INEZ BETSY PATTERSON \& ROBIN \\
& & PROULX \\
& & 49 RAYMOND ROAD, ROUTE 156
\end{tabular}
\begin{tabular}{lll} 
Parcel Number: & 023-000-028-000 & Mailing Address: \\
CAMA Number: & W23-000-028-000-000 & \\
Property Address: & 109 B MAIN STREET & \\
& RAYMONL WAN W \& TERI L \\
& &
\end{tabular}
\begin{tabular}{lll} 
Parcel Number: & 023-000-029-000 & Mailing Address: \\
CAMA Number: & O23-000-029-000-000 & \\
Property Address: WAYNE F CATHLEEN M WELCH \\
Pr A MAN STREET \\
109A MAIN STREET & & RAYMOND, NH 03077
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Abutters:} \\
\hline Parcel Number: & 022-000-045-000 & \multirow[t]{3}{*}{Mailing Address:} & \multirow[t]{3}{*}{ONYX RAYMOND LLC. 200 RESERVOIR STREET SUITE 306 NEEDHAM, MA 02494} \\
\hline CAMA Number: & 022-000-045-000-000 & & \\
\hline Property Address: & INDUSTRIAL DRIVE & & \\
\hline Parcel Number: & 023-000-026-000 & \multirow[t]{3}{*}{Mailing Address:} & \multirow[t]{3}{*}{\begin{tabular}{l}
LURIE, AUDREY J. \\
111 MAIN STREET \\
RAYMOND, NH 03077
\end{tabular}} \\
\hline CAMA Number: & 023-000-026-000-000 & & \\
\hline Property Address: & 111 MAIN STREET & & \\
\hline Parcel Number: & 023-000-027-000 & \multirow[t]{3}{*}{Mailing Address:} & \multirow[t]{3}{*}{\begin{tabular}{l}
BUCKUS, BRETT M. \& JILLIAN M. 109 MAIN STREET \\
RAYMOND, NH 03077
\end{tabular}} \\
\hline CAMA Number: & 023-000-027-000-000 & & \\
\hline Property Address: & 109 MAIN STREET & & \\
\hline Parcel Number: & 023-000-030-000 & \multirow[t]{3}{*}{Mailing Address:} & \multirow[t]{3}{*}{MERKEL EMPIRE , LLC 17 PINEWOOD DRIVE STRATHAM, NH 03885} \\
\hline CAMA Number: & 023-000-030-000-000 & & \\
\hline Property Address: & 105 MAIN STREET & & \\
\hline Parcel Number: & 023-000-035-000 & \multirow[t]{3}{*}{Mailing Address:} & \multirow[t]{3}{*}{\begin{tabular}{l}
BREWITT, JOHN J.,JR. \& ERIN Y. 110 MAIN STREET \\
RAYMOND, NH 03077
\end{tabular}} \\
\hline CAMA Number: & 023-000-035-000-000 & & \\
\hline Property Address: & 110 MAIN STREET & & \\
\hline \multirow[t]{3}{*}{Parcel Number: CAMA Number: Property Address:} & 023-000-036-000 & \multirow[t]{3}{*}{Mailing Address:} & \multirow[t]{3}{*}{MCCARTHY, TONA \& CYNTHIA P CINDY A. TOWNSEND 112 MAIN STREET RAYMOND, NH 03077} \\
\hline & 023-000-036-000-000 & & \\
\hline & 112 MAIN STREET & & \\
\hline \multicolumn{4}{|c|}{cail Tectinologies} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
\(2 / 2023\) Data shown on this report is provided for planning and informational purposes only. The municipality and CAI Technologies \\
2/8/2023 are not responsible for any use for other purposes or misuse or misrepresentation of this report.
\end{tabular}} \\
\hline
\end{tabular}


\section*{100 feet Abutters List Report}

Raymond, NH
February 08, 2023
\begin{tabular}{ll} 
Parcel Number: & \(023-000-037-000\) \\
CAMA Number: & \(023-000-037-000-000\) \\
Property Address: & 114 MAIN STREET
\end{tabular}
\begin{tabular}{|c|c|}
\hline Mailing Address: & \begin{tabular}{l}
RUELAS, JEREMY S \& SUSANNA L 114 MAIN STREET \\
RAYMOND, NH 03077
\end{tabular} \\
\hline Mailing Address: & PERREAULT, JOHN W 116 MAIN STREET RAYMOND, NH 03077 \\
\hline Mailing Address: & LACASSE, ALISON F. W. \& RANDALL A INEZ WELCH 103 MAIN STREET RAYMOND, NH 03077 \\
\hline Mailing Address: & \begin{tabular}{l}
KING, WILLIAM C JANICE L KING 101 MAIN STREET \\
RAYMOND, NH 03077
\end{tabular} \\
\hline Mailing Address: & PRATT, KEVIN M. KERRY J. PRATT 11 SMITH POND ROAD RAYMOND, NH 03077 \\
\hline Mailing Address: & RICE, CHARLES F.JR. REVOCABLE TRUST CHARLES F. RICE, JR. / TRUSTEE 97 MAIN STREET RAYMOND, NH 03077 \\
\hline Mailing Address: & \begin{tabular}{l}
GARNHAM, DENNIS JANET BUTLER 95 MAIN STREET \\
RAYMOND, NH 03077
\end{tabular} \\
\hline Mailing Address: & \begin{tabular}{l}
JOHNSON, CARLYLE R. MARICELA JOHNSON \\
9 MOULTON STREET \\
RAYMOND, NH 03077
\end{tabular} \\
\hline Mailing Address: & ARTHUR, LINDA \& JOHN 91 MAIN STREET RAYMOND, NH 03077 \\
\hline Mailing Address: & FROST, WAYNE G. \& IRENE 7 MOULTON STREET RAYMOND, NH 03077 \\
\hline Mailing Address: & POWER, JOHN W 5 MOULTON STREET RAYMOND, NH 03077 \\
\hline Mailing Address: & CONNOLLY, SEAN M. 3 MOULTON STREET RAYMOND, NH 03077 \\
\hline
\end{tabular}
www.cai-tech.com Data shown on this report is provided for planning and informational purposes only. The municipality and CAI Technologies


\title{
100 feet Abutters List Report
}

Raymond, NH
February 08, 2023
\begin{tabular}{|c|c|c|c|}
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& \text { 028-003-014-000 } \\
& \text { 028-003-014-000-000 } \\
& 1 \text { MOULTON STREET }
\end{aligned}
\] & Mailing Address: & GILES, ERIN B. \& BRIAN D. 1 MOULTON STREET RAYMOND, NH 03077 \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 028-003-015-000 \\
& 028-003-015-000-000 \\
& 6 \text { ORCHARD STREET }
\end{aligned}
\] & Mailing Address: & COLE-CALNAN, NANCY 6 ORCHARD STREET RAYMOND, NH 03077 \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 028-003-016-000 \\
& \text { 028-003-016-000-000 } \\
& \text { ORCHARD STREET }
\end{aligned}
\] & Mailing Address: & RAYMOND, TOWN OF 4 EPPING STREET RAYMOND, NH 03077 \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 028-003-017-000 \\
& 028-003-017-000-000 \\
& 11 \text { ORCHARD STREET }
\end{aligned}
\] & Mailing Address: & MICHAELS, KEITH J. 11 ORCHARD STREET RAYMOND, NH 03077 \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 028-003-114-000 \\
& 028-003-114-000-000 \\
& 98 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & \begin{tabular}{l}
SPOFFORD, LISA REVOCABLE TRUST LISA M. DESISTO / TRUSTEE \\
38 W. BROADWAY DERRY, NH 03038
\end{tabular} \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 028-003-115-000 \\
& 028-003-115-000-000 \\
& 100 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & BERGERON, MICHAEL B MAUREEN \(R\) BERGERON 100 MAIN STREET RAYMOND, NH 03077 \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 028-003-116-000 \\
& \text { 028-003-116-000-000 } \\
& 102 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & WATT, DANIEL E 102 MAIN STREET RAYMOND, NH 03077 \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& \text { 028-003-117-000 } \\
& \text { 028-003-117-000-000 } \\
& 106 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & \begin{tabular}{l}
MOULTON, EDWARD W JEAN MOULTON 106 MAIN STREET \\
RAYMOND, NH 03077
\end{tabular} \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& \text { 028-003-120-001 } \\
& \text { 028-003-120-001-000 } \\
& \text { INDUSTRIAL DRIVE }
\end{aligned}
\] & Mailing Address: & \begin{tabular}{l}
ONYX RAYMOND LLC. \\
200 RESERVOIR STREET SUITE 306 NEEDHAM, MA 02494
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& \text { 028-004-007-000 } \\
& 028-004-007-000-000 \\
& 108 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & MOULTON, EDWARD W 106 MAIN STREET RAYMOND, NH 03077 \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 028-004-007-000 \\
& 028-004-007-002-000 \\
& 108 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & \begin{tabular}{l}
VERIZON \\
P.O. BOX 2549 \\
ADDISON, TX 75001
\end{tabular} \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& \text { 028-004-007-000 } \\
& 028-004-007-003-000 \\
& 108 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & A T \& T COMPANY 1010 PINE, 9E-L-01 ST. LOUIS, MO 63101 \\
\hline
\end{tabular}
www.cai-tech.com Data shown on this report is provided for planning and informational purposes only. The municipality and CAl Technologies


\section*{100 feet Abutters List Report}

Raymond, NH
February 08, 2023
\begin{tabular}{ll} 
Parcel Number: & \(028-004-007-000\) \\
CAMA Number: & \(028-004-007-004-000\) \\
Property Address: & 108 MAIN STREET
\end{tabular}
Mailing Address: \begin{tabular}{ll} 
METRO PCS \\
& 285 BILLERICA ROAD THIRD FLOOR \\
& CHELMSFORD, MA 01824
\end{tabular}
\begin{tabular}{ll} 
Parcel Number: & \(028-004-007-000\) \\
CAMA Number: & \(028-004-007-005-000\) \\
Property Address: & 108 MAIN STREET
\end{tabular}

Mailing Address: SPRINT COMMUNICATIONS C/O PROPERTY TAX DEPARTMENT P.O. BOX 85022 BELLEVUE, WA 98015-8522
\begin{tabular}{|c|c|c|c|}
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& \text { 028-004-007-000 } \\
& \text { 028-004-07S-000-000 } \\
& \text { TOWN WIDE }
\end{aligned}
\] & Mailing Address: & \begin{tabular}{l}
SPRINT COMMUNICATIONS CO. L.P. \\
ATTN: PROPERTY TAX DEPARTMENT PO BOX 85022 \\
BELLEVUE, WA 98015-8522
\end{tabular} \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& \text { 028-004-007-000 } \\
& \text { 028-004-07T-000-000 } \\
& 108 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & \begin{tabular}{l}
SPRINT SPECTRUM LP C/O PROPERTY \\
TAX DEPARTMENT \\
P O BOX 85022 \\
BELLEVUE, WA 98015-8522
\end{tabular} \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& \text { 028-004-007-000 } \\
& \text { 028-004-07U-000-000 } \\
& \text { TOWN WIDE }
\end{aligned}
\] & Mailing Address: & \begin{tabular}{l}
A T \& T COMPANY 1010 PINE, 9E-L-01 \\
ST. LOUIS, MO 63101
\end{tabular} \\
\hline
\end{tabular}

JONES \& BEACH ENGINEERS, INC., ATTN. JOSEPH CORONATI, DAVID COLLIER \& MICHAEL KERIVAN, PO BOX 219, STRATHAM, NH 03885

GOVE ENVIRONMENTAL SERVICES, 8 CONTINENTIAL DRIVE, UNIT H, EXETER, NH 03833
www.cai-tech.com

A T \& T COMPANY
1010 PINE, 9E-L-01
ST. LOUIS, MO 63101

A T \&T COMPANY
1010 PINE, 9E-L-01
ST. LOUIS, MO 63101

ARTHUR, LINDA \& JOHN 91 MAIN STREET
RAYMOND, NH 03077

BERGERON, MICHAEL B MAUREEN R BERGERON 100 MAIN STREET RAYMOND, NH 03077

BREWITT, JOHN J.,JR. \& ER 110 MAIN STREET RAYMOND, NH 03077

BUCKUS, BRETT M. \& JILLIA 109 MAIN STREET
RAYMOND, NH 03077

COLE-CALNAN, NANCY 6 ORCHARD STREET RAYMOND, NH 03077

CONNOLLY, SEAN M. 3 MOULTON STREET RAYMOND, NH 03077

FROST, WAYNE G. \& IRENE 7 MOULTON STREET RAYMOND, NH 03077

GARNHAM, DENNIS JANET BUTLER 95 MAIN STREET RAYMOND, NH 03077

GILES, ERIN B. \& BRIAN D. 1 MOULTON STREET RAYMOND, NH 03077

JOHNSON, CARLYLE R. MARICELA JOHNSON 9 MOULTON STREET RAYMOND, NH 03077

KING, WILLIAM C
JANICE L KING
101 MAIN STREET
RAYMOND, NH 03077

LACASSE, ALISON F. W. \& R
INEZ WELCH
103 MAIN STREET
RAYMOND, NH 03077

LURIE, AUDREY J.
111 MAIN STREET
RAYMOND, NH 03077

MCCARTHY, TONA \& CYNTHIA
CINDY A. TOWNSEND 112 MAIN STREET RAYMOND, NH 03077

MERKEL EMPIRE, LLC 17 PINEWOOD DRIVE STRATHAM, NH 03885

METRO PCS 285 BILLERICA ROAD THIRD FLOOR CHELMSFORD, MA 01824

MICHAELS, KEITH J. 11 ORCHARD STREET RAYMOND, NH 03077

MOULTON, EDWARD W 106 MAIN STREET RAYMOND, NH 03077

MOULTON, EDWARD W
JEAN MOULTON
106 MAIN STREET
RAYMOND, NH 03077

ONYX RAYMOND LLC. 200 RESERVOIR STREET SUITE 306
NEEDHAM, MA 02494

PERREAULT, JOHN W 116 MAIN STREET RAYMOND, NH 03077

POWER, JOHN W 5 MOULTON STREET
RAYMOND, NH 03077

PRATT, KEVIN M.
KERRY J. PRATT
11 SMITH POND ROAD
RAYMOND, NH 03077

RAYMOND, TOWN OF 4 EPPING STREET RAYMOND, NH 03077

RICE, CHARLES F.JR. REVOC CHARLES F. RICE, JR. / TR 97 MAIN STREET RAYMOND, NH 03077

RUELAS, JEREMY S \& SUSANN 114 MAIN STREET RAYMOND, NH 03077

SPOFFORD, LISA REVOCABLE LISA M. DESISTO / TRUSTEE 38 W. BROADWAY
DERRY, NH 03038

SPRINT COMMUNICATIONS C/O PROPERTY TAX DEPARTME P.O. BOX 85022

BELLEVUE, WA 98015-8522

SPRINT COMMUNICATIONS CO.
ATTN: PROPERTY TAX DEPART PO BOX 85022
BELLEVUE, WA 98015-8522

SPRINT SPECTRUM LP C/O PROPERTY TAX DEPARTME P O BOX 85022
BELLEVUE, WA 98015-8522

JONES \& BEACH ENGINEERS, INC. ATTN. JOSEPH CORONATI, DAVID COLLIER \& MICHAEL KERIVAN PO BOX 219
STRATHAM, NH 03885

GOVE ENVIRONMENTAL SERVICES
8 CONTINENTIAL DRIVE, UNIT H
EXETER, NH 03833

VERIZON
P.O. BOX 2549

ADDISON, TX 75001

WATT, DANIEL E 102 MAIN STREET RAYMOND, NH 03077

(a) THA ARCHITECTS, LLC B9 WILLOWBROOK AVENUE - STRATHAM, NH OBSBS
Tel: ( 603 ) 770-249\% FAX: ( 603 )




THA ARCHITECTS, LLC
Cin ARChitecture: pLANIING : consulting - interior design 89 WILLOWBROOK AVENUE - STRATHAM, NHH O3885
Tel: ( 603 ) 770-2491 FAX: ( 603 ) 02023 Tha Arvimect


Tuck Realty Corp.
Exeter, New Hampshire

White Rock Place
Barrington, NH
February 13, 2023


THA ARCHITECTS, LLC
 89 WILLOWBROOK AVENUE - STRATHAM, NH OB88S 2023 THA ACrmexte

\title{
JONES\&BEACH \\ 85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885 \\ 603.772.4746 - JonesandBeach.com
}

March 20, 2023
Raymond Planning Board
Attn. Brad Reed, Chair
4 Epping Street
Raymond, NH 03077

\section*{Re: Response Letter} White Rock Place
109A, B, C, \& D Main Street, Raymond, NH
Tax Map 23, Lots 24, 25, 28 \& 29
JBE Project No. 20564

Dear Mr. Reed,
We received comments from Madeleine Dilonno, Regional Planner, Rockingham Planning Commission, dated February 14, 2023, and from Jeff Adler, Dubois \& King, dated March 10, 2023. Original review comments are italicized, and we offer the following responses below in bold.

Rockingham Planning Commission Comments:

\section*{General Comments:}

It appears the following Permits are required for this application: 1) NHDES Alteration of Terrain Permit and 2) Town of Raymond Driveway Permit. It's recommended each required permit be received prior to or as a condition of approval; and receipt of each permit be acknowledged in a note on the Cover Sheet of the final plans.
Response: The NHDES Alteration of Terrain Permit is pending. Town of Raymond driveway permit will be obtained prior to construction. The necessary state permits are listed on Note \#6 on Sheet C14 and will be updated with the permit number and date once received.

The following waivers have been requested from the Raymond Site Plan and Subdivision Regulations:
1. Site Plan regulation 6.06 - Parking Standards
2. Site Plan regulation 3.03.03 - Licensed Landscape Architect (*Note 5b on Sheet C3 should be revised to reflect the accurate section).
3. Subdivision Regulation 5.6.D.1 (Road Design Standards) - Maximum

Road Grade (for emergency access road only)
4. Subdivision Regulation ROW Design Matrix - Minimum Pavement Width (for emergency access road only.

It is recommended that a petition for the above waivers be submitted in writing using the town's Waiver Request Form in accordance with Section 7.08 of the Raymond Site Plan Regulations and Section 1.4.d of the Raymond Subdivision Regulations. In the event the Planning Board grants one or more of the waivers, it is recommended that notes acknowledging such relief be provided on the cover sheet of the final plans.
Response: Waiver request letters were provided to the Town on February \(14^{\text {th }}\). We retract the waiver request for Maximum Pavement Width as the emergency access road is now proposed to be \(20^{\prime}\) wide as required. Note 5 b was previously updated to reference the correct Section for the licensed landscape architect waiver, which is 3.03 .03 (c).

\section*{Zoning Matters:}
1. It is recommended that the applicant provide a written Unified Development Plan in accordance with the provisions of the Sewer Overlay District (Section 5.3.2 of the 2020 Raymond Zoning Ordinance). See full text on page 4.
Response: A unified development plan is included with this resubmission.
2. Sheets \(C 2\) and \(C 3\) show front and side building setbacks of 30 feet. Article 15.2 .7 states "any residential structure proposed for location within a Commercial (C. 1 and C.2) or Industrial zone
(D) requires a minimum setback of one hundred feet (100') from property lines, or, in the alternative, fifty feet (50) inclusive of a minimum of twenty feet ( \(20^{\prime}\) ) of dense vegetative buffer and a fence of a type..." It is recommended the plans be revised accordingly.
Response: The correct setbacks have been added to the plans. Buildings 2 and 3 maintain at least a 100 ' setback, while Building 1 encroaches into the 100 ' setback but maintains at least a 50 ' setback. Therefore, a fence and dense vegetative buffer have been added as necessary.
3. A special permit is required for impacts to Zone G land (in this case, 128,000 square feet of steep slope disturbance). It is recommended the applicant seek input from the Raymond Conservation Commission on such impacts in accordance with Article 4.9.6.2.2 of the Zoning Ordinance.
Response: We are impacting \(\mathbf{8 6 , 0 0 0}\) SF of steep slopes, not \(\mathbf{1 2 8 , 0 0 0}\) SF, as noted on Note \#11 of Sheet C14. The areas of steep slope being disturbed are hatched on the grading plans. This project is scheduled to be on the April \(12^{\text {th }}\) conservation commission meeting.

\section*{Site Plan Submission Requirements:}
1. It is recommended that a Community Impact Analysis be prepared in accordance with SPR 4.02.03. The Community Impact Analysis shall describe the proposed use and include a description of how the proposed activity, both during and following construction, will impact traffic, parking and circulation, storm drainage, utilities, schools, noise, the Town's fiscal condition and other Community services.
Response: The Community Impact Analysis is being prepared and will be submitted once it is ready.
2. It is recommended that a traffic impact analysis be prepared in accordance with SPR 5.03.13.
Response: A Traffic Impact Analysis is being prepared and will be submitted once it is ready.
3. It is recommended that architectural concept drawings be submitted for proposed buildings in accordance SPR 5.03.14.f. Said plans shall consist of plan and exterior elevation views or proposed improvements, with external mechanical components of the building (i.e., heating, ventilation, and air conditioning). Plans shall be conceptual only, but of sufficient detail to determine compliance with Town Regulations.
Response: Floor plans were provided with the \(2 / 14\) submission, and with this submission, we are additionally providing elevations.

Road Design, Access, and Parking:
1. The width of the proposed access road is 22 feet where a width of 25 feet is required (SPR 6.02.01.a). The plans should be revised accordingly. It is understood that a waiver has been requested from this requirement for the emergency access road only.
Response: The width of the access road was previously changed to \(\mathbf{2 5}\) feet as of the \(\mathbf{2 / 1 4}\) submission.
2. According to the Right of Way Design Matrix in the Raymond Subdivision Regulations, sidewalks are required on private streets serving 20 units or more. The plans should be revised accordingly.
Response: We are requesting a waiver from the requirement to have sidewalks. The waiver request letter was submitted on 2/14.
3. The grade of the proposed emergency access road is \(9 \%\). It is understood that a waiver has been requested from section 5.6.D.1 of the Raymond Subdivision Regulations, which states grades of streets shall not exceed \(8 \%\). It is recommended that the applicant consult with the Raymond Fire and Police Departments as to the adequacy of both roadways for emergency access.
Response: The Raymond Fire and Police Chiefs were both present at the TAC meeting. The Police Chief had no comment, but the Fire Chief had some input which we addressed. He requested that we make the emergency access road \(20^{\prime}\) wide and paved, which we did. He also requested that we have one hydrant per building and we have modified the plans for this.
4. Note 3 on Sheet P1 states "as built plans will be submitted to the town prior to acceptance of the roadway." Are one or both proposed access roads intended to be dedicated as public streets? If so, it is recommended that Note 3 on sheet P1 be revised to clarify this intent. Additionally, it is recommended that a note be added to the final plans acknowledging that all maintenance of the future streets is the responsibility of the applicant until such time as it may be accepted as a Class V public way by the Town of Raymond in accordance with RSA 674:40.
Response: This is a standard note but it has been removed from Sheet P 1 as it is not applicable to this project.
5. The minimum parking requirements for a residential / multi-family development is 3 spaces per unit (SPR 6.06), which would require 468 spaces for the proposed development. A total of 281 spaces are currently proposed. It is understood that the applicant is requesting a waiver from this requirement. SPR 6.06 .03 states that the Planning Board has the prerogative to adjust these (parking) requirements and such decision will be based on the expected number of trips generated by the activity at its peak hour. It is recommended that the applicant provide such information and any other supporting documentation to justify the reduced parking count.
Response: A Traffic Impact Analysis including the peak hour number of trips anticipated is being prepared and will be submitted once it is ready.

SPR 6.06.04.i states when a waiver is requested for relief from the number of parking spaces required by the Raymond Site Plan Review Regulations, the applicant must present a plan showing the ability to install the full number of spaces in the future if the need arises. It is recommended the applicant provide such information.
Response: An exhibit (Sheet EX-1) has been added to the plan set showing the ability to install the full number of required parking spaces in the future should the need arise.

\section*{Water / Stormwater:}
1. SPR 6.05.02 states that connection to the municipal water system requires a letter from the Raymond Water Department indicating acceptance of the proposed design and agreement to furnish the requested service(s).

It is my understanding that the proposed development has been submitted to the town's consulting engineer, Underwood Engineers, for evaluation of impacts to the town's water distribution system.

Response: Underwood Engineers has indicated that Town water is not available. Therefore, we are now proposing a well as shown on the utility plans.
2. Inspection and maintenance responsibilities for the stormwater management and erosion control measures should be noted on the final plans in accordance with 6.11.07 of the Raymond Site Plan Regulations.
Response: A revised Stormwater Operations and Maintenance Manual is included with this resubmission.

\section*{Fire Protection}
1. It is recommended that the applicant meet with the Fire Department to review the proposed protection activities, such as fire alarms, sprinkler systems, fire hydrants, dry hydrants, emergency access and cisterns in accordance with Section 6.09 of the Raymond Site Plan Regulations.
Response: The Raymond Fire Department was present at the TAC meeting and we have addressed their comments. See response to Note \#3 under "Road Design, Access, and Parking" above.

\section*{Landscaping and Screening}
1. It is understood that the applicant is seeking a waiver from section Site Plan regulation 3.03 .03 which requires landscape plans be developed by a licensed landscape architect.
Response: No response necessary.
2. It is recommended that a note be added to the landscape plan stating the owner and tenant of the property shall be jointly responsible for the maintenance of all required plant material and continued compliance with the Raymond Site Plan Regulations (SPR 6.10.07).
Response: See Note \#21 on Sheet L1.
5.3.2. UNIFIED DEVELOPMENT: All development within this SOD must take place in accordance with a Unified Development Plan approved by the Planning Board. For purposes of this Ordinance, a Unified Development Plan shall be defined as an overall plan that identifies in a conceptual nature how the lot or lots contained in the plan will be developed in a manner consistent with the intent of this Ordinance and how the plan will allow and encourage the development of other lots within the SOD zoning district, in a manner consistent with the intent of the Ordinance.
5.3.2.1. The Unified Development Plan must describe and illustrate, in written and graphic format, and shall specify the intended locations and types of proposed uses, the layout of proposed vehicle and pedestrian access and circulation systems, provision of transit facilities and water and sewer facilities, and areas designated to meet requirements for open space, parking, on site amenities, utilities and landscaping. It shall include statements or conceptual plans describing how signage and lighting will be designed in a unified and integrated manner within the district. In addition, the Unified Development Plan shall indicate how the proposed uses will relate to the surrounding properties both within and outside of the district.
5.3.2.2. The submittal of written concept statement(s) in lieu of a Unified Development Plan shall not be accepted. In determining whether to approve a Unified Development Plan, the Planning Board will consider the following criteria:
5.3.2.2.1. Compatibility of the plan with the goals and objectives set forth in the Town's Master Plan;
5.3.2.2.2. Compatibility of the plan with the permitted uses in the Sewer Overlay District.
5.3.2.2.3. Approval of the Unified Development Plan must occur prior to the consideration of individual site development plans for one or several contiguous lots within the SOD. All site development plans must be reviewed and approved in accordance with this Ordinance and the Planning Board's Site Plan, Subdivision and Earth Excavation Regulations prior to the issuance of any building permits within the district.
5.3.3. AMENDMENT TO UNIFIED DEVELOPMENT PLAN: Any Unified Development Plan may be changed or amended by an applicant and such changes may occur concurrently with, or prior to the submittal of individual site development plans. To the extent that the approved Unified Development Plan addresses lots within the SOD which are not owned by the applicant, then such approved plan shall be binding
ten ine
only on the applicant and the owners of such other lots may seek changes to the Unified Development Plan consistent with their own development project.
5.3.4. SPECIAL PROVISIONS: All new development, change of use, subdivision, site review or development requiring a building permit must be connected to both town water and town sewer services. Notwithstanding the above, application for new development may be made prior to the availability of town water and sewer, provided that the proposed use is permitted as a matter of right in the underlying districts or provided that relief is obtained from the Zoning Board of Adjustment, and provided that the applicant proposes development subject to a condition of approval that the property shall be connected to town water and sewer when it becomes available within one hundred (100) feet of the property line.

Dubois \& King Inc.
Traffic Impact Analysis
1. We understand that the Applicant will submit a Traffic Impact Analysis for the proposed industrial development, in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.03.13.
Response: The Traffic Impact Analysis is being prepared and we will submit it once it is ready.

Existing Conditions Plans.
1. Repeat Comment. We understand that the Applicant included the owner information in the title block and we recommend that the Applicant indicate on the existing conditions plan the location of site, tax map and lot number, current name and address of the owner of record for Lot 24, in accordance with Town of Raymond, Site Plan Review Regulations, Section 5.02.02.
Response: The location and tax map and lot number of Lot 24 is shown on Sheet C1. The current name and address of the owner of record of Lot 24 (Tuck Realty Corp) is listed in the title block, which is on all sheets of the plan set.

Site Layout Plans. (Sheets C13, C14 \& C15)
1. In accordance with the Right of Way Design Matrix, sidewalks are required for roads serving 20 units or more. We understand that a waiver request from the sidewalk requirement was submitted.

\section*{Response: No response necessary.}

W:I20564 RAYMOND - 109C MAN ST - TUCK REALTY CORPIWORD FILES\Response Letter- Rockingham Planning Commision.docx
2. The minimum parking requirement for a residential / multi-family is 3 spaces per unit for a total of 468 spaces. The Applicant is proposing 281 space and requesting a waiver from Town of Raymond. We understand that a waiver request from the parking requirements was submitted. However, in accordance with Town of Raymond, Site Plan Regulations, Article 6.06.04.i, in instances where a waiver is requested for relief from the number of parking spaces required by the Town of Raymond Site Plan Review Regulations, the Applicant must present a plan showing the ability to install the full number of spaces in the future, if the need arises. Additionally, we recommend that the Applicant also prepare a provisional drainage plan and report, to check if the proposed detention ponds will retain the additional runoff, taking into consideration that the impervious area for the parking lot will increase by a significant amount.
Response: An exhibit plan (Sheet EX-1) is included at the end of the plan set showing the parking layout necessary to bring the parking count up to the required number should the need arise. The additional parking area is graded out with a retaining wall. The additional parking would require new stormwater infrastructure which we are showing conceptually at this time. We can submit a full provisional drainage report (which is not a Town requirement) at a later time if requested, but we would seek input on the layout before we go to that level of design.
3. The emergency access drive shows a width of 16 ' in lieu of the required 20'. The Applicant is requesting a waiver from Town of Raymond.
Response: The emergency access drive is now proposed to be \(20^{\prime}\) in width and we hereby retract the waiver request.
4. The site plans submitted by the Applicant show two new front entries with sidewalk for each building, instead of the side entries. Based on the fact that 4 out of 6 proposed entries have stairs, we recommend that the Applicant indicate if these areas are ADA accessible.
Response: We label on the site plan which entrances are ADA accessible. At least one ADA accessible entrance is provided per building.

Grading and Drainage Plans. (Sheets C16, C17 \& C18):
1. It appears that there are multiple conflicts regarding the proposed contours. We recommend that the Applicant will check and revise all proposed contours labels and proposed contours closing with existing contours on both sides of White Rock Road.
Response: The contours on White Rock Road have been reviewed and any necessary revisions have been made.
2. Repeat Comment. The north side of the proposed White Rock Drive (Sta 6 to Sta \(8+50\) ) has proposed grades that are \(2 H: 1 V\) adjacent to the road. We recommend that the Applicant revise the plan and provide guardrail to protect motorists from the steep embankment.
Response: Guardrail is provided along fill sections of the roadway as shown on the site plan. We are unsure why this comment was repeated.
3. We recommend that the Applicant revise the proposed spot elevation for the south side entrance at Building \#1.
Response: The proposed spot elevation for the south side entrance at building \#1 has been revised to match the proposed grade at this location.
4. It appears that the cover over the pipes at \(C B \# 1 \& 2\) is less than \(2^{\prime}\). We recommend that the Applicant revise the plan to maintain a minimum of 2' of cover.
Response: The inverts have been revised for a minimum of 2' of cover over the pipe between CB \#1 \& 2.

Utility Plans. (Sheets C19 \& C20)
1. It appears that the water main line is very close or in direct conflict with the drainage system. (CB \#9 at Sta. 8+00). We recommend that the Applicant reviews and revises the plan.
Response: The water main along the access road has been removed as the apartment complex is now proposed to be serviced by a well with all associated piping proposed within the site itself.
2. The proposed septic system and proposed underground propane tanks appear conceptual in nature with no details provided. We understand that the proposed septic systems will be designed in the future and the appropriate sizes will follow the Env-Wq 1000 rules.
Response: The septic systems have been designed and the designs are included on Sheets S1-S6 of the plan set.

Landscape Plans. (Sheet L2)
1. Repeat Comment. On plan L2, it appears that at the site where White Rock Road ends and the parking lot begins there are some conflicts between the proposed trees and utility lines (drainage pipe and underground propane tanks). We recommend that the Applicant revise the locations accordingly.
Response: We have checked for conflicts between proposed trees and utility lines and revised as necessary.
1. Repeat Comment. We recommend that the Applicant provide details for all proposed ponds or a standard detail with an additional table showing elevations for the proposed ponds (bottom, top), ground, and inlet and outlet pipes. Additionally, we recommend showing the size, length and slope for the proposed pipes.
Revised: Practice-specific elevations have been added to the crosssection details for the wet pond, bioretention system, stormtech, focal point, and dry well. The size, length, and slope of the proposed pipes are shown on the grading plans.

Drainage Analysis Report and Existing Watershed Plan. (Sheets W1, W2 \& W3)
1. Repeat Comment. On the existing watershed plan it is unclear how the runoff is flowing from depression 2P direct to analysis point AP1 and from Wet Channel 1R straight to analysis point AP3 (from drainage report routing diagram). We recommend reviewing and revising the drainage report.
Response: Reaches 3Ra and 3Rb have been added to the existing drainage analysis to show how runoff gets from \(2 P\) to AP1. Per AOT's comment, 1 R has been eliminated and is instead included within the Tc path for 4 S , with Reaches 4Ra and 4Rb showing how the runoff gets to AP3 from Subcatchment 4S.

Drainage Analysis Report and Proposed Watershed Plan. (Sheets W4, W5 \& W6)
1. On the proposed watershed plan, it is unclear how the runoff is flowing from Wet Channel \(1 R\) straight to analysis point AP3 (from drainage report routing diagram). We recommend reviewing and revising the drainage report.
Response: Per AOT's comment, 1 R has been eliminated and is instead included within the Tc path for 4S, with Reaches 4Ra and 4Rb showing how the runoff gets to AP3 from Subcatchment 31S.
2. We recommend that the Applicant explain the \(100 \mathrm{in} / \mathrm{hr}\) exfiltration for Pond 6P. This appears to be an error.
Response: The focal point is a proprietary stormwater filtration system which features a high-flow \(100 \mathrm{in} / \mathrm{hr}\) filter media above the underdrain, per ACF.
3. We recommend checking and revising the multi stage discharge outlet structure (MSDOS) \#2 to be consistent between the drainage report and plans and details.
Response: The details and drainage report are consistent with the revised design.
4. We recommend checking and revising \(C B \# 9\) regarding the pipe size to be consistent between the drainage report and plans.
Response: The pipe size in HydroCAD for CB \#9 has been revised to \(15^{\prime \prime}\) to match the plans.
5. From the drainage report, the surface area for pond \(11 P\) is 2,964 SF. We recommend that the Applicant provide two test pits for proposed Infiltration Pond 11P, in accordance with New Hampshire Stormwater Manual, Volume 2, Chapter 2, Table 2-2.
Response: A second test pit was performed in the footprint of the infiltration area. Test pit logs are included with this resubmission.

The following items are provided in support of this Letter:
1. Six (6) Full Size Plan Sets.
2. Ten (10) Half Size Plan Sets.
3. Special Permit Application.
4. One (1) Revised Drainage Analysis.
5. One (1) Revised Stormwater Operations and Maintenance Manual.
6. Test Pit Logs.
7. One (1) Architectural Building Plan Set.
8. Unified Development Plan.

If you have any questions or need any additional information, please feel free to contact our office. Thank you very much for your time.

Very truly yours,
JONES \& BEACH ENGINEERS, INC.


Daniel Meditz, EIT
Project Engineer
cc: Michael Garrepy, Tuck Realty Corp. (via email)
Madeleine Dilonno, Rockingham Planning Commission (via email)
Jeff Adler, Dubois and King (via email)


\section*{Application for Special Permit Town of Raymond, NH}

\section*{Site Information}

Property Address: 109 A, B, C \& D Main Street
Map \#: \(\qquad\) Lot \#: 24, 25, \(28 \& 29\)

\section*{Property Owner Information}

Name: Lot 24 - Tuck Realty Corp., PO Box 190, Exeter, NH 03833 Phone: \(\qquad\)
Lot 25 - Joseph, John, Ardell \& Inez Welch, 49 Raymond Rd., Nottingham, NH 03290
Address: Lot 28 - Paul \& Teri Welch, 109 Main St. Raymond, NH 03077
Address: Lot 29 - Wayne \& Cathleen Welch, 109A Main St., Raymond, NH 03077

\section*{Applicant/Agent Information}

Name: Turner Porter, Tuck Realty Corp. Phone: 603-944-7530

Address: PO Box 190, Exeter, NH 03833
Address: \(\qquad\)

\section*{Project Description}

The intent of this project is to subdivide the lot into one residential lot containing 156-unit apartment complex and one industrial lot. We have \(86,000 \mathrm{~S} . \mathrm{F}\). of steep slope impact in Zone \(G\) and therefore are requesting a Special Permit. This site is situated such that the impacts are unavoidable. We are also putting 23 acres into open space that will not be developed in the future.

Applicant Signature* (see page 2): \(\square\) Date: \(3 / 20 / 23\)

\section*{Submission Checklist}
- *COMPLETED \& SIGNED APPLICATION. If the applicant is NOT the property owner, a notarized letter of permission from the property owner is required to be submitted with this application.
- LIST OF ABUTTERS. The list of abutters must include the following information:
\(>\) Name of property owner(s)
\(>\) Address of property owner(s)
\(>\) Name of abutting property owner(s)
\(>\) Address of abutting property owner(s)
\(>\) Tax Map and Lot Numbers for all properties listed
\(>\) Name and Address of any agents authorized by the applicant to represent them and whose professional seal appears on a plat submitted to the Planning Board (i.e. land surveyors, wetland scientists, engineers, etc.)
(For more information, please refer to NH Revised Statues Annotated 672:3 for a definition of the term "abutter," and RSA 676:4 for legal notice requirements).
- APPLICATION FEE. The application fee to the Planning Board for a Special Permit is as follows:
\(>\$ 100.00\) base application fee, plus;
> \$10.00 per abutter (including the applicant, property owner(s), and any agents authorized to represent the property owner(s))
\(>\) When writing a check, this amount must be kept separate from the Escrow Account (see below). Please make checks payable to the Town of Raymond.
- ESCROW ACCOUNT. This is a separate account established by the applicant to cover the cost of any additional legal notification, engineering review, legal review, document recording or outside copying incurred by the Town. Any unused funds will be returned to the applicant.
\(>\$ 250.00\) - Minimum amount required to establish Escrow Account.
\(>\) When writing a check, this amount must be kept separate from the Application Fee (see above). Please make checks payable to the Town of Raymond.
- PLANS.
\(>\) One (1) \(24^{\prime \prime} \times 36^{\prime \prime}\) copy of the plan, plus ten (10) \(11^{\prime \prime} \times 17^{\prime \prime}\) copies shall be provided.
-OR-
\(>\) If the original plan is smaller than \(24^{\prime \prime} \times 36^{\prime \prime}\) in size, then one (1) copy of the original plan, plus ten (10) \(11^{\prime \prime} \times 17^{\prime \prime}\) copies of the plan shall be provided.

\title{
STORMWATER MANAGEMENT OPERATION AND MAINTENANCE MANUAL
}

\author{
White Rock Place \\ 109A\&C Main Street \\ Raymond, NH 03077 \\ Tax Map 23, Lots 24, 25, \& 29
}

\author{
Prepared for: \\ Tuck Realty Corporation PO Box 190 \\ Exeter, NH 03833 \\ ATTN: Michael Garrepy \\ mgarrepy@gmail.com \\ (603) 944-7530
}

Prepared by:
Jones \& Beach Engineers, Inc.
85 Portsmouth Avenue
P.O. Box 219

Stratham, NH 03885
(603) 772-4746

November 22, 2022
REVISED December 12, 2022
REVISED March 20, 2023
JBE Project No. 20564


\section*{Inspection and Maintenance of Facilities and Property}

\section*{A. Maintenance of Common Facilities or Property}
1. Tuck Realty Corporation., future owners and assigns are responsible to perform the maintenance obligations or hire a Professional Engineer to review the site on an annual basis for maintenance and certification of the stormwater system. Tuck Realty Corporation, future owners and assigns shall keep receipts and records of all maintenance companies hired throughout the year to submit along with the following form. All record keeping required by this manual shall be maintained by the responsible party(ies) and be made available to NHDES upon request.

\section*{B. General Inspection and Maintenance Requirements}
1. Permanent stormwater and sediment and erosion control facilities to be maintained on the site include, but are not limited to, the following:
a. Pavement
b. Sediment Forebay
c. Wet Pond
d. Bioretention System
e. ADS Stormtech System
f. ACF Focal Point
g. Permeable Pavers
h. Catch Basins \& Dry Well
i. Drain Manholes
j. Culverts
k. Rip Rap Outlet Protection
1. Contech StormFilter
m . Vegetation and landscaping
2. Maintenance of permanent measures shall follow the following schedule:
a. Normal winter roadway maintenance including plowing and snow removal. Road and parking lot sweeping at the end of every winter, preferably at the start of the spring rain season. Snow removal shall be performed by Sno-Pro certified personnel to keep road salt from contaminating the river or groundwater.
b. Cleaning Criteria for all Sedimentation Forebays: Sediment should be removed from the sedimentation chamber (forebay) when it accumulates to a depth of more than 12 inches \((30 \mathrm{~cm})\) or 10 percent of the pretreatment volume. The sedimentation forebay should be cleaned of vegetation if persistent standing water and wetland vegetation becomes dominant. The cleaning interval is once every year. A dry sedimentation forebay is the optimal condition while in practice this condition is rarely achieved. The sedimentation chamber, forebay, and treatment cell outlet devices should be cleaned when drawdown
times exceed 60 to 72 hours. Materials can be removed with heavy construction equipment; however this equipment should not track on the wetland surface. Revegetate disturbed areas as necessary. Removed sediments should be dewatered (if necessary) and disposed of in an acceptable manner.
c. Wet Ponds should require little maintenance, but should be inspected frequently during the first year of operation, and annually thereafter. Every five years, the services of a professional engineer should be retained to perform a thorough inspection of all the aspects of the pond and its infrastructure. Any debris and sediment accumulations should be removed from the outlet structure(s) and emergency spillway(s) and disposed of properly. Inspect outlet structure for deterioration and or clogging. Wet Pond berms should be mowed at least once annually so as to prevent the establishment of woody vegetation - trees should never be allowed to grow on a Wet Pond berm, as they may destabilize the structure and increase the potential for failure. Areas showing signs of erosion or thin or dying vegetation should be repaired immediately by whatever means necessary, with the exception of fertilizer. Rodent burrows are to be repaired immediately and the suspect animals apprehended with non-lethal traps if the problem persists.

The wet pond should remain full to the elevation of the lowest outlet in the pond.
d. Bioretention Systems:
- Visually inspect monthly and repair erosion. Use small stones to stabilize erosion along drainage paths.
- Check the pH once a year if grass is not surviving. Apply an alkaline product, such as limestone, if needed.
- Re-seed any bare areas by hand as needed.
- Immediately after the completion of cell construction, water grass for 14 consecutive days unless there is sufficient natural rainfall.
- Once a month (more frequently in the summer), residents are encouraged to visually inspect vegetation for disease or pest problems and treat as required.
- During times of extended drought, look for physical features of stress. Water in the early morning as needed.
- Weed regularly, if needed.
- After rainstorms, inspect the cell and make sure that drainage paths are clear and that ponding water dissipates over 4-6 hours. (Water may pond for longer times during the winter and early spring.)
- Twice annually, inspect the outlet control structures to ensure that they are not clogged and correct any clogging found as needed.
KEEP IN MIND, THE BIORETENTION CELL IS NOT A POND. IT SHOULD NOT PROVIDE A BREEDING GROUND FOR MOSQUITOES. MOSQUITOES NEED AT LEAST FOUR (4) DAYS OF STANDING WATER TO DEVELOP AS LARVA.
e. ADS Stormtech System:
- Removal of debris from inlet and outlet structures.
- Removal of accumulated sediment.
- Inspection and repair of outlet structures and appurtenances.
- Inspection of infiltration components at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24 hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Inspection of pretreatment measures at least twice annually, and removal of accumulated sediment as warranted by inspection, but no less than once annually.
- If an infiltration system does not drain within 72-hours following a rainfall event, then a qualified professional should assess the condition of the facility to determine measures required to restore infiltration function, including but not limited to removal of accumulated sediments or reconstruction of the infiltration trench.
- Camera inspections of the system should be done on an annual basis.
- See also attachment from ADS.

\section*{f. ACF Focal Point: See attachment from ACF}
g. Permeable Pavers:

A short stretch of the emergency access road is constructed from EcoRaster permeable pavers and the remainder is constructed from gravel. The following recommendations will help assure that the pavers are maintained to preserve its hydrologic effectiveness.

\section*{Winter maintenance:}
- Sanding for winter traction is prohibited. Deicing is permitted \(\left(\mathrm{NaCl}, \mathrm{MgCl}_{2}\right.\), or equivalent). Reduced salt application is possible and can be a cost savings for winter maintenance. Nontoxic, organic deicers, applied either as blended, magnesium chloride-based liquid products or as pretreated salt, are preferable.
- Plowing is allowed, blade should be set approximately 1 " above the paver surface. Ice and light snow accumulation are generally not as problematic as for standard asphalt. Snow will accumulate during heavier storms and should be plowed. (more than usual, about an inch).

\section*{Routine maintenance:}
- Seal coating is absolutely forbidden. Surface seal coating is not reversible.
- The paver surface should be vacuumed 2 or 3 times per year, and at any additional times sediment is spilled, eroded, or tracked onto the surface.
- Planted areas adjacent to permeable pavers should be well maintained to prevent soil washout onto the pavers. If any bare spots or eroded areas are
observed within the planted areas, they should be replanted and/or stabilized at once.
- Immediately clean any soil deposited on pavers. Superficial dirt does not necessarily clog the paver voids. However, dirt that is ground in repeatedly by tires can lead to clogging. Therefore, trucks or other heavy vehicles should be prevented from tracking or spilling dirt onto the pavers.
- Do not allow construction staging, soil/mulch storage, etc. on unprotected paver surface. Contractor to lay down tarps, plywood or removable item and take care not to track material onto unprotected pavers.
- Repairs: Potholes or other surface blemishes shall be replaced in kind. Any required repair of drainage structures should be done promptly to ensure continued proper functioning of the system.
- Written and verbal communication to the future owner should make clear the pavement's special purpose and special maintenance requirements such as those listed here.
h. Annual inspection of catch basins to determine if they need to be cleaned. Catch basin is to be cleaned if the depth of deposits is greater than one-half the depth from the basin bottom to the invert of the lowest pipe or opening into or out of the basin. If a catch basin significantly exceeds the one-half depth standard during the inspection, then it should be cleaned more frequently. If woody debris or trash accumulates in the catch basin, then it should be cleaned on a weekly basis. The Catch basin can be cleaned either manually or by specially designed equipment including, but not limited to, bucket loaders and vacuum pumps. Before any materials can be disposed, it is necessary to perform a detailed chemical analysis to determine if the materials meet the EPA criteria for hazardous waste. This will help determine how the materials should be stored, treated, and disposed. Grease hoods are to be wiped clean and the rags disposed of properly. Debris obscuring the grate inlet should also be removed.
i. Annual inspection of drain manholes to determine if they need to be cleaned. Manholes should be cleaned of any material upon inspection. Manholes can be cleaned either manually or by specially designed equipment including, but not limited to, bucket loaders and vacuum pumps. Before any materials can be disposed, it is necessary to perform a detailed chemical analysis to determine if the materials meet the EPA criteria for hazardous waste. This will help determine how the materials should be stored, treated, and disposed.
j. Inspection of culvert inlets and outlets at least once per month during the rainy season (March to November). Any debris is to be removed and disposed of properly.
k. Rock riprap should be inspected annually in order to ensure that it has not been displaced, undermined, or otherwise damaged. Displaced rock should be replaced, or additional rock added in order to maintain the structure(s) in their undamaged state. Woody vegetation should not be allowed to become established in riprap areas, and/or any debris removed from the void spaces between the rocks. If the riprap is adjacent to a
stream or other waterbody, the water should be kept clear of obstructions, debris, and sediment deposits.
1. Contech StormFilter: See attachment from Contech.
m. Annual inspection of site's vegetation and landscaping. Any areas that are bare shall be reseeded and mulched with hay or, if the case is extreme, loamed and seeded or sodded to ensure adequate vegetative cover. Landscape specimens shall be replaced in kind, if they are found to be dead or dying. The site shall remain in a stabilized condition at all times. A site is considered stable if one of the following has occurred.
b.a. A minimum of \(85 \%\) vegetative cover has been established;
b.b. A minimum of 3 inches of non-erosive material such as stone or riprap has been installed; or
b.c. Erosion control blankets have been installed in accordance with Env-Wq 1506.03.
n. Annual inspection of the site for erosion, destabilization, settling, and sloughing. Any needed repairs are to be conducted immediately.

See attached sample forms as a guideline.
Any inquiries in regards to the design, function, and/or maintenance of any one of the above mentioned facilities or tasks shall be directed to the project engineer:

Jones \& Beach Engineers, Inc.
85 Portsmouth Avenue
P.O. Box 219

Stratham, NH 03885
T\#: (603) 772-4746
Email: jcoronati@jonesandbeach.com

\section*{Commitment to maintenance requirements}

I agree to complete and/or observe all of the required maintenance practices and their respective schedules as outlined above.

\section*{Tuck Realty Corporation}

By: Print Name

\section*{Signature}

Title

\section*{Email Address}

Phone Number

\section*{Date}

\section*{Commitment to maintenance requirements}

This signature page shall be provided to NHDES upon the change of Ownership, Transfer or Assignment. Contact information is to remain updated and the responsibility of the applicable party responsible for this Operation and Maintenance Manual.

I agree to complete and/or observe all of the required maintenance practices and their respective schedules as outlined above.

Property Owner or future assigns

By: Print Name

Signature

Title

Email Address

Phone Number

Date

\section*{Annual Operations and Maintenance Report}

Tuck Realty Corporation, future owners and assigns, are responsible to perform the maintenance obligations or hire a Professional Engineer to review the site on an annual basis for maintenance and certification of the stormwater system. Tuck Realty Corporation, future owners and assigns shall keep receipts and records of all maintenance companies hired throughout the year to submit along with the following form. All record keeping required by this manual shall be maintained by the responsible party(ies) and be made available to NHDES upon request.

Tuck Realty Corporation, future owners and assigns, are responsible for submitting a report to the Planning Department or their designated agent by September 1 every two years, with the first report due within two years of receipt of an Occupancy Permit. The report shall be signed and stamped by a qualified professional engineer that all stormwater management and erosion control measures are functioning per the approved stormwater management plan. The report shall note if any stormwater infrastructure has needed any repairs other than routine maintenance and the results of those repairs. If the stormwater infrastructure is not functioning per the approved stormwater management plan the landowner shall report on the malfunction in their report and include detail regarding when the infrastructure shall be repaired and functioning as approved.

If no report is filed by September 1 in the year the report is due, the Select Board or their designated agent shall have site access to complete routine inspections to ensure compliance with the approved stormwater management and sediment and erosion control plans. Such inspections shall be performed at a time agreed upon with the landowner.
\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{l} 
Construction \\
Activity
\end{tabular} & \begin{tabular}{c} 
Date of \\
Inspection
\end{tabular} & \begin{tabular}{c} 
Who \\
Inspected
\end{tabular} & Findings of Inspector \\
\hline Pavement & & & \\
\hline Sediment Forebays & & & \\
\hline Wet Pond & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Bioretention System & & & \\
\hline & & & \\
\hline ADS Stormtech & & & \\
\hline ACF Focal Point & & & \\
\hline Permeable Pavers & & & \\
\hline Drain Manholes & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Culverts & & & \\
\hline
\end{tabular}

Comments:

Deicing Log
\begin{tabular}{|l|l|l|}
\hline Date Applied & Type of Deicing Material & Amount Applied \\
\hline & & \\
\hline
\end{tabular}

\section*{CONTROL OF INVASIVE PLANTS}

During maintenance activities, check for the presence of invasive plants and remove in a safe manner as described on the following pages. They should be controlled as described on the following pages.

\section*{Background:}

Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm by:
- becoming weedy and overgrown;
- killing established shade trees;
- obstructing pipes and drainage systems;
- forming dense beds in water;
- lowering water levels in lakes, streams, and wetlands;
- destroying natural communities;
- promoting erosion on stream banks and hillsides; and
- resisting control except by hazardous chemical.

Prepared by the Invasives Species Outreach Group, volunteers interested in helping people control invasive plants. Assistance provided by the Piscataquog Land Conservancy and the NH Invasives Species Committee. Edited by Karen Bennett, Extension Forestry Professor and Specialist.


USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 3: 282.

Non-native invasive plants crowd out natives in natural and managed landscapes. They cost taxpayers billions of dollars each year from lost agricultural and forest crops, decreased biodiversity, impacts to natural resources and the environment, and the cost to control and eradicate them.

Invasive plants grow well even in less than desirable conditions such as sandy soils along roadsides, shaded wooded areas, and in wetlands. In ideal conditions, they grow and spread even faster. There are many ways to remove these nonnative invasives, but once removed, care is needed to dispose the removed plant material so the plants don't grow where disposed.

Knowing how a particular plant reproduces indicates its method of spread and helps determine the appropriate disposal method. Most are spread by seed and are dispersed by wind, water, animals, or people. Some reproduce by vegetative means from pieces of stems or roots forming new plants. Others spread through both seed and vegetative means.

Because movement and disposal of viable plant parts is restricted (see NH Regulations), viable invasive parts can't be brought to most transfer stations in the state. Check with your transfer station to see if there is an approved, designated area for invasives disposal. This fact sheet gives recommendations for rendering plant parts nonviable.

Control of invasives is beyond the scope of this fact sheet. For information about control visit www.nhinvasives.org or contact your UNH Cooperative Extension office.

\section*{New Hampshire Regulations}

Prohibited invasive species shall only be disposed of in a manner that renders them nonliving and nonviable. (Agr. 3802.04)

No person shall collect, transport, import, export, move, buy, sell, distribute, propagate or transplant any living and viable portion of any plant species, which includes all of their cultivars and varieties, listed in Table 3800.1 of the New Hampshire prohibited invasive species list. (Agr 3802.01)

\section*{How and When to Dispose of Invasives?}

To prevent seed from spreading remove invasive plants before seeds are set (produced). Some plants continue to grow, flower and set seed even after pulling or cutting. Seeds can remain viable in the ground for many years. If the plant has flowers or seeds, place the flowers and seeds in a heavy plastic bag "head first" at the weeding site and transport to the disposal site. The following are general descriptions of disposal methods. See the chart for recommendations by species.

Burning: Large woody branches and trunks can be used as firewood or burned in piles. For outside burning, a written fire permit from the local forest fire warden is required unless the ground is covered in snow. Brush larger than 5 inches in diameter can't be burned. Invasive plants with easily airborne seeds like black swallow-wort with mature seed pods (indicated by their brown color) shouldn't be burned as the seeds may disperse by the hot air created by the fire.

Bagging (solarization): Use this technique with softertissue plants. Use heavy black or clear plastic bags (contractor grade), making sure that no parts of the plants poke through. Allow the bags to sit in the sun for several weeks and on dark pavement for the best effect.

Tarping and Drying: Pile material on a sheet of plastic


Japanese knotweed Polygonum cuspidatum USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 1: 676. and cover with a tarp, fastening the tarp to the ground and monitoring it for escapes. Let the material dry for several weeks, or until it is clearly nonviable.

Chipping: Use this method for woody plants that don't reproduce vegetatively.
Burying: This is risky, but can be done with watchful diligence. Lay thick plastic in a deep pit before placing the cut up plant material in the hole. Place the material away from the edge of the plastic before covering it with more heavy plastic. Eliminate as much air as possible and toss in soil to weight down the material in the pit. Note that the top of the buried material should be at least three feet underground. Japanese knotweed should be at least 5 feet underground!

Drowning: Fill a large barrel with water and place soft-tissue plants in the water. Check after a few weeks and look for rotted plant material (roots, stems, leaves, flowers). Wellrotted plant material may be composted. A word of caution- seeds may still be viable after using this method. Do this before seeds are set. This method isn't used often. Be prepared for an awful stink!

Composting: Invasive plants can take root in compost. Don't compost any invasives unless you know there is no viable (living) plant material left. Use one of the above techniques (bagging, tarping, drying, chipping, or drowning) to render the plants nonviable before composting. Closely examine the plant before composting and avoid composting seeds.

\section*{Suggested Disposal Methods for Non-Native Invasive Plants}

This table provides information concerning the disposal of removed invasive plant material. If the infestation is treated with herbicide and left in place, these guidelines don't apply. Don't bring invasives to a local transfer station, unless there is a designated area for their disposal, or they have been rendered non-viable. This listing includes wetland and upland plants from the New Hampshire Prohibited Invasive Species List. The disposal of aquatic plants isn't addressed.
\begin{tabular}{|c|c|c|}
\hline Woody Plants & Method of Reproducing & Methods of Disposal \\
\hline \begin{tabular}{l}
Norway maple \\
(Acer platanoides) \\
European barberry \\
(Berberis vulgaris) \\
Japanese barberry \\
(Berberis thunbergii) autumn olive \\
(Elaeagnus umbellata) burning bush \\
(Euonymus alatus)
\end{tabular} & Fruit and Seeds & \begin{tabular}{l}
Prior to fruit/seed ripening \\
Seedlings and small plants \\
- Pull or cut and leave on site with roots exposed. No special care needed. \\
Larger plants \\
- Use as firewood. \\
- Make a brush pile. \\
- Chip. \\
- Burn.
\end{tabular} \\
\hline \begin{tabular}{l}
(Lonicera morrowii) Tatarian honeysuckle \\
(Lonicera tatarica) showy bush honeysuckle \\
(Lonicera x bella) common buckthorn \\
(Rhamnus cathartica) glossy buckthorn (Frangula alnus)
\end{tabular} &  & \begin{tabular}{l}
After fruit/seed is ripe \\
Don't remove from site. \\
- Burn. \\
- Make a covered brush pile. \\
- Chip once all fruit has dropped from branches. \\
- Leave resulting chips on site and monitor.
\end{tabular} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
oriental bittersweet \\
(Celastrus orbiculatus) multiflora rose \\
(Rosa multiflora)
\end{tabular}} & \multirow[t]{2}{*}{Fruits, Seeds, Plant Fragments} & \begin{tabular}{l}
Prior to fruit/seed ripening \\
Seedlings and small plants \\
- Pull or cut and leave on site with roots exposed. No special care needed. \\
Larger plants \\
- Make a brush pile. \\
- Burn.
\end{tabular} \\
\hline & & \begin{tabular}{l}
After fruit/seed is ripe \\
Don't remove from site. \\
- Burn. \\
- Make a covered brush pile. \\
- Chip - only after material has fully dried (1 year) and all fruit has dropped from branches. Leave resulting chips on site and monitor.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Non-Woody Plants & Method of Reproducing & Methods of Disposa \\
\hline \begin{tabular}{l}
garlic mustard \\
(Alliaria petiolata) spotted knapweed \\
(Centaurea maculosa) \\
- Sap of related knapweed can cause skin irritation and tumors. Wear gloves when handling. \\
black swallow-wort \\
(Cynanchum nigrum) \\
- May cause skin rash. Wear gloves and long sleeves when handling. \\
pale swallow-wort \\
(Cynanchum rossicum) \\
giant hogweed \\
(Heracleum mantegazzianum) \\
- Can cause major skin rash. Wear gloves and long sleeves when handling. \\
dame's rocket \\
(Hesperis matronalis) perennial pepperweed \\
(Lepidium latifolium) purple loosestrife \\
(Lythrum salicaria) Japanese stilt grass \\
(Microstegium vimineum) mile-a-minute weed (Polygonum perfoliatum)
\end{tabular} & Fruits and Seeds & \begin{tabular}{l}
Prior to flowering \\
Depends on scale of infestation \\
Small infestation \\
- Pull or cut plant and leave on site with roots exposed. \\
Large infestation \\
- Pull or cut plant and pile. (You can pile onto or cover with plastic sheeting). \\
- Monitor. Remove any re-sprouting material. \\
During and following flowering \\
Do nothing until the following year or remove flowering heads and bag and let rot. \\
Small infestation \\
- Pull or cut plant and leave on site with roots exposed. \\
Large infestation \\
- Pull or cut plant and pile remaining material. (You can pile onto plastic or cover with plastic sheeting). \\
- Monitor. Remove any re-sprouting material.
\end{tabular} \\
\hline \begin{tabular}{l}
common reed \\
(Phragmites australis) \\
Japanese knotweed \\
(Polygonum cuspidatum) \\
Bohemian knotweed \\
(Polygonum \(x\) bohemicum)
\end{tabular} & \begin{tabular}{l}
Fruits, Seeds, Plant Fragments \\
Primary means of spread in these species is by plant parts. Although all care should be given to preventing the dispersal of seed during control activities, the presence of seed doesn't materially influence disposal activities.
\end{tabular} & \begin{tabular}{l}
Small infestation \\
- Bag all plant material and let rot. \\
- Never pile and use resulting material as compost. \\
- Burn. \\
Large infestation \\
- Remove material to unsuitable habitat (dry, hot and sunny or dry and shaded location) and scatter or pile. \\
- Monitor and remove any sprouting material. \\
- Pile, let dry, and burn.
\end{tabular} \\
\hline
\end{tabular}

January 2010


\begin{tabular}{|c|c|c|c|}
\hline 12 & 319123 & REVISED PEETAC, TOWN ENEINEEA, AND AOT COMMENTS & DJM \\
\hline \({ }^{11}\) & 214123 & REVISED PER TOWN ENGINEER COMMENTS & DM \\
\hline & 12/12/22 & DRAINAGE REVSIONS FOF AOT & D.JM \\
\hline & & ISSUEO FOAREVEW & OMM \\
\hline 8 & 8/2122 & ADDED DRAINAGE & Jm \\
\hline & & REVISION & \({ }^{\text {er }}\) \\
\hline
\end{tabular}



Gove Environmental Services, Inc.

> Test Pit Log
> 109 Main Street, Raymond
> Logged by: Luke Hurley, CSS 095, 2/24/22

Test Pit \#1:
0-8 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
8-20 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
20-32 INCHES, \(2.5 Y 4 / 3\), FINE SANDY LOAM , GRANULAR, FRIABLE
32-64 INCHES, 2.5Y 4/3, SAND/GRVEL, MASSIVE, FIRM IN PLACE, REDOX 15\%
ESHWT: 32 INCHES
REFUSAL: N/A
OBSERVED WATER: N/A

Test Pit \#2:
0-8 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
8-16 INCHES, 10YR 4/4, FINE SANDY LOAM, GRANULAR, FRIABLE
16-36 INCHES, 2.5Y 4/3, FINE SANDY LOAM , GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: 36 INCHES OBSERVED WATER: N/A

Test Pit \#3:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM, GRANULAR, FRIABLE
4-18 INCHES, 10 YR 4/4, FINE SANDY LOAM, GRANULAR, FRIABLE
18-40 INCHES, \(2.5 Y\) 5/3, SAND, GRANULAR, FRIABLE
40-60 INCHES, 2.5Y 5/4, SAND, GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: N/A OBSERVED WATER: N/A

Test Pit \#4:
0-6 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
6-20 INCHES, 10YR 4/4, FINE SANDY LOAM, GRANULAR, FRIABLE
20-40 INCHES, 2.5Y 5/4, FINE SANDY LOAM, GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: 40 INCHES OBSERVED WATER: N/A

Test Pit \#5:
0-6 INCHES, \(10 Y \mathrm{R} 3 / 2\), FINE SANDY LOAM , GRANULAR, FRIABLE
6-12 INCHES, 10YR 5/6, FINE SANDY LOAM , GRANULAR, FRIABLE
12-20 INCHES, 10YR3/6, FINE SANDY LOAM , GRANULAR FRIABLE
20-40 INCHES, 2.5Y 4/6, SAND/GRAVEL, SINGLE GRAIN, LOOSE
ESHWT: N/A REFUSAL: 40 INCHES OBSERVED WATER: N/A

Test Pit \#6: DONE AT STATOIN 6+00
0-6 INCHES, 10YR 3/2, FINE SANDY LOAM, GRANULAR, FRIABLE
6-16 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
16-28 INCHES, 10YR4/6, FINE SANDY LOAM , GRANULAR, FRIABLE
28-50 INCHES, 2.5Y4/4, FINE SAND, GRANULAR, FRIABLE
ESHWT: N/A
REFUSAL: 50 INCHES
OBSERVED WATER: N/A

Test Pit \#7:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-10 INCHES, 10YR 5/6, FINE SANDY LOAM, GRANULAR, FRIABLE
10-30 INCHES, 10Y4/4, FINE SAND, GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: N/A OBSERVED WATER: N/A

Test Pit \#8:
0-2 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
2-12 INCHES, 10YR 5/6, FINE SANDY LOAM, GRANULAR, FRIABLE
12-24 INCHES, 10Y4/4, FINE SAND, GRANULAR, FRIABLE
24-50 INCHES, 2.5Y5/3, SAND/GRAVEL, SINGLE GRAIN, LOOSE, REDOX 15\%
ESHWT: 24 INCHES REFUSAL: N/A OBSERVED WATER: N/A

Test Pit \#9:
0-6 INCHES, 10YR 3/2, FINE SANDY LOAM, GRANULAR, FRIABLE
6-12 INCHES, 10YR 5/4, FINE SANDY LOAM , GRANULAR, FRIABLE
12-30 INCHES, 2.5Y5/6, FINE SANDY LOAM, GRANULAR, FRIABLE
30-60 INCHES, 2.5Y5/3, SAND/GRAVEL, SINGLE GRAIN, LOOSE
ESHWT: N/A REFUSAL: 60 INCHES OBSERVED WATER: N/A

Test Pit \#10:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-24 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
24-40 INCHES, 2.5Y5/3, FINE SANDY LOAM , GRANULAR, FRIABLE, REDOX \(15 \%\)
40-60 INCHES, \(2.5 Y 5 / 3\), SAND/GRAVEL, SINGLE GRAIN, LOOSE, REDOX \(15 \%\)
ESHWT: 24 REFUSAL: 60 INCHES OBSERVED WATER: N/A

Test Pit \#11:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-14 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
14-56 INCHES, 2.5Y4/4, SAND/GRAVEL, MASSIVE, FIRM IN PLACE
ESHWT: N/A REFUSAL: 54 INCHES OBSERVED WATER: N/A

Test Pit \#12:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-18 INCHES, 10YR 5/4, FINE SANDY LOAM, GRANULAR, FRIABLE
18-40 INCHES, 2.5 Y5/4, SAND/GRAVEL, MASSIVE, FIRM IN PLACE
ESHWT: N/A REFUSAL: 40 INCHES OBSERVED WATER: N/A

Test Pit \#13:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM, GRANULAR, FRIABLE
4-16 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
16-36 INCHES, 10YR5/6, FINE SANDY LOAM , GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: 36 INCHES OBSERVED WATER: N/A


Gove Environmental Services, Inc.
Test Pit \#14:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE 4-14 INCHES, 10YR 4/4, FINE SANDY LOAM, GRANULAR, FRIABLE 14-36 INCHES, 10YR5/6, FINE SANDY LOAM, GRANULAR, FRIABLE ESHWT: N/A REFUSAL: 36 INCHES OBSERVED WATER: N/A

Test Pit \#15:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM, GRANULAR, FRIABLE
4-16 INCHES, 10YR 5/4, FINE SANDY LOAM , GRANULAR, FRIABLE
16-24 INCHES, 2.5Y5/6, FINE SANDY LOAM , GRANULAR, FRIABLE
24-50 INCHES, 2.5Y4/4, SAND, MASIVE, FIRM IN PLACE
50-62 INCHES, 2.5Y5/3, SAND/GRAVEL, MASIVE, FIRM IN PLACE
ESHWT: 50 INCHES REFUSAL: N/A OBSERVED WATER: N/A

Test Pit \#16:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-15 INCHES, 10YR 4/4, FINE SANDY LOAM, GRANULAR, FRIABLE
ESHWT: 15 INCHES REFUSAL: N/A OBSERVED WATER: 15 INCHES

Test Pit \#17:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-20 INCHES, 10YR 5/6, FINE SANDY LOAM, GRANULAR, FRIABLE
20-42 INCHES, 2.5Y5/3, FINE SANDY LOAM , GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: 42 INCHES OBSERVED WATER: N/A

Test Pit \#18:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-12 INCHES, 1OYR 4/6, FINE SANDY LOAM, GRANULAR, FRIABLE
12-24 INCHES, 10YR4/4, FINE SANDY LOAM, GRANULAR, FRIABLE
24-52 INCHES, 2.5Y5/3, SAND, GRNAULAR, FIRM IN PLACE
ESHWT: N/A REFUSAL: 52 INCHES OBSERVED WATER: N/A


Gove Environmental Services, Inc.
TEST PIT DATA
Project - 109C Main Street, Raymond, NH
Client - Tuck Realty
GES Project No. 2020234
MM/DD/YY Staff 10-20-2022 JPG Observed by Paul Ayer, Raymond Code Enforcement
Test Pit No. 19
ESHWT: 50"
Termination @ 65"
Refusal: None
Obs. Water: None
\begin{tabular}{rccccl} 
Depth & Color & Texture & Structure & Consistence & Redox \%, Layer \\
\(0-9 "\) & 10YR 3/2 & LS & GR & FR & NONE,Ap \\
\(9-50^{\prime \prime}\) & 10 YR \(5 / 6\) & LS & GR & FR & NONE, Bw \\
\(50-65 "\) & \(2.5 Y 5 / 4\) & LS & OM & FR & \(10 \%\), C
\end{tabular}

Test Pit No. 20
ESHWT: 43"
Termination@65"
Refusal: None
Obs. Water: None
\begin{tabular}{rccccl} 
Depth & Color & Texture & Structure & Consistence & Redox \%, Layer \\
\(0-17 "\) & 10YR 3/2 & LS & GR & FR & NONE, Ap \\
\(17-43 "\) & \(10 Y R ~ 5 / 6\) & LS & GR & FR & NONE, Bw \\
\(43-65 "\) & \(2.5 Y 5 / 4\) & LS & PL & FR & \(20 \%\), C
\end{tabular}

Test Pit No. 21
ESHWT: 46"
Termination @ 72"
Refusal: None
Obs. Water: None
\begin{tabular}{cccccl} 
Depth & Color & Texture & Structure & Consistence & Redox \%, Layer \\
\(0-7 "\) & 10YR 3/2 & FLS & GR & FR & NONE, Ap \\
\(7-46^{\prime \prime}\) & \(10 Y R ~ 5 / 6\) & FSL & GR & FR & NONE, Bw \\
\(46-72^{\prime \prime}\) & \(2.5 Y 5 / 4\) & FSL & OM & FR & \(20 \%\), C
\end{tabular}

Gove Environmental Services, Inc. TEST PIT DATA

Project 109C Main Street, Raymond, NH
Client
Tuck
GES Project No. 2020234
MM/DD/YY Staff 03-16-2023
James Gove, CSS\#004
\begin{tabular}{lll} 
Test Pit No. & 22 \\
ESHWT:: & \(57^{\prime}\) \\
Termination @) & \(108^{\prime \prime}\) \\
Refusal: & & None \\
Obs. Water: & & None \\
& \\
Horizon & \multicolumn{2}{l}{ Color (Munsell) } \\
A 0-10" & 10YR3/2 & \\
Bw 10-27", & 10YR5/6 & \\
B/C 27-57" & 10YR4/4 & \\
C 57-108" & 10YR5/8 &
\end{tabular}
\begin{tabular}{ll} 
Soils Series: & Hinckley \\
Landscape: & Flat \\
Slope: & A \\
Parent Material: & Outwash \\
Ksat (above ESHWT): & \(20^{\prime \prime} / \mathrm{hr}\)
\end{tabular}

Texture
fine sandy loam gravelly loamy sand gravelly loamy sand very fine sand

Structure-Consistence-Redox granular-friable-none granular-friable-none massive-friable-none massive-friable-7.5YR5/8
-2.5Y5/3

Hydrologic Soil Group of this Hinckley soil test pit is A.


Tuck Realty Corp.
Exeter, New Hampshire

White Rock Place
Raymond, NH
March 17, 2023
tha architects, LLC ARCHITECTURE - PLANNING - CONSULTING. INTERIOR DESIGN 89 WILLOWBROOK AVENUE STRATHAM, NH OB8BS
Tel: ( 603 ) \(770-249\) FAX: ( 603 )
-WWW.THAARC.COM


Th THA ARCHITECTS, LLC architecure - planning - consulting. interior design



Tuck Realty Corp.



a



\title{
JONES\&BEACH \\ 85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885 \\ 603.772.4746 - JonesandBeach.com
}

March 20, 2023
Raymond Planning Board
Attn. Brad Reed, Chair
4 Epping Street
Raymond, NH 03077

\author{
Re: Response Letter \\ White Rock Place \\ 109A, B, C, \& D Main Street, Raymond, NH \\ Tax Map 23, Lots 24, 25, 28 \& 29 \\ JBE Project No. 20564
}

Dear Mr. Reed,
On behalf of our client, Tuck Realty Corporation, Jones and Beach Engineers, Inc., respectfully submits a Unified Development Plan for the proposed development on the above-referenced parcels. The intent of this project is to adjust the lot lines between the four subject parcels and construct a 156-Unit apartment complex consisting of (72) 2-Bedroom Units and (84) 1Bedroom Units.

The proposed development will take place entirely on what will be Lot 25 after the proposed lot line adjustment, which consists of parts of what is currently lots 25 and 29. Tax Map 23, Lots 24 and 25 are vested into the Sewer Overlay District because this project first went to design review in 2020, before the sewer overlay district was removed. Therefore, this development will require a written unified development plan in accordance with the 2020 Raymond Zoning Ordinance.

\section*{SECTION 5.3 Sewer Overlay District (03/2006), Raymond Zoning Ordinance 2020}
5.3.2. UNIFIED DEVELOPMENT: All development within this SOD must take place in accordance with a Unified Development Plan approved by the Planning Board. For purposes of this Ordinance, a Unified Development Plan shall be defined as an overall plan that identifies in a conceptual nature how the lot or lots contained in the plan will be developed in a manner consistent with the intent of this Ordinance and how the plan will allow and encourage the development of other lots within the SOD zoning district, in a manner consistent with the intent of the Ordinance.
5.3.2.1. The Unified Development Plan must describe and illustrate, in written and graphic format, and shall specify the intended locations
and types of proposed uses, the layout of proposed vehicle and pedestrian access and circulation systems, provision of transit facilities and water and sewer facilities, and areas designated to meet requirements for open space, parking, on site amenities, utilities and landscaping. It shall include statements or conceptual plans describing how signage and lighting will be designed in a unified and integrated manner within the district. In addition, the Unified Development Plan shall indicate how the proposed uses will relate to the surrounding properties both within and outside of the district.
5.3.2.2. The submittal of written concept statement(s) in lieu of a Unified Development Plan shall not be accepted. In determining whether to approve a Unified Development Plan, the Planning Board will consider the following criteria:
5.3.2.2.1. Compatibility of the plan with the goals and objectives set forth in the Town's Master Plan;
5.3.2.2.2. Compatibility of the plan with the permitted uses in the Sewer Overlay District.
5.3.2.2.3. Approval of the Unified Development Plan must occur prior to the consideration of individual site development plans for one or several contiguous lots within the SOD. All site development plans must be reviewed and approved in accordance with this Ordinance and the Planning Board's Site Plan, Subdivision and Earth Excavation Regulations prior to the issuance of any building permits within the district.
5.3.3. AMENDMENT TO UNIFIED DEVELOPMENT PLAN: Any Unified Development Plan may be changed or amended by an applicant and such changes may occur concurrently with, or prior to the submittal of individual site development plans. To the extent that the approved Unified Development Plan addresses lots within the SOD which are not owned by the applicant, then such approved plan shall be binding only on the applicant and the owners of such other lots may seek changes to the Unified Development Plan consistent with their own development project.
5.3.4. SPECIAL PROVISIONS: All new development, change of use, subdivision, site review or development requiring a building permit must be connected to both town water and town sewer services. Notwithstanding the above, application for new development may be made prior to the availability of town water and sewer, provided that the proposed use is permitted as a matter of right in the underlying districts or provided that relief is obtained from the Zoning Board of Adjustment, and provided that the applicant proposes development subject to a condition of approval that the property shall be connected to town water and sewer when it becomes available within
one hundred (100) feet of the property line.

\section*{RESPONSES}
5.3.2. UNIFIED DEVELOPMENT: All development within this SOD must take place in accordance with a Unified Development Plan approved by the Planning Board. For purposes of this Ordinance, a Unified Development Plan shall be defined as an overall plan that identifies in a conceptual nature how the lot or lots contained in the plan will be developed in a manner consistent with the intent of this Ordinance and how the plan will allow and encourage the development of other lots within the SOD zoning district, in a manner consistent with the intent of the Ordinance.

Per the 2020 Zoning Ordinance, the stated intent of the Sewer Overlay District (SOD) is to "encourage a mixture of land uses as part of a unified development that could not otherwise occur in the underlying zones," in order to "foster economic development of primarily commercial and industrial development while allowing a limited amount of multi-family residential". The proposed multi-family development is located in the industrial zone and is surrounded primarily by single-family and industrial uses, with downtown nearby. The addition of this multi-family development will foster economic growth within the Town of Raymond by bringing more people to the town center who will utilize local businesses within downtown Raymond and other parts of town. This is in line with the intent of the SOD because it will foster economic development in town.

With regards to allowing or encouraging the development of other lots within the SOD zoning district, we are subdividing the subject lot in a way that will potentially enable a future commercial, industrial, or residential development. Any future development on the subdivided parcel will meet the goals of the SOD zoning district because it will foster economic growth within the Town and mix uses between commercial, industrial, and residential. Although future development on the subdivided parcel will no longer be subject to the stipulations of the SOD zoning district, Lot 24 was part of the SOD zoning district and would in the future be developed in a way that meets the general intent of the SOD.
5.3.4.1. The Unified Development Plan must describe and illustrate, in written and graphic format, and shall specify the intended locations and types of proposed uses, the layout of proposed vehicle and pedestrian access and circulation systems, provision of transit facilities and water and sewer facilities, and areas designated to meet requirements for open space, parking, on site amenities, utilities and landscaping. It shall include statements or conceptual plans describing how signage and lighting will be designed in a unified and integrated manner within the district. In addition, the Unified Development Plan shall indicate how the proposed uses will relate to the surrounding properties both within and outside of the

\section*{district.}

Please refer to the plan set for the majority of this information in graphic format. The proposed use is multi-family residential and the 156 units in three buildings will take place on the north end of the subject parcel. Two points of egress are proposed, being the main access drive (White's Rock Lane) and an emergency access driveway. White's Rock Lane is designed primarily for vehicular traffic, but pedestrians may utilize the emergency access drive as a walking path to downtown when it is not being used by emergency vehicles. The emergency access drive is located within a convenient walking distance of downtown and this development will enable both vehicular and pedestrian use of downtown Raymond.

Originally, we were planning to service this development using Town water. However, Underwood Engineers' report says that Town water is not available in sufficient quantity. Therefore, we will need to draw water from an on-site well for drinking water and fire suppression. The well will be surrounded by an undeveloped \(200^{\prime}\) radius as required by the State. The Town of Raymond does not have a sanitary sewer system at this time, so we will need to use on-site septic systems for wastewater. These septic systems have been designed and are sized in accordance with Env-Wq 1000 rules as put forth by the State of New Hampshire. The locations and design of the well and septic system are shown on the plan set. See the utility plans and effluent disposal design plans for more information.

More than 23 acres of land are being put into open space with this development. We are balancing multi-family residential development that will promote economic growth within the Town of Raymond and conservation.

We are seeking a waiver from the parking requirements. With 156 units proposed, 468 parking spaces would be required based on the Town's requirement for 3 parking spaces per dwelling unit. This requirement is based on a larger number of bedrooms per unit than are being provided with this development. A large number of these units will be 1-bedroom and 3 parking spaces are excessive for a 1-bedroom apartment. Based on empirical observations we believe that 1.8 parking spaces per unit would be more appropriate for the given mixture of 1-bedroom and 2-bedroom apartments. Therefore, we are providing 281 parking spaces at this time. As shown on Sheet EX-1 of the plan set, the ability exists to install the full number of parking spaces required by the Site Plan Review Regulations should the need arise, but we do not believe that this will be necessary.

Landscaping is provided as shown on Sheet L1-L2 in order to enhance the aesthetics of the development and provide screening to abutters. The majority of screening will take place in the form of natural wooded buffers, but failing this, landscaping is provided in areas where there is proposed development that is close to a property that is not part of the application.

Lighting is designed so that the parking lot and entrance to the apartment complex can be well-lit for safety, without lighting trespass into the proposed buildings or on to adjacent properties. See sheets L3-L4. Signage is proposed as necessary as shown on the site plans for safe passage of traffic.

The proposed development will be shielded from adjacent single-family uses through the use of landscaping and naturally existing wooded buffers. We are proposing a subdivision of the subject parcel and the parcel created to the south can be used in the future for a commercial, industrial, or residential development. Any future development of the created parcel will require Planning Board review and will not be subject to the stipulations of the Sewer Overlay District based on the current (2023) zoning ordinance.

\subsection*{5.3.4.1.1. Compatibility of the plan with the goals and objectives set forth in the Town's Master Plan;}

The Economic Development section of the 2009 Master Plan states that the majority ( \(57 \%\) ) of residents of Raymond who were surveyed by the University of New Hampshire would like to see the population of Raymond grow.

Economic Development Related Ouestions
Question 2: In the next five years, would you like to see the population of Raymond ... 1 . Decrease, 2. Stay the same, 3. Grow Slighty, or 4. Grow faster?


Bringing more housing to the Town of Raymond is in line with the intent of the Town's master plan. Doing so will support local businesses and promote economic development within the Town. Additionally, we are putting more than 23 acres of land into open space, which is another issue of focus within the 2009 Master Plan. This development balances the needs of economic development and conservation by bringing more residents to the Town of Raymond while also placing permanent restrictions on the parts of the subject parcel that do not need to be developed in order to facilitate the construction of 156 apartments.

\subsection*{5.3.2.1.1. Compatibility of the plan with the permitted uses in the Sewer Overlay District.}

Multi-family residential is an allowed use within the Sewer Overlay District. Per Note \#4 on Sheet C14 of the project plan set, the proposed number of units is allowed by the Town's density regulations. 16 units per acre are allowed based on \(25 \%\) of non-Zone G land. 5.1
units per acre are provided, but the lot had to be made larger than what is required by density requirements due to the State's lot loading rules for sewage flow.
5.3.2.1.1. Approval of the Unified Development Plan must occur prior to
the consideration of individual site development plans for one
or several contiguous lots within the SOD. All site development
plans must be reviewed and approved in accordance with this
Ordinance and the Planning Board's Site Plan, Subdivision
and Earth Excavation Regulations prior to the issuance of any
building permits within the district.

Redundantly, this Unified Development Plan is being submitted for review and approval at this time prior to conditional approval by the Town of Raymond Planning Board.

> 5.3.2. AMENDMENT TO UNIFIED DEVELOPMENT PLAN: Any Unified Development Plan may be changed or amended by an applicant and such changes may occur concurrently with, or prior to the submittal of individual site development plans. To the extent that the approved Unified Development Plan addresses lots within the SOD which are not owned by the applicant, then such approved plan shall be binding only on the applicant and the owners of such other lots may seek changes to the Unified Development Plan consistent with their own development project.

The SOD has been repealed and this Unified Development Plan is only necessary because the subject parcel is vested into the SOD per the \(\mathbf{2 0 2 0}\) zoning ordinance. Regardless, if the SOD is reinstated in the future and an amendment to the site plan is proposed, we understand that the Unified Development Plan will need to be updated at such time.
> 5.3.2. SPECIAL PROVISIONS: All new development, change of use, subdivision, site review or development requiring a building permit must be connected to both town water and town sewer services. Notwithstanding the above, application for new development may be made prior to the availability of town water and sewer, provided that the proposed use is permitted as a matter of right in the underlying districts or provided that relief is obtained from the Zoning Board of Adjustment, and provided that the applicant proposes development subject to a condition of approval that the property shall be connected to town water and sewer when it becomes available within one hundred (100) feet of the property line.

The proposed use is allowed without the necessity for Zoning relief. Town sewer does not exist for this development, and Underwood Engineers that Town water is not available to support this development. Therefore, we are proposing to install a well for drinking water
and fire suppression and to construct septic systems for wastewater disposal as designed in accordance with the Env-Wq 1000 regulations. We understand that based on the wording of this requirement that if Town sewer or water becomes available in sufficient quantity in the future, this development will be required to tie in. We are comfortable with this as a condition of approval.

If you have any questions or need any additional information, please feel free to contact our office. Thank you very much for your time.

Very truly yours,
JONES \& BEACH ENGINEERS, INC.


Daniel Meditz, EIT
Project Engineer
cc: Michael Garrepy, Tuck Realty Corp. (via email)
Madeleine Dilonno, Rockingham Planning Commission (via email) Jeff Adler, Dubois and King (via email)

\title{
JONES\&BEACH \\ 85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885 \\ 603.772.4746 - JonesandBeach.com
}

May 5, 2023
Raymond Planning Board
Attn. Diana Luszcz, Chair
4 Epping Street
Raymond, NH 03077

\section*{Re: Response Letter 3 \\ White Rock Place \\ 109A, B, C, \& D Main Street, Raymond, NH \\ Tax Map 23, Lots 24, 25, 28 \& 29 \\ JBE Project No. 20564}

Dear Ms. Luszcz,
We received comments from Jeffery Adler of Dubois \& King, Inc. dated April 3, 2023. Original review comments are italicized, and we offer the following responses below in bold.

\section*{DuBois \& King Comments:}

Existing Conditions Plans:
1. On sheet C-1, it appears that Lot 24 is labeled as Lot 28 . We recommend that the Applicant make the appropriate changes.
RESPONSE: We have corrected this typo on Sheet C1.
Grading and Drainage Plans. (Sheets C16, C17 \& C18):
2. Repeat Comment. It appears that there are multiple labeling conflicts regarding the proposed contours (i.e contours 248 and 250 southwest of White Rock Drive, contours 230 and 240 on the east side of White Rock Drive). We recommend that the Applicant will check and revise all proposed contours labels and proposed contours closing with existing contours on both sides of White Rock Road. RESPONSE: All proposed contours have been checked and revised if necessary.
3. Repeat Comment. The north side of the proposed White Rock Drive (Sta 6+00 to Sta \(8+50\) ) has proposed grades that are \(2 H: 1 \mathrm{~V}\) adjacent to the road. The Applicant is proposing a guardrail from approximate Sta \(9+40\) to Sta \(8+40\). We recommend that the Applicant revise the plan and extend the proposed guardrail to Sta \(6+00\) to protect motorists from the steep embankment.
RESPONSE: The proposed guardrail on the north side has been extended to Sta. 6+00.

\section*{Detail Plans. (Sheets D1 to D7):}
4. On sheet D-2, in the wet pond detail, it appears that the label for pond berm elevation references the wrong elevation (elevation D instead of elevation \(E\) ). We recommend reviewing and revising the detail.
RESPONSE: The wet pond detail on Sheet D2 has been revised so that the pond berm references elevation \(E\) instead of elevation \(D\).

The following items are provided in support of this Letter:
1. Six (6) Full Size Plan Sets.
2. Ten (10) Half Size Plan Sets.
3. Fiscal Impact Analysis.
4. Traffic Report.

If you have any questions or need any additional information, please feel free to contact our office. Thank you very much for your time.


Jeffery Adler, DuBois \& King (via email \& U.S. Mail)

Please mail the completed form and required material to:
New Hampshire Division of Historical Resources
State Historic Preservation Office
DEC 272022
Attention: Review \& Compliance
19 Pillsbury Street, Concord, NH 03301-3570
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{DHR Use Only} \\
\hline R\&C \# & 1449 \\
\hline Log In Date & 12.13 \\
\hline Response Date & - \(\quad 1\) \\
\hline Sent Date & 1 \\
\hline
\end{tabular}

\title{
Request for Project Review by the RECEIVED DEC 132022 New Hampshire Division of Historical Resources
}

This is a new submittal
\(\square\) This is additional information relating to DHR Review \& Compliance (R\&C) \#:
\begin{tabular}{|l}
\hline GENERAL PROJECT INFORMATION \\
\hline Project Title White Rock Place \\
Project Location 109A, B \& C Main Street \\
City/Town Raymond \\
\hline
\end{tabular}
\begin{tabular}{l} 
NH State Plane - Feet Geographic Coordinates: Easting 1114074 \\
(See RPR Instructions and R\&C FAQs for guidance.)
\end{tabular}
\begin{tabular}{l} 
Lead Federal Agency and Contact (if applicable) EPA \\
(Agency providing funds, licenses, or permits) \\
\(\quad\) Permit Type and Permit or Job Reference \# pending
\end{tabular}
State Agency and Contact (if applicable) N/A
\(\quad\) Permit Type and Permit or Job Reference \#

\section*{APPLICANT INFORMATION}

Applicant Name Tuck Realty Corporation
Mailing Address 149 Epping Road Phone Number 6037786894
City Exeter State NH Zip 03833 Email turnerporterjr@gmail.com

\section*{CONTACT PERSON TO RECEIVE RESPONSE}

Name/Company Daniel Meditz
Mailing Address PO Box 219
Phone Number 6037724746
City Stratham State NH Zip 03885 Email dmeditz@jonesandbeach.com
This form is updated periodically. Please download the current form at www.nh.gov/nhdhr/review. Please refer to the Request for Project Review Instructions for direction on completing this form. Submit one copy of this project review form for each project for which review is requested. Please include a self-addressed stamped envelope. Project submissions will not be accepted via facsimile or e-mail. This form is required. Review request form must be complete for review to begin. Incomplete forms will be sent back to the applicant without comment. Please be aware that this form may only initiate consultation. For some projects, additional information will be needed to complete the Section 106 review. All items and supporting documentation submitted with a review request, including photographs and publications, will be retained by the DHR as part of its review records. Items to be kept confidential should be clearly identified. For questions regarding the DHR review process and the DHR's role in it, please visit our website at: www.nh.gov/nhdhr/review or contact the R\&C Specialist at marika.s.labash@dncr.nh.gov or 603.271.3558.

\section*{PROJECTS CANNOT BE PROCESSED WITHOUT THIS INFORMATION}

\section*{Project Boundaries and Description}
- Attach the Project Mapping using EMMIT or relevant portion of a 7.5' USGS Map. (See RPR Instructions and R\&C FAQs for guidance.)
A Attach a detailed narrative description of the proposed project.
Attach a site plan. The site plan should include the project boundaries and areas of proposed excavation. Attach photos of the project area (overview of project location and area adjacent to project location, and specific areas of proposed impacts and disturbances.) (Informative photo captions are requested.)
\(\boxtimes\) A DHR records search must be conducted to identify properties within or adjacent to the project area. Provide records search results via EMMIT or in Table 1. (Blank table forms are available on the DHR website.) Please note, using EMMIT Guest View for an RPR records search does not provide the necessary information needed for DHR review.
EMMIT or in-house records search conducted on 12/09/2022.

\section*{Architecture}

Are there any buildings, structures (bridges, walls, culverts, etc.) objects, districts or landscapes within the project area? \(\boxtimes\) Yes \(\square\) No
If no, skip to Archaeology section. If yes, submit all of the following information:
Approximate age(s): 15-162
- Photographs of each resource or streetscape located within the project area, with captions, along with a mapped photo key. (Digital photographs are accepted. All photographs must be clear, crisp and focused.)
\(\square\) If the project involves rehabilitation, demolition, additions, or alterations to existing buildings or structures, provide additional photographs showing detailed project work locations. (i.e. Detail photo of windows if window replacement is proposed.)

\section*{Archaeology}

Does the proposed undertaking involve ground-disturbing activity? \(\triangle\) Yes \(\square\) No If yes, submit all of the following information:

Description of current and previous land use and disturbances.
Available information concerning known or suspected archaeological resources within the project area (such as cellar holes, wells, foundations, dams, etc.)

Please note that for many projects an architectural and/or archaeological survey or other additional information may be needed to complete the Section 106 process.

DHR Comment/Finding Recommendation This Space for Division of Historical Resources Use Only
\(\square\) Insufficient information to initiate review. \(\square\) Additional information is needed in order to complete review.


If plans change or resources are discovered in the course of this project, you must contact the Division of Historical Resources as required by federal law and regulation.


Date: \(12 \cdot 20 \cdot 22\)

\section*{Memo}

NH Natural Heritage Bureau
NHB DataCheck Results Letter
Please note: portions of this document are confidential.
Maps and NHB record pages are confidential and should be redacted from public documents.

To: Brenden Walden, Gove Environmental Services, Inc.
8 Continental Drive Bldg 2 Unit H
Exeter, NH 03833

From: NHB Review, NH Natural Heritage Bureau
Date: \(1 / 10 / 2023\) (valid until 01/10/2024)
Re: Review by NH Natural Heritage Bureau
Permits: NHDES - Alteration of Terrain Permit, NHDES - Wetland Standard Dredge \& Fill - Minor, USACE - General Permit
NHB ID: NHB23-0047
Town: Raymond
Location: 109A Main S

Description: This is a renewal to NHB21-1931. The applicant is proposing a residential development on the subject property.
cc: NHFG Review

As requested, I have searched our database for records of rare species and exemplary natural communities, with the following results.

\section*{Comments NHB: No comments at this time. \\ F\&G: Please refer to NHFG consultation requirements below. Please also include a clear aerial showing property bounds and limits of disturbance and submit a vernal pool survey conducted during April-May and describe all wetland impacts.}
\begin{tabular}{lccl} 
Vertebrate species & State \(^{1}\) & Federal & Notes \\
Blanding's Turtle (Emydoidea blandingii) & E & -- & Contact the NH Fish \& Game Dept (see below). \\
\begin{tabular}{l} 
Northern Black Racer (Coluber constrictor \\
constrictor)
\end{tabular} & T & -- & Contact the NH Fish \& Game Dept (see below). \\
\begin{tabular}{l} 
Spotted Turtle (Clemmys guttata)
\end{tabular} & & & \\
Wood Turtle (Glyptemys insculpta) & T & -- & Contact the NH Fish \& Game Dept (see below).
\end{tabular}
\({ }^{1}\) Codes: "E" = Endangered, "T" = Threatened, "SC" = Special Concern, "--" = an exemplary natural community, or a rare species tracked by NH Natural Heritage that has not yet been added to the official state list. An asterisk \(\left(^{*}\right)\) indicates that the most recent report for that occurrence was more than 20 years ago.

For all animal reviews, refer to 'IMPORTANT: NHFG Consultation' section below.

\section*{Memo}

NH Natural Heritage Bureau NHB DataCheck Results Letter
Please note: portions of this document are confidential.
Maps and NHB record pages are confidential and should be redacted from public documents.

Disclaimer: A negative result (no record in our database) does not mean that a sensitive species is not present. Our data can only tell you of known occurrences, based on information gathered by qualified biologists and reported to our office. However, many areas have never been surveyed, or have only been surveyed for certain species. An on-site survey would provide better information on what species and communities are indeed present.

\section*{IMPORTANT: NHFG Consultation}

If this NHB Datacheck letter DOES NOT include ANY wildlife species records, then, based on the information submitted, no further consultation with the NH Fish and Game Department pursuant to Fis 1004 is required.

If this NHB Datacheck letter includes a record for a threatened (T) or endangered (E) wildlife species, consultation with the New Hampshire Fish and Game Department under Fis 1004 may be required. To review the Fis 1000 rules (effective February 3, 2022), please go to https://wildlife.state.nh.us/wildlife/environmental-review.html. All requests for consultation and submittals should be sent via email to
NHFGreview@wildlife.nh.gov or can be sent by mail, and must include the NHB Datacheck results letter number and "Fis 1004 consultation request" in the subject line.

If the NHB DataCheck response letter does not include a threatened or endangered wildlife species but includes other wildlife species (e.g., Species of Special Concern), consultation under Fis 1004 is not required; however, some species are protected under other state laws or rules, so coordination with NH Fish \& Game is highly recommended or may be required for certain permits. While some permitting processes are exempt from required consultation under Fis 1004 (e.g., statutory permit by notification, permit by rule, permit by notification, routine roadway registration, docking structure registration, or conditional authorization by rule), coordination with NH Fish \& Game may still be required under the rules governing those specific permitting processes, and it is recommended you contact the applicable permitting agency. For projects not requiring consultation under Fis 1004, but where additional coordination with NH Fish and Game is requested, please email: Kim Tuttle kim.tuttle@wildlife.nh.gov with a copy to NHFGreview@wildlife.nh.gov, and include the NHB Datacheck results letter number and "review request" in the email subject line.

Contact NH Fish \& Game at (603) 271-0467 with questions.

\section*{CONFIDENTIAL - NH Dept. of Environmental Services review}

\section*{NHB23-0047}


\title{
New Hampshire Natural Heritage Bureau - Animal Record
}

\section*{Blanding's Turtle (Emydoidea blandingii)}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently secure but \\
State: Listed Endangered & State: Critically imperiled \\
& \\
Description at this Location & \\
\hline Conservation Rank: & \\
Comments on Rank: & - \\
& \\
Detailed Description: & 2017: Area 14399: 1 adult observed, sex unknown. \\
General Area: & 2017: Area 14399: Roadside. Forest on either side of road. \\
General Comments: & - \\
Management & -- \\
Comments: &
\end{tabular}

\section*{Location}

Survey Site Name: Rattlesnake Hill, east of
Managed By:
County: Rockingham
Town(s): Raymond
Size: 1.9 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2017: Area 14399: Old Manchester Road, Raymond, between the Safety Complex and the Exit 4 ramp. Right by the Route 101 sign.

\section*{Dates documented}

First reported: 2017-05-31 Last reported: 2017-05-31

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently secure but with cause for concern \\
State: & Listed Endangered
\end{tabular} State: Critically imperiled due to rarity or vulnerability

\section*{Description at this Location}

Conservation Rank: Not ranked
Comments on Rank: --
Detailed Description: 2009: Area 12321: 1 female observed.
General Area: 2009: Area 12321: Roadside.
General Comments: --
Management --
Comments:

\section*{Location}

Survey Site Name: Bunker Pond
Managed By:
County: Rockingham
Town(s): Raymond
Size: 7.7 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2009: Area 12321: Crossing Route 27 east of Hannaford in Raymond.

\section*{Dates documented}

First reported: 2009-08-04 Last reported: 2009-08-04

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conserv \\
\hline Federal: Not listed & Global: \\
State: \(\quad\) Listed Endangered & State: \\
Description at this Location & \\
\hline Conservation Rank: & Not ranked \\
Comments on Rank: & - \\
& \\
Detailed Description: & 2008: Area 11564: 1 adult male seen. \\
General Area: & - \\
General Comments: & - \\
Management & -- \\
Comments: &
\end{tabular}

\section*{Location}

Survey Site Name: Rattlesnake Hill, east of
Managed By:
County: Rockingham
Town(s): Raymond
Size: 7.7 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2008: Area 11564: Exit 4 off Route 101. Approx \(1 / 4\) mile down Scribner Road, where Lamprey comes close to road.

\section*{Dates documented}

First reported: 2008-05-20 Last reported: 2008-05-20

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.


The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ Spotted Turtle (Clemmys guttata)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: & Not listed \\
State: & Listed Threatened
\end{tabular} Global: Demonstrably widespread, abundant, and secure 1 State: Imperiled due to rarity or vulnerability

\section*{Description at this Location}

Conservation Rank: Fair quality, condition and/or landscape context ('C' on a scale of A-D).
Comments on Rank: --

Detailed Description: 2007: Area 11749: 1 adult female seen, about 5".
General Area:
--
General Comments: --
Management --
Comments:

\section*{Location}

Survey Site Name: Batchelder Road, Raymond
Managed By:
County: Rockingham
Town(s): Raymond
Size: 11.4 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2007: Area 11749: Batchelder Road, unknown exact location.

\section*{Dates documented}

First reported: 2007-07-22 Last reported: 2007-07-22

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record
}

\section*{Wood Turtle (Glyptemys insculpta)}

Legal Status
Conservation Status
\begin{tabular}{lll}
\hline Federal: Not listed & Global: Rare or uncommon \\
State: & Special Concern & State: Rare or uncommon
\end{tabular}
State: Special Concern
State: Rare or uncommon

\section*{Description at this Location}

Conservation Rank: Not ranked
Comments on Rank: --

Detailed Description: 2021: Area 14704: 1 adult observed, sex unknown.
General Area: 2021: Area 14704: Sports field complex surrounded by forest and wetlands.
General Comments: --
Management --
Comments:

\section*{Location}

Survey Site Name: Lamprey River, Raymond
Managed By:
County: Rockingham
Town(s): Raymond
Size: 1.9 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2021: Area 14704: Riverside Park, Raymond.

\section*{Dates documented}

First reported: 2021-05-23 Last reported: 2021-05-23

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\author{
Robert R. Scott, Commissioner
}

August 2, 2023

\author{
Mr. Michael Garrepy
}

Tuck Realty Corporation
P.O. Box 190

Exeter, NH 03833
(sent via email to: mgarrepy@gmail.com)

Re: White Rock Place
Permit: AoT-2436
109A, B \& C Main Street - Raymond
Tax Map 23 Lot 24, 25, 28 \& 29
Dear Applicant:
Based upon the plans and application, approved on August 2, 2023, we are hereby issuing RSA 485A:17 Alteration of Terrain Permit AoT-2436. The permit is subject to the following conditions:

\section*{PROJECT SPECIFIC CONDITIONS:}
1. The plans titled White Rock Place, by Jones \& Beach Engineers, Inc., last revision date August 2, 2023, are a part of this approval. The project must be constructed as shown on the approved plans.
2. This permit expires on August 2, 2028. No earth moving activities shall occur on the project after this expiration date unless the permit has been extended by the Department. If requesting an extension, the request must be received by the department before the permit expires. The Amendment Request form is available at: https://www.des.nh.gov/land/land-development.
3. In accordance with Env-Wq 1503.21 (c)(1), a written notice signed by the permit holder and a qualified engineer shall be submitted to DES stating that the project was completed in accordance with the approved plans and specifications. If deviations were made, the permit holder shall review the requirements in Env-Wq 1503.21(c)(2).
4. Pursuant to Env-Wq 1504.18, the Permittee shall comply with wildlife protection notes that are incorporated into the project plans, and, if applicable, all recommendations by the New Hampshire Fish and Game Department related to state or federally listed threatened or endangered species that are incorporated into the project plans.
5. Groundwater Monitoring of private wells must be performed prior to, throughout the duration of, and following completion of blasting pursuant to the Groundwater Monitoring Plan prepared by Jones \& Beach Engineers, Inc., dated May 2, 2023, latest revision dated June 9, 2023.
6. This project includes underground detention, and infiltration and filtering systems. A letter signed by a qualified engineer must be provided to DES stating that the individual observed any underground detention, infiltration, or filtering systems prior to backfilling, and whether, in his or her professional opinion, the system(s) conform to the approved plans and specifications.

Representative photographs of the system prior to being backfilled must be submitted with the letter.
7. The project is to be phased as shown on the plans. Each phase shall be stabilized pursuant to EnvWq 1505.04 before disturbance of subsequent phases.
8. The permittee shall employ the services of an Environmental Monitor (EM) for the purposes of providing independent professional environmental inspections of the project. The permittee shall receive prior approval of the EM by the Department. The EM shall inspect the project at a minimum frequency of once per week and following rainfall events of 0.5 -inch or greater in a 24 -hour period. The inspections shall be for the purposes of determining compliance with the permit. The Monitor shall submit a written report, stamped by a qualified engineer or a Certified Professional in Erosion and Sediment Control to the Department within 24 hours of the inspections. The reports shall describe, at a minimum, whether the project is being constructed in accordance with the approved sequence, shall identify any deviation from the conditions of this permit and the approved plans, and identify any other noted deficiencies. Reports shall be submitted to michael.j.schlosser@des.nh.gov.

\section*{GENERAL CONDITIONS:}
1. Activities shall not cause or contribute to any violations of the surface water quality standards established in Administrative Rule Env-Wq 1700.
2. You must submit revised plans for permit amendment prior to any changes in construction details or sequences. You must notify the Department in writing within ten days of a change in ownership.
3. You must notify the Department in writing prior to the start of construction and upon completion of construction. Forms can be submitted electronically at: https://www.des.nh.gov/land/landdevelopment. Paper forms are available at that same web page.
4. All stormwater practices shall be inspected and maintained in accordance with Env-Wq 1507.07 and the project Inspection and Maintenance (I\&M) Manual. All record keeping required by the I\&M Manual shall be maintained by the identified responsible party and be made available to the department upon request. Photographs of the site and BMPs must accompany the I\&M submittals.
5. This permit does not relieve the applicant from the obligation to obtain other local, state or federal permits that may be required (e.g., from US EPA, US Army Corps of Engineers, etc.). Projects disturbing over 1 acre may require a federal stormwater permit from EPA. Information regarding this permitting process can be obtained at: https://www.epa.gov/npdes/2022-construction-general-permit-cgp.
6. If applicable, no activity shall occur in wetland areas until a Wetlands Permit is obtained from the Department. Issuance of this permit does not obligate the Department to approve a Wetlands Permit for this project.
7. This project has been screened for potential impact to known occurrences of protected species and exemplary natural communities in the immediate area. Since many areas have never been
surveyed, or have not been surveyed in detail, unidentified sensitive species or communities may be present. This permit does not absolve the permittee from due diligence in regard to state, local or federal laws regarding such communities or species. This permit does not authorize in any way the take of threatened or endangered species, as defined by RSA 212-A:2, or of any protected species or exemplary natural communities, as defined in RSA 217-A:3.

Sincerely,


Michael Schlosser, PE
Alteration of Terrain Bureau
ec: Raymond Planning Board (cmccarthy@raymondnh.gov)
Joe Coronati, Jones \& Beach Engineers, Inc.
Kevin Newton, NHFG

\section*{CONSERVATION EASEMENT DEED}

TUCK REALTY CORP., a New Hampshire corporation having a mailing address of PO Box 190, Town of Exeter, County of Rockingham, State of New Hampshire 03833, (hereinafter referred to as the "Grantor," which word where the context requires includes the plural and shall, unless the context clearly indicates otherwise, include the Grantor's executors, administrators, legal representatives, devisees, heirs, successors and assigns), for consideration paid, with WARRANTY covenants, grants in perpetuity to the TOWN OF RAYMOND, New Hampshire, a municipal corporation, situated in the County of Rockingham, State of New Hampshire, acting through its Conservation Commission, with a mailing address of 4 Epping Street, Raymond, New Hampshire 03077 (hereinafter referred to as the "Grantee" which shall, unless the context clearly indicates otherwise, include the Grantee's successors and assigns), a conservation easement for the purposes set forth herein (the "Easement") within that portion of the property of Grantor located at 109A, B \& C Main Street, Raymond, New Hampshire, further identified as Town of Raymond Tax Map 23, Lots 24, 25, 28 and 29 (the "Property") set forth below:

That certain area identified as "Open Space on Tax Map 23, Lot 25, 1,031387 S.F., 23.7 Acres" (herein referred to as the "Easement Area") on a plan entitled "[Easement Plan/Overview Site Plan], White Rock Place, 109A, B, C Main Street, Raymond, NH 03077" dated [t/b/d] prepared by Jones \& Beach Engineers, Inc. and recorded in the Rockingham County Registry of Deeds as Plan \# [t/b/d] (the "Plan").

\section*{1. PURPOSES}

The Easement hereby granted is pursuant to NH RSA 477:45-47, exclusively for the following conservation purposes:
A. The protection of rare and endangered species of wildlife and their associated habitat established for conservation purposes, with the intent to maintain, in perpetuity, natural vegetation, soils, hydrology and habitat for New Hampshire threatened, endangered and wildlife species of special concern.
B. The protection of the natural habitat generally with a focus on wildlife habitat management. For the purposes of this Easement, "wildlife habitat management" shall include, but not be limited to, alteration of vegetation and soil and the placement of structures to provide habitat for a wide range of wildlife species with focus and priority for the habitat needs and benefit to State listed wildlife species.
C. The protection and conservation of open spaces, particularly the conservation of the productive forest land of which the Easement Area consists and of the wildlife habitat thereon.
D. The scenic enjoyment of the general public viewing the Easement Area and its undeveloped road frontage.
E. The preservation of the quality of ground water and surface water resources on and under the Easement Area, particularly the wetlands located therein.

All of these purposes are consistent and in accordance with the U.S. Internal Revenue Code, Section 170(h).

Easement hereby granted with respect to the Easement Area is as follows:
2. USE LIMITATIONS (Subject to the reserved rights specified in Section 3 below)
A. The Easement Area shall be maintained in perpetuity as open space in its natural state without there being conducted thereon any residential, industrial or commercial activities, except for wildlife habitat management. More specifically, this open space is intended for the sole use and enjoyment of the Members of the White Rock Place Homeowners Association ("Association Members").
B. The Easement Area shall not be subdivided.
C. No structure or improvement, including, but not limited to, a dwelling, any portion of a septic system, tennis court, swimming pool, dock, aircraft landing strip, tower or mobile home, shall be constructed, placed, or introduced onto the Property. However, ancillary structures and improvements including, but not limited to, a road, dam, fence, bridge or culvert may be constructed, placed, or introduced onto the Easement Area only as necessary in the accomplishment of the conservation, habitat management, or noncommercial outdoor recreational uses of the Easement Area and provided that they are not detrimental to the purposes of this Easement.
D. Existing trails can be maintained in their natural states (not expanded upon or improved) within the Easement Area and must be and remain as depicted on site plan sheets, with the exception of modifications or closures as recommended by NHFG Nongame program. These trails shall be for passive recreation only for Association Members (i.e., no ATV or snowmobile activity).
E. No outdoor advertising structures such as signs and billboards shall be displayed on the Easement Area except as desirable or necessary in the accomplishment of the agricultural, forestry, conservation, or noncommercial outdoor recreational uses of the Easement Area, and provided such signs are not detrimental to the purposes of this Easement. No sign shall exceed in size that which is permitted by the zoning ordinance and no sign shall be artificially illuminated.
F. There shall be no mining, quarrying, excavation, or removal of rocks, minerals, gravel, sand, topsoil, or other similar materials on the Easement Area. No rocks, minerals, gravel, sand, topsoil, or other similar materials shall be removed from the Easement Area.
G. There shall be no dumping, injection, burning, or burial of man-made materials or materials then known to be environmentally hazardous.
H. The Easement Area shall in no way be used to satisfy density or other requirements of any applicable zoning ordinance or land use regulation with respect to the development of other property.
I. The Easement Area boundaries shall be marked with placards at no less than 75' apart (adjust if needed based on site conditions). Placards should serve as a reminder of protected area(s) with restrictions.
J. No rights-of-way or easements of ingress or egress of a third party shall be created or developed into, on, over, or across the Easement Area, except those of record as of the execution date of this Easement.
K. The Easement Area shall not be posted against and Grantor shall keep access to and use of existing paths on the Easement Area available for the use of Association Members; provided that the Easement Area may be posted against use by non- Association Members.
L. The Easement Area shall not be posted against, and the Grantor shall keep access to and use of the Easement Area open to Association Members for non-motorized, noncommercial, outdoor recreational and outdoor educational purposes, such as, but not limited to hiking, wildlife observation, and cross-country skiing, but not for camping, subject to Grantor's reserved rights.
M. During the development of the anticipated subdivision on and around the Easement Area and upon its completion and into perpetuity, neither the Grantor nor the Grantee, shall cut nor remove timber from the Easement Area, except in accordance with good forestry practices limited to removal of dead trees to address safety concerns or diseased trees under the advisement of a professional forester or for habitat management for rare wildlife species. Timber harvest for habitat management shall be coordinated with the New Hampshire Fish and Game Nongame and Endangered Wildlife Program or the agency than recognized by the State of New Hampshire as having responsibility for identification and/or conservation of such species.
N. Wetland buffer setbacks shall be observed according to local buffer requirements and wildlife habitat management activities shall not occur within wetland buffer setbacks.
O. There shall be no use of chemical herbicides or pesticides, except for wildlife habitat management and then only in coordination with the New Hampshire Fish and Game Nongame and Endangered Wildlife Program or the agency than recognized by the State of New Hampshire as having responsibility for identification and/or conservation of such species. Herbicides or pesticides are absolutely prohibited within wetlands or wetland buffer setbacks.

\section*{3. RESERVED RIGHTS}
A. Grantor reserves the right to post portions of the Easement Area against access to forest land during timber harvesting operations or establishment of forest areas.
B. Grantor must notify Grantee in writing at least thirty (30) days before the exercise of any reserved right.

\section*{4. NOTIFICATION OF TRANSFER, TAXES, MAINTENANCE}
A. The Grantor agrees to notify the Grantee in writing at least 30 days before the transfer of title to the Easement Area.
B. The Grantee shall be under no obligation to maintain the Easement Area or pay any taxes or assessments thereon.

\section*{5. BENEFITS, BURDENS, AND ACCESS}
A. The burden of the Easement conveyed hereby shall run with the Property and shall be enforceable against all future owners and tenants in perpetuity; the benefits of this Easement shall not be appurtenant to any particular parcel of land but shall be in gross and assignable or transferable only to the State of New Hampshire, the U.S. Government, or any subdivision of either of them, consistent with Section 170(c)(1) of the U.S. Internal Revenue Code of 1986, as amended, or to any qualified organization within the meaning of Section \(170(\mathrm{~h})(3)\) of said Code, which organization has among its purposes the conservation and preservation of land and water areas and agrees to and is capable of monitoring and enforcing the conservation purposes of this Easement. Any such assignee or transferee shall have like power of assignment or transfer.
B. Upon reasonable notice to the Grantor, the Grantee shall have reasonable access to the Easement Area and all of its parts for such inspection as is necessary to determine compliance with and to enforce this Easement and exercise the rights conveyed hereby and fulfill the responsibilities and carry out the duties assumed by the acceptance of this Easement.
C. The State of New Hampshire Fish and Game Department Nongame and Endangered Wildlife Program and its agents shall have access to property and the right of enforcement against violations of the conditions set forth within this Easement consistent with the provisions of Section Six of this Easement and the rights of the Grantee pursuant to Section Six.
D. This Easement shall in no way be interpreted to permit physical access by the public to or across the Easement Area or the Property for any purpose.

\section*{6. BREACH OF EASEMENT}
A. When a breach of this Easement, or conduct by anyone inconsistent with this Easement, comes to the attention of the Grantee, it shall notify the Grantor in writing of such breach or conduct, delivered in hand or by certified mail, return receipt requested.
B. The Grantee shall, within thirty (30) days after receipt of such notice or after otherwise learning of such breach or conduct, undertake those actions, including restoration, which are reasonably calculated to cure swiftly said breach, or to terminate said conduct, and to repair any damage. The Grantee shall promptly notify the Grantor of its actions taken under this section.
C. If the Grantee fails to take such proper action under the preceding section, the Grantor shall, as appropriate to the purposes of this deed, undertake any actions that are reasonably necessary to cure such breach or to repair any damage in the Grantee's name or to terminate such conduct. The cost thereof, including the Grantor's expenses, court costs, and legal fees, shall be paid by the Grantee, provided that the Grantee is directly or primarily responsible for the breach.
D. Nothing contained in this Easement shall be construed to entitle the Grantor to bring any action against the Grantee for any injury to or change in the Property resulting from causes beyond the Grantee's control, including, but not limited to, unauthorized actions by third parties, natural disasters such as fire, flood, storm, disease, infestation and earth movement, or from any prudent action taken by the Grantee under emergency conditions to prevent, abate, or mitigate significant injury to the Easement Area resulting from such causes.
E. The Grantee and the Grantor reserve the right, separately or collectively, to pursue all legal remedies against any third party responsible for any actions detrimental to the conservation purposes of this Easement.

\section*{7. NOTICES}

All notices, requests and other communications, required to be given under this Easement shall be in writing, except as otherwise provided herein, and shall be delivered in hand or sent by certified mail, postage prepaid, return receipt requested to the appropriate address set forth above or at such other address as the Grantor or the Grantee may hereafter designate by notice given in accordance herewith. Notice shall be deemed to have been given when so delivered or so mailed.

\section*{8. SEVERABILITY}

If any provision of this Easement, or the application thereof to any person or circumstance, is found to be invalid by a court of competent jurisdiction, by confirmation of an arbitration award or otherwise, the remainder of the provisions of this Easement or the application of such provision to persons or circumstances other than those to which it is found to be invalid, as the case may be, shall not be affected thereby.

\section*{9. CONDEMNATION/EXTINGUISHMENT}
A. Whenever all or part of the Easement Area is taken in exercise of eminent domain by public, corporate, or other authority so as to abrogate in whole or in part the Easement conveyed hereby, the Grantor and the Grantee shall thereupon act jointly to recover the full damages resulting from such taking with all incidental or direct damages and expenses incurred by them thereby to be paid out of the damages recovered.
B. The balance of the land damages recovered (including, for purposes of this subsection, proceeds from any lawful sale of the Easement Area unencumbered by the restrictions hereunder in lieu of condemnation) shall be divided between the Grantor and the Grantee in proportion to the fair market value of their respective interests in the Easement Area on the date of execution of this Easement. For this purpose and that of any other judicial extinguishment of this Easement, in whole or in part, the Grantee's interest shall be the amount by which the fair market value of the Easement Area immediately prior to the execution of this Easement is reduced by the use limitations imposed hereby. The value of the Grantee's interest shall be determined by an appraisal prepared by a qualified appraiser within one year of the date of this Easement, and submitted to the Grantee.
C. The Grantee shall use its share of the proceeds in a manner consistent with and in furtherance of one or more of the conservation purposes set forth herein.

\section*{10. ADDITIONAL EASEMENT}

Should the Grantor determine that the expressed purposes of this Easement could better be effectuated by the conveyance of an additional easement, the Grantor may execute an additional instrument to that effect, provided that the conservation purposes of this Easement are not diminished thereby and that a public agency or qualified organization described in Section 5.A., above, accepts and records the additional easement.

\section*{11. ARBITRATION OF DISPUTES}
A. Any dispute arising under this Easement shall be submitted to arbitration in accordance with New Hampshire RSA 542.
B. The Grantor and the Grantee shall each choose an arbitrator within 30 days of written notice from either party. The arbitrators so chosen shall in turn choose a third arbitrator within 30 days of the selection of the second arbitrator.
C. The arbitrators so chosen shall forthwith set as early a hearing date as is practicable which they may postpone only for good cause shown.
D. A decision by two of the three arbitrators, made as soon as practicable after submission of the dispute, shall be binding upon the parties and shall be enforceable as part of this Easement.

\section*{12. SEPARATE PARCEL}
A. The Property shall in no way be used to satisfy the density, frontage, or setback requirements of any applicable zoning ordinance or subdivision regulation with respect to the development of any other property.
B. The Grantee, by accepting and recording this Easement, agrees to be bound by and to observe and enforce the provisions hereof and assumes the rights and responsibilities herein granted to and incumbent upon the Grantee, all in the furtherance of the conservation purposes for which this Easement is delivered.

IN WITNESS WHEREOF, I (We) have hereunto set my (our) hand(s) this \(\qquad\) day of
\(\qquad\) , 2023.

\section*{TUCK REALTY CORP.}

By: \(\qquad\)
\(\qquad\)
The State of New Hampshire
County of Rockingham
Personally

appeared
of Tuck Realty Corp., on behalf of said corporation and this ___ day of of

2023 and acknowledged the foregoing to be his/her/their voluntary act and deed.

Before me, \(\qquad\)
Justice of the Peace/Notary Public

My commission expires: \(\qquad\)

ACCEPTED: [t/b/d]

By:
Title: \(\qquad\)

Date: \(\qquad\)

The State of New Hampshire
County of \(\qquad\)

Personally appeared \(\qquad\)
Print Name \& Title
of the \([\mathrm{t} / \mathrm{b} / \mathrm{d}]\), this \(\qquad\) day of \(\qquad\) , 2022 and acknowledged the foregoing on behalf of the \([\mathrm{t} / \mathrm{b} / \mathrm{d}]\).

Before me, \(\qquad\)
Justice of the Peace/Notary Public

My commission expires: \(\qquad\)

THIS IS A NON-CONTRACTUAL CONVEYANCE PURSUANT TO NEW HAMPSHIRE RSA 78-B:2 AND IS EXEMPT FROM THE NEW HAMPSHIRE REAL ESTATE TRANSFER TAX.

































3.


























Da


22. Sisiocine ino


MAIN DRIVEWAY PLAN AND PROFILE STA. \(0+00-5+00\left(1^{\prime \prime}=40^{\prime} H^{\prime \prime} 1^{\prime \prime}=4^{\prime} \mathrm{V}\right)\)
 \(\qquad\)
\begin{tabular}{|c|c|}
\hline Plan Name: & PLAN AND PROFILE \\
\hline Project: & 109A MAIN STREET \& \& ROUTE 101, RAYMOND, NH 03077 \\
\hline Owner of Record: & JOSEPH, JOHN, ARDELL \& INEX WELCH 49 RAYMOND RD NOTTINGHAM, NH 03290 BK 1559 PG 263 \\
\hline
\end{tabular}

NOTES:





MAIN DRIVEWAY PLAN AND PROFILE STA. \(5+00-9+80.02\left(1^{\prime \prime}=40^{\prime} \mathrm{H} ; 1^{\prime \prime}=4^{\prime} \mathrm{V}\right)\)

\begin{tabular}{|c|c|c|c|}
\hline 18 & \(81 / 23\) & ADDED AOt PERMIT NuMBER & DJM \\
\hline & 812123 & REMOVED SUMPS FROM OUTLET STRUCTURES & DJM \\
\hline 16 & 7/2823 & ADDED NH FISH AND GAME CONDITIONS & DJM \\
\hline 15 & 710023 & ADDED PHASIIG PLAN & \\
\hline 14 & 611123 & REVISED PERTRC COMMEN & DJM \\
\hline Rev. & date & Revision & BY \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Plan Name: & PLAN AND PROFILE \\
\hline Project: & 109A MAIN STREET WHITE ROUCK PLACE 101, RAYMOND, NH 03077 \\
\hline Owner of Record: & JOSEPH, JOHN, ARDELL \& INEX WELCH 49 RAYMOND RD NOTTINGHAM, NH 03290 BK 1559 PG 263 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline  & \[
\begin{array}{|l}
\hline \text { Date: 07/06/20 } \\
\hline \text { Project No.: } 20564 \\
\hline
\end{array}
\] \\
\hline  ANY ALTERATIONS, AUTHORIZED OR OTH & GINEERS, INC. (JBE) HERWISE, SHALL BE \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 18 & 8/3/23 & Adode aot permit number & DJM \\
\hline 17 & 8/2/23 & REMOVED SUMPS FROM OUTLET STPUCTURES & DJM \\
\hline 16 & 712823 & ADDED NH FISH AND GAME CONOITIONS & DJM \\
\hline 15 & \(71 / 1023\) & ADDED PHASIING PLAN & DJM \\
\hline 14 & \(61 / 123\) & REVISED PER TRC CoMMENTS & DJM \\
\hline REV. & date & Revision & \({ }^{\text {Br }}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Plan Name: & PLAN AND PROFILE \\
\hline Project: & WHITE ROCK PLACE
109A MAIN STREET \& ROUTE 101, RAYMOND, NH 03077 \\
\hline Owne of Record: & JOSEPH, JOHN, ARDELL \& INEX WELCH 49 RAYMOND RD., NOTTINGHAM, NH 03290 BK 1559 PG 263 \\
\hline
\end{tabular}














\begin{tabular}{|c|}
\hline Design: JAC \({ }^{\text {Drata }}\) Drim \\
\hline  \\
\hline  \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & 18 & 81323 & ADDED AOT PEAMTT NUMB & DJM \\
\hline & 17 & 8/2/23 & REMOVED SUMPS FROM OUTLET STPUCTURES & \\
\hline & 16 & 7/28/23 & ADDED NH FISH AND GAME CONOTITIONS & DJM \\
\hline & 15 & \(71 / 1023\) & ADDED PHASING PLAN & DJM \\
\hline & 14 & \(61 / 123\) & REVISED PEA TRC COMMENTS & DJM \\
\hline & & DATE & Revision & BY \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Plan Name: & DETAIL SHEET \\
\hline Project: &  \\
\hline Owne of Record: & JOSEPH, JOHN, ARDELL \& INEX WELCH 49 RAYMOND RD., NOTTINGHAM, NH 03290 BK 1559 PG 263 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline Plan Name: & DETAIL SHEET \\
\hline Project: & \begin{tabular}{l}
WHITE ROCK PLACE \\
109A MAIN STREET \& ROUTE 101, RAYMOND, NH 03077
\end{tabular} \\
\hline Owner of fecord: & JOSEPH, JOHN, ARDELL \& INEX WELCH 49 RAYMOND RD., NOTTINGHAM, NH 03290 BK 1559 PG 263 \\
\hline
\end{tabular}


























BLASTING BEST MANAGEMENT PRACTICES
(ind


 Cols









Nol






 SEEDING GUIDE


















\section*{}











matralls.







23. Clean sie Avo al oranag stucries. pres Avo sums of il sit An obegs.



\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & 18 & 8/3/23 & Adode Aot PEbMit Number & DJM \\
\hline & & 8/2/23 & MOVED SUMPS FROM OUTLLT STRUCTURES & DJM \\
\hline & 16 & 772883 & ADDED NH FISH AND GAME CONDITIONS & DJM \\
\hline & & & Adoed Phasing Plan & \\
\hline & 14 & 61/123 & IISED PER TRC Commen & DJM \\
\hline & ReV. & date & Revision & sr \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Plan Name: & EROSION AND SEDIMENT CONTROL DETAILS \\
\hline Project: & \begin{tabular}{l}
WHITE ROCK PLACE \\
O99A MAIN STREET \& ROUTE 101, RAYMOND, NH 03077
\end{tabular} \\
\hline Owner of Re & JOSEPH, JOHN, ARDELL \& INEX WELCH 49 RAYMOND RD., NOTTINGHAM, NH 03290 BK 1559 PG 263 \\
\hline
\end{tabular}







SIGHT DISTANCE PLAN

graphic scale
SIGHT DISTANCE PROFILE



NEW HAMPSHIRE FISH AND GAME - RECOMMENDED PERMIT conotions






 Endill



"



PLEASE REPORT OBSERVATIONS OF RARE TURTLES The NH Fish \& Game Department is requesting observations of the following turtle species



Fis 1401.03 (a) No person shall take or possess a spotted turtle
(Clemmys guttota)...Blanding's surtel ( Emydolidea blanding oif).
(Clemmys guttato)...Blan
any egg or part thereof.



Northern Black Racer
(New Hampshire state threatened species)
Emerge from hibernacula in April, Basking April - August,


Immediately report sightings to NH Fish and Game Melissa Winters (603-479-1129) or Brendan Clifford (603-944-0885)
Please report promptly, noting specific location and date Photographs strongly encouraged
Fis 1401.03 (a) No person shall take or possess a black racer
(Coluber constrictor)...or any egs or part thereof.


\begin{tabular}{|c|c|c|c|}
\hline 18 & \({ }^{8 / 3 / 23}\) & ADDED Aot PEEMIT NuMBER & DJM \\
\hline 17 & 8/2/23 & EMOVED SUMPS From Mutlet Structures & DJM \\
\hline \({ }^{16}\) & 7182/23 & ADDED NH FISH AND GAME CONOTITIONS & DJM \\
\hline & 710/23 & AdDED Phasing Plan & DM \\
\hline 14 & \(61 / 123\) & REVISED PER TRC CoMMENTS & DJM \\
\hline Rev. & date & Revision & Br \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Plan Name: & FISH AND GAME FLYERS \\
\hline Project: & \begin{tabular}{l}
WHITE ROCK PLACE \\
109A MAIN STREET \& ROUTE 101, RAYMOND, NH 03077
\end{tabular} \\
\hline Owner of Rec & \begin{tabular}{l}
Joseph, JOHN, ARDELL \& INEX WELCH \\
49 RAYMOND RD., NOTTINGHAM, NH 03290 BK 1559 PG 263
\end{tabular} \\
\hline
\end{tabular}



Tuck Realty Corp.
Exeter, New Hampshire

White Rock Place
Raymond, NH
March 17, 2023


THA ARCHITECTS, LLC 39 WILLOWBBROOK AVENGE - STRATHAM, NHH OB8B5 Tel: (603) 770-249 Fax: (603) - STRATHAM, NH O3885


Tuck Realty Corp.
Exeter, New Hampshire




Tuck Realty Corp.
Exeter, New Hampshire

White Rock Place
Raymond, NH
March 17, 2023

THA ARCHITECTS, LLC B9 WILLOWBROOK AVENUE • STRATHAM, NHH OB885
Tel: ( 603 ) 770-249* Fax: ( 603 )
:WWW.THAARC.COM

































3.


























Da


22. Sisiocine ino


MAIN DRIVEWAY PLAN AND PROFILE STA. \(0+00-5+00\left(1^{\prime \prime}=40^{\prime} H^{\prime \prime} 1^{\prime \prime}=4^{\prime} \mathrm{V}\right)\)
 \(\qquad\)
\begin{tabular}{|c|c|}
\hline Plan Name: & PLAN AND PROFILE \\
\hline Project: & 109A MAIN STREET \& \& ROUTE 101, RAYMOND, NH 03077 \\
\hline Owner of Record: & JOSEPH, JOHN, ARDELL \& INEX WELCH 49 RAYMOND RD NOTTINGHAM, NH 03290 BK 1559 PG 263 \\
\hline
\end{tabular}

NOTES:





MAIN DRIVEWAY PLAN AND PROFILE STA. \(5+00-9+80.02\left(1^{\prime \prime}=40^{\prime} \mathrm{H} ; 1^{\prime \prime}=4^{\prime} \mathrm{V}\right)\)

\begin{tabular}{|c|c|c|c|}
\hline 18 & \(81 / 23\) & ADDED AOt PERMIT NuMBER & DJM \\
\hline & 812123 & REMOVED SUMPS FROM OUTLET STRUCTURES & DJM \\
\hline 16 & 7/2823 & ADDED NH FISH AND GAME CONDITIONS & DJM \\
\hline 15 & 710023 & ADDED PHASIIG PLAN & \\
\hline 14 & 611123 & REVISED PERTRC COMMEN & DJM \\
\hline Rev. & date & Revision & BY \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Plan Name: & PLAN AND PROFILE \\
\hline Project: & 109A MAIN STREET WHITE ROUCK PLACE 101, RAYMOND, NH 03077 \\
\hline Owner of Record: & JOSEPH, JOHN, ARDELL \& INEX WELCH 49 RAYMOND RD NOTTINGHAM, NH 03290 BK 1559 PG 263 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline  & \[
\begin{array}{|l}
\hline \text { Date: 07/06/20 } \\
\hline \text { Project No.: } 20564 \\
\hline
\end{array}
\] \\
\hline  ANY ALTERATIONS, AUTHORIZED OR OTH & GINEERS, INC. (JBE) HERWISE, SHALL BE \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 18 & 8/3/23 & Adode aot permit number & DJM \\
\hline 17 & 8/2/23 & REMOVED SUMPS FROM OUTLET STPUCTURES & DJM \\
\hline 16 & 712823 & ADDED NH FISH AND GAME CONOITIONS & DJM \\
\hline 15 & \(71 / 1023\) & ADDED PHASIING PLAN & DJM \\
\hline 14 & \(61 / 123\) & REVISED PER TRC CoMMENTS & DJM \\
\hline REV. & date & Revision & \({ }^{\text {Br }}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Plan Name: & PLAN AND PROFILE \\
\hline Project: & WHITE ROCK PLACE
109A MAIN STREET \& ROUTE 101, RAYMOND, NH 03077 \\
\hline Owne of Record: & JOSEPH, JOHN, ARDELL \& INEX WELCH 49 RAYMOND RD., NOTTINGHAM, NH 03290 BK 1559 PG 263 \\
\hline
\end{tabular}














\begin{tabular}{|c|}
\hline Design: JAC \({ }^{\text {Drata }}\) Drim \\
\hline  \\
\hline  \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & 18 & 81323 & ADDED AOT PEAMTT NUMB & DJM \\
\hline & 17 & 8/2/23 & REMOVED SUMPS FROM OUTLET STPUCTURES & \\
\hline & 16 & 7/28/23 & ADDED NH FISH AND GAME CONOTITIONS & DJM \\
\hline & 15 & \(71 / 1023\) & ADDED PHASING PLAN & DJM \\
\hline & 14 & \(61 / 123\) & REVISED PEA TRC COMMENTS & DJM \\
\hline & & DATE & Revision & BY \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Plan Name: & DETAIL SHEET \\
\hline Project: &  \\
\hline Owne of Record: & JOSEPH, JOHN, ARDELL \& INEX WELCH 49 RAYMOND RD., NOTTINGHAM, NH 03290 BK 1559 PG 263 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline Plan Name: & DETAIL SHEET \\
\hline Project: & \begin{tabular}{l}
WHITE ROCK PLACE \\
109A MAIN STREET \& ROUTE 101, RAYMOND, NH 03077
\end{tabular} \\
\hline Owner of fecord: & JOSEPH, JOHN, ARDELL \& INEX WELCH 49 RAYMOND RD., NOTTINGHAM, NH 03290 BK 1559 PG 263 \\
\hline
\end{tabular}


























BLASTING BEST MANAGEMENT PRACTICES
(ind


 Cols









Nol






 SEEDING GUIDE


















\section*{}











matralls.







23. Clean sie Avo al oranag stucries. pres Avo sums of il sit An obegs.



\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & 18 & 8/3/23 & Adode Aot PEbMit Number & DJM \\
\hline & & 8/2/23 & MOVED SUMPS FROM OUTLLT STRUCTURES & DJM \\
\hline & 16 & 772883 & ADDED NH FISH AND GAME CONDITIONS & DJM \\
\hline & & & Adoed Phasing Plan & \\
\hline & 14 & 61/123 & IISED PER TRC Commen & DJM \\
\hline & ReV. & date & Revision & sr \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Plan Name: & EROSION AND SEDIMENT CONTROL DETAILS \\
\hline Project: & \begin{tabular}{l}
WHITE ROCK PLACE \\
O99A MAIN STREET \& ROUTE 101, RAYMOND, NH 03077
\end{tabular} \\
\hline Owner of Re & JOSEPH, JOHN, ARDELL \& INEX WELCH 49 RAYMOND RD., NOTTINGHAM, NH 03290 BK 1559 PG 263 \\
\hline
\end{tabular}







SIGHT DISTANCE PLAN

graphic scale
SIGHT DISTANCE PROFILE



NEW HAMPSHIRE FISH AND GAME - RECOMMENDED PERMIT conotions






 Endill



"



PLEASE REPORT OBSERVATIONS OF RARE TURTLES The NH Fish \& Game Department is requesting observations of the following turtle species



Fis 1401.03 (a) No person shall take or possess a spotted turtle
(Clemmys guttota)...Blanding's surtel ( Emydolidea blanding oif).
(Clemmys guttato)...Blan
any egg or part thereof.



Northern Black Racer
(New Hampshire state threatened species)
Emerge from hibernacula in April, Basking April - August,


Immediately report sightings to NH Fish and Game Melissa Winters (603-479-1129) or Brendan Clifford (603-944-0885)
Please report promptly, noting specific location and date Photographs strongly encouraged
Fis 1401.03 (a) No person shall take or possess a black racer
(Coluber constrictor)...or any egs or part thereof.


\begin{tabular}{|c|c|c|c|}
\hline 18 & \({ }^{8 / 3 / 23}\) & ADDED Aot PEEMIT NuMBER & DJM \\
\hline 17 & 8/2/23 & EMOVED SUMPS From Mutlet Structures & DJM \\
\hline \({ }^{16}\) & 7182/23 & ADDED NH FISH AND GAME CONOTITIONS & DJM \\
\hline & 710/23 & AdDED Phasing Plan & DM \\
\hline 14 & \(61 / 123\) & REVISED PER TRC CoMMENTS & DJM \\
\hline Rev. & date & Revision & Br \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Plan Name: & FISH AND GAME FLYERS \\
\hline Project: & \begin{tabular}{l}
WHITE ROCK PLACE \\
109A MAIN STREET \& ROUTE 101, RAYMOND, NH 03077
\end{tabular} \\
\hline Owner of Rec & \begin{tabular}{l}
Joseph, JOHN, ARDELL \& INEX WELCH \\
49 RAYMOND RD., NOTTINGHAM, NH 03290 BK 1559 PG 263
\end{tabular} \\
\hline
\end{tabular}



Tuck Realty Corp.
Exeter, New Hampshire

White Rock Place
Raymond, NH
March 17, 2023


THA ARCHITECTS, LLC 39 WILLOWBBROOK AVENGE - STRATHAM, NHH OB8B5 Tel: (603) 770-249 Fax: (603) - STRATHAM, NH O3885


Tuck Realty Corp.
Exeter, New Hampshire




Tuck Realty Corp.
Exeter, New Hampshire

White Rock Place
Raymond, NH
March 17, 2023

THA ARCHITECTS, LLC B9 WILLOWBROOK AVENUE • STRATHAM, NHH OB885
Tel: ( 603 ) 770-249* Fax: ( 603 )
:WWW.THAARC.COM

\title{
JONES\&BEACH \\ 85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885 \\ 603.772.4746 - JonesandBeach.com
}

August 29, 2023
Raymond Planning Board
Attn. Diana Luszcz, Chair
4 Epping Street
Raymond, NH 03077

\section*{Re: Addendum to 8/17/2023 Resubmission White Rock Place 109A Main Street, Raymond, NH \\ Tax Map 23, Lot 25 \\ JBE Project No. 20564}

Dear Ms. Luszcz,
Jones \& Beach Engineers, Inc. resubmitted documents on August 17, 2023 for the abovereferenced documents. We realized that some additional information would be prudent to include. Please accept this addendum containing additional information relative to the abovereferenced application.

Also please note that the waiver request letters contained in Section 1 of the \(8 / 17\) resubmission were only reflect what was submitted with the original application, and have since been revised. The waiver request letters contained in Section 8 of the \(8 / 17\) resubmission are the most up to date versions.

The following items are provided in support of this Addendum:
1. Section 13 - Parking Demand Letter.
2. Section 14 - Special Permit Application.
3. Section 15 - Test Pit Logs.
4. Section 16 - Stormwater Operations and Maintenance Manual.
5. Section 17 - New Hampshire Fish and Game Signoff and Comments.
6. Section 18 - Updated Abutters List.

If you have any questions or need any additional information, please feel free to contact our office. Thank you very much for your time.

35 New England Business Center Drive
Suite 140
Andover, MA 01810

Ref: 9643
May 26, 2023

Tuck Realty Corporation
c/o Mr. Turner Porter
PO Box 190
Exeter, NH 03833

\author{
Re: Parking Demand Assessment \\ White Rock Place Multifamily Residential Development - 109 Main Street \\ Raymond, Massachusetts
}

Mr. Porter:
Vanasse \& Associates, Inc. (VAI) has completed a parking demand assessment in order to determine the adequacy of the proposed parking supply associated with the construction of a \(156 \pm\)-unit multifamily residential development to be known as White Rock Place and located at 109 Main Street in Raymond, New Hampshire (hereafter referred to as the "Project"). This assessment reviews parking demand data obtained for multifamily residential communities located in a similar setting to the Project and parking demand data published by the Institute of Transportation Engineers (ITE) \({ }^{1}\) for multifamily residential communities. The following details our assessment of the anticipated parking demand for the Project.

\section*{Parking Demand Observations}

Parking demand observations were obtained from four (4) multifamily residential communities located in Massachusetts and New Hampshire, which included parking occupancy data collected at each community on a weekday between 4:00 and 6:00 AM, or between 5:00 and 8:00 AM. These time periods represent the peak parking demand periods for a residential community. \({ }^{2}\) Table 1 summarizes the parking demand observations for each community along with the parking occupancy and corresponding parking ratio.

As can be seen in Table 1, the peak-parking demands at the four (4) multifamily residential communities were found to range from 1.23 parking spaces per unit to 1.49 parking spaces per unit, or an average peak parking demand of 1.34 parking spaces per unit. The average peak occupancy rate was found to be approximately 77 percent of the available parking spaces.

\footnotetext{
\({ }^{1}\) Parking Generation, \(5^{\text {th }}\) Edition; Institute of Transportation Engineers; Washington, D.C.; January 2019.
\({ }^{2}\) The peak-parking demand for a residential community generally occurs on a weekday after 10:00 PM and before 6:00 AM.
}

\section*{Table 1}

\section*{MULTIFAMILY PARKING DEMAND OBSERVATIONS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Domain Foxborough, Foxborough,
\[
M A
\]} & \multicolumn{3}{|l|}{Hanover at Andover, Andover, MA} & \multicolumn{3}{|l|}{Hanover Tuscan Village, Salem, NH} & \multicolumn{3}{|l|}{Bell Westford, Westford, MA} \\
\hline Time & No. of Occupied Spaces & Occupancy \({ }^{\text {a }}\) & Parking Demand Ratio \({ }^{\text {b }}\) & No. of Occupied Spaces & Occupancy \({ }^{\text {c }}\) & Parking Demand Ratio \({ }^{\text {d }}\) & No. of Occupied Spaces \({ }^{\text {e }}\) & Occupancy \({ }^{\text {f }}\) & Parking Demand Ratio \({ }^{\text {g }}\) & No. of Occupied Spaces \({ }^{\text {h }}\) & Occupancy \({ }^{\text {i }}\) & Parking Demand Ratio \({ }^{\text {j }}\) \\
\hline 4:00 AM & 298 & 76.4\% & 1.27 & 282 & 78.3\% & 1.23 & -- & -- & -- & -- & -- & -- \\
\hline 4:30 & 296 & 75.9\% & 1.26 & 281 & 78.1\% & 1.23 & -- & -- & -- & -- & -- & -- \\
\hline 5:00 & 295 & 75.6\% & 1.26 & 280 & 77.8\% & 1.22 & 350 & 77.6\% & 1.35 & 548 & 75.8\% & 1.49 \\
\hline 5:30 & 286 & 73.3\% & 1.22 & 277 & 76.9\% & 1.21 & 340 & 75.4\% & 1.31 & 543 & 75.1\% & 1.48 \\
\hline 6:00 & 282 & 72.3\% & 1.21 & 273 & 75.8\% & 1.19 & 333 & 73.8\% & 1.28 & 532 & 73.6\% & 1.45 \\
\hline 6:30 & -- & -- & -- & -- & -- & -- & 327 & 72.5\% & 1.26 & 517 & 71.5\% & 1.41 \\
\hline 7:00 & -- & -- & -- & -- & -- & -- & 307 & 68.1\% & 1.18 & 501 & 69.3\% & 1.37 \\
\hline 7:30 & -- & -- & -- & -- & -- & -- & 292 & 64.7\% & 1.12 & 473 & 65.4\% & 1.29 \\
\hline 8:00 & -- & -- & -- & -- & -- & -- & 283 & 62.7\% & 1.09 & 435 & 60.2\% & 1.19 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) The available parking supply consists of 390 parking spaces
\({ }^{\mathrm{b}}\) Based on 234 occupied units at the time of the parking demand observations.
\({ }^{\text {c }}\) The available parking supply consists of 360 parking spaces
\({ }^{\text {d }}\) Based on 229 occupied units at the time of the parking demand observations
\({ }^{\mathrm{e}}\) Assumes full occupancy of the 41 individual garages located throughout the property.
\({ }^{\mathrm{f}}\) The available parking supply consists of 451 parking spaces, including the 41 garage spaces
gBased on approximately 260 occupied units at the time of the parking demand observations.
\({ }^{\mathrm{h}}\) Assumes full occupancy of the 90 individual garages located throughout the property
\({ }^{i}\) The available parking supply consists of 723 parking spaces, including the 90 garage spaces
\({ }^{j}\) Based on approximately 367 occupied units at the time of the parking demand observations.

\section*{ITE Parking Demand Data}

Table 2 summarizes the ITE peak parking demand data that is derived from parking demand observations performed at multifamily residential communities situated in a general urban/suburban setting.

Table 2
ITE PEAK PARKING DEMAND DATA
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Land Use Code/Time Period} & \multicolumn{2}{|l|}{Peak Parking Demand per Dwelling Unit} \\
\hline & Average Rate & 85 \({ }^{\text {th }}\) Percentile \\
\hline Multifamily Housing (Mid-Rise) \({ }^{\text {a }}\) & & \\
\hline Weekday & 1.31 & 1.47 \\
\hline Saturday & 1.22 & 1.33 \\
\hline
\end{tabular}
\({ }^{\text {a}}\) ITE Land Use Code 221, Multifamily Housing (Mid-Rise).

As can be seen in Table 2, the ITE parking demand data for a multifamily residential community indicates that the average peak parking demand on a weekday is 1.31 parking spaces per unit, with an observed \(85^{\text {th }}\) percentile peak parking demand \({ }^{3}\) of 1.47 parking spaces per unit. On a Saturday, the average observed peak parking demand was observed to be 1.22 parking spaces per unit, with the observed \(85^{\text {th }}\) percentile peak parking demand found to be 1.33 parking spaces per unit. Given that the weekday peak parking demands are higher than those on a Saturday, the weekday data is used for design purposes.

The ITE data for a multifamily residential community is generally consistent with the parking demand observations that were obtained for the four (4) residential communities, with an average peak parking demand of 1.31 to 1.34 parking spaces per unit, and a design value (typically the \(85^{\text {th }}\) percentile peak parking demand) of between 1.47 and 1.49 parking spaces per unit. The ITE parking demand data is provided in the Appendix.

\section*{Parking Demand Comparison}

On-site parking will be provided for 281 vehicles, or a parking ratio of 1.8 parking spaces per dwelling unit, \({ }^{4}\) which is greater than the parking ratios at the observed multifamily residential communities and those located in a similar setting as documented by the ITE.

Based on a review of parking demand observations obtained for multifamily residential communities in similar settings and those documented by the ITE, the proposed parking supply should be sufficient to support the needs of the Project.

\footnotetext{
\({ }^{3}\) The \(85^{\text {th }}\) percentile peak parking demand is defined as the parking demand at which 85 percent of the observed peak parking demands fall below and 15 percent are above.
\({ }^{4} 156 \pm\) residential units are proposed.
}

Mr. Turner Porter
Tuck Realty Corporation
May 26, 2023
Page 4 of 4

If you should have any questions regarding the anticipated parking demand for the Project, please feel free to contact me.

Sincerely,

VANASSE \& ASSOCIATES, INC.

jeffrey S. Dirk, P.E., PTOE, FITE
Managing partner
Professional Engineer in CT, MA, ME, NH, RI and VA
JSD/dcl

\section*{ATTACHMENTS}

Project Site Plan
ITE Parking Demand Data


\section*{AII Graph Look Up}




\section*{Application for Special Permit Town of Raymond, NH}

\section*{Site Information}

Property Address: 109 A, B, C \& D Main Street
Map \#: \(\qquad\) Lot \#: 24, 25, \(28 \& 29\)

\section*{Property Owner Information}

Name: Lot 24 - Tuck Realty Corp., PO Box 190, Exeter, NH 03833 Phone: \(\qquad\)
Lot 25 - Joseph, John, Ardell \& Inez Welch, 49 Raymond Rd., Nottingham, NH 03290
Address: Lot 28 - Paul \& Teri Welch, 109 Main St. Raymond, NH 03077
Address: Lot 29 - Wayne \& Cathleen Welch, 109A Main St., Raymond, NH 03077

\section*{Applicant/Agent Information}

Name: Turner Porter, Tuck Realty Corp. Phone: 603-944-7530

Address: PO Box 190, Exeter, NH 03833
Address: \(\qquad\)

\section*{Project Description}

The intent of this project is to subdivide the lot into one residential lot containing 156-unit apartment complex and one industrial lot. We have \(86,000 \mathrm{~S} . \mathrm{F}\). of steep slope impact in Zone \(G\) and therefore are requesting a Special Permit. This site is situated such that the impacts are unavoidable. We are also putting 23 acres into open space that will not be developed in the future.

Applicant Signature* (see page 2): \(\square\) Date: \(3 / 20 / 23\)

\section*{Submission Checklist}
- *COMPLETED \& SIGNED APPLICATION. If the applicant is NOT the property owner, a notarized letter of permission from the property owner is required to be submitted with this application.
- LIST OF ABUTTERS. The list of abutters must include the following information:
\(>\) Name of property owner(s)
\(>\) Address of property owner(s)
\(>\) Name of abutting property owner(s)
\(>\) Address of abutting property owner(s)
\(>\) Tax Map and Lot Numbers for all properties listed
\(>\) Name and Address of any agents authorized by the applicant to represent them and whose professional seal appears on a plat submitted to the Planning Board (i.e. land surveyors, wetland scientists, engineers, etc.)
(For more information, please refer to NH Revised Statues Annotated 672:3 for a definition of the term "abutter," and RSA 676:4 for legal notice requirements).
- APPLICATION FEE. The application fee to the Planning Board for a Special Permit is as follows:
\(>\$ 100.00\) base application fee, plus;
> \$10.00 per abutter (including the applicant, property owner(s), and any agents authorized to represent the property owner(s))
\(>\) When writing a check, this amount must be kept separate from the Escrow Account (see below). Please make checks payable to the Town of Raymond.
- ESCROW ACCOUNT. This is a separate account established by the applicant to cover the cost of any additional legal notification, engineering review, legal review, document recording or outside copying incurred by the Town. Any unused funds will be returned to the applicant.
\(>\$ 250.00\) - Minimum amount required to establish Escrow Account.
\(>\) When writing a check, this amount must be kept separate from the Application Fee (see above). Please make checks payable to the Town of Raymond.
- PLANS.
\(>\) One (1) \(24^{\prime \prime} \times 36^{\prime \prime}\) copy of the plan, plus ten (10) \(11^{\prime \prime} \times 17^{\prime \prime}\) copies shall be provided.
-OR-
\(>\) If the original plan is smaller than \(24^{\prime \prime} \times 36^{\prime \prime}\) in size, then one (1) copy of the original plan, plus ten (10) \(11^{\prime \prime} \times 17^{\prime \prime}\) copies of the plan shall be provided.

Gove Environmental Services, Inc.
Test Pit Log
109 Main Street, Raymond Logged by: Luke Hurley, CSS 095, 2/24/22
Test Pit \#1:
0-8 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
8-20 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
20-32 INCHES, 2.5Y 4/3, FINE SANDY LOAM , GRANULAR, FRIABLE
32-64 INCHES, 2.5Y 4/3, SAND/GRVEL, MASSIVE, FIRM IN PLACE, REDOX 15\%
ESHWT: 32 INCHES
REFUSAL: N/A
OBSERVED WATER: N/A

Test Pit \#2:
0-8 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
8-16 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
16-36 INCHES, 2.5Y 4/3, FINE SANDY LOAM , GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: 36 INCHES OBSERVED WATER: N/A

Test Pit \#3:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-18 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
18-40 INCHES, 2.5Y 5/3, SAND, GRANULAR, FRIABLE
40-60 INCHES, 2.5Y 5/4, SAND, GRANULAR, FRIABLE
ESHWT: N/A
REFUSAL: N/A
OBSERVED WATER: N/A

Test Pit \#4:
0-6 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
6-20 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE 20-40 INCHES, 2.5Y 5/4, FINE SANDY LOAM, GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: 40 INCHES OBSERVED WATER: N/A

Test Pit \#5:
0-6 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
6-12 INCHES, 10YR 5/6, FINE SANDY LOAM , GRANULAR, FRIABLE
12-20 INCHES, 10YR3/6, FINE SANDY LOAM , GRANULAR FRIABLE
20-40 INCHES, 2.5Y 4/6, SAND/GRAVEL, SINGLE GRAIN, LOOSE
ESHWT: N/A REFUSAL: 40 INCHES OBSERVED WATER: N/A

Test Pit \#6: DONE AT STATOIN 6+00
0-6 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
6-16 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
16-28 INCHES, 10YR4/6, FINE SANDY LOAM , GRANULAR, FRIABLE
28-50 INCHES, 2.5Y4/4, FINE SAND , GRANULAR, FRIABLE
ESHWT: N/A
REFUSAL: 50 INCHES
OBSERVED WATER: N/A

Gove Environmental Services, Inc.

\section*{Test Pit \#7:}

0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-10 INCHES, 10YR 5/6, FINE SANDY LOAM , GRANULAR, FRIABLE
10-30 INCHES, 10Y4/4, FINE SAND , GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: N/A OBSERVED WATER: N/A

Test Pit \#8:
0-2 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
2-12 INCHES, 10YR 5/6, FINE SANDY LOAM , GRANULAR, FRIABLE
12-24 INCHES, 10Y4/4, FINE SAND , GRANULAR, FRIABLE
24-50 INCHES, 2.5Y5/3, SAND/GRAVEL, SINGLE GRAIN, LOOSE, REDOX 15\%
ESHWT: 24 INCHES REFUSAL: N/A OBSERVED WATER: N/A

Test Pit \#9:
0-6 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE 6-12 INCHES, 10YR 5/4, FINE SANDY LOAM , GRANULAR, FRIABLE
12-30 INCHES, 2.5Y5/6, FINE SANDY LOAM , GRANULAR, FRIABLE
30-60 INCHES, 2.5Y5/3, SAND/GRAVEL, SINGLE GRAIN, LOOSE
ESHWT: N/A REFUSAL: 60 INCHES OBSERVED WATER: N/A

Test Pit \#10:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-24 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
24-40 INCHES, 2.5Y5/3, FINE SANDY LOAM , GRANULAR, FRIABLE, REDOX 15\%
40-60 INCHES, 2.5Y5/3, SAND/GRAVEL, SINGLE GRAIN, LOOSE, REDOX 15\%
ESHWT: 24 REFUSAL: 60 INCHES OBSERVED WATER: N/A

Test Pit \#11:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE 4-14 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE 14-56 INCHES, 2.5Y4/4, SAND/GRAVEL, MASSIVE, FIRM IN PLACE ESHWT: N/A REFUSAL: 54 INCHES OBSERVED WATER: N/A

Test Pit \#12:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE 4-18 INCHES, 10YR 5/4, FINE SANDY LOAM , GRANULAR, FRIABLE 18-40 INCHES, 2.5Y5/4, SAND/GRAVEL, MASSIVE, FIRM IN PLACE ESHWT: N/A REFUSAL: 40 INCHES OBSERVED WATER: N/A

Test Pit \#13:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-16 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
16-36 INCHES, 10YR5/6, FINE SANDY LOAM , GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: 36 INCHES OBSERVED WATER: N/A


Gove Environmental Services, Inc.
Test Pit \#14:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-14 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
14-36 INCHES, 10YR5/6, FINE SANDY LOAM , GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: 36 INCHES OBSERVED WATER: N/A

Test Pit \#15:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-16 INCHES, 10YR 5/4, FINE SANDY LOAM , GRANULAR, FRIABLE
16-24 INCHES, 2.5Y5/6, FINE SANDY LOAM , GRANULAR, FRIABLE
24-50 INCHES, 2.5Y4/4, SAND, MASIVE, FIRM IN PLACE
50-62 INCHES, 2.5Y5/3, SAND/GRAVEL, MASIVE, FIRM IN PLACE
ESHWT: 50 INCHES REFUSAL: N/A OBSERVED WATER: N/A

Test Pit \#16:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-15 INCHES, 10YR 4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
ESHWT: 15 INCHES REFUSAL: N/A OBSERVED WATER: 15 INCHES

Test Pit \#17:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-20 INCHES, 10YR 5/6, FINE SANDY LOAM , GRANULAR, FRIABLE
20-42 INCHES, 2.5Y5/3, FINE SANDY LOAM , GRANULAR, FRIABLE
ESHWT: N/A REFUSAL: 42 INCHES OBSERVED WATER: N/A

Test Pit \#18:
0-4 INCHES, 10YR 3/2, FINE SANDY LOAM , GRANULAR, FRIABLE
4-12 INCHES, 10YR 4/6, FINE SANDY LOAM , GRANULAR, FRIABLE
12-24 INCHES, 10YR4/4, FINE SANDY LOAM , GRANULAR, FRIABLE
24-52 INCHES, 2.5Y5/3, SAND, GRNAULAR, FIRM IN PLACE
ESHWT: N/A REFUSAL: 52 INCHES OBSERVED WATER: N/A


Gove Environmental Services, Inc. TEST PIT DATA

Project - 109C Main Street, Raymond, NH
Client - Tuck Realty
GES Project No. 2020234
MM/DD/YY Staff 10-20-2022 JPG Observed by Paul Ayer, Raymond Code Enforcement
Test Pit No. 19
ESHWT: 50"
Termination @ 65"
Refusal: None
Obs. Water: None
\begin{tabular}{rccccl} 
Depth & Color & Texture & Structure & Consistence & Redox \%, Layer \\
\(0-9 "\) & 10YR 3/2 & LS & GR & FR & NONE,Ap \\
\(9-50 "\) & \(10 Y R ~ 5 / 6\) & LS & GR & FR & NONE, Bw \\
\(50-65 "\) & \(2.5 Y 5 / 4\) & LS & OM & FR & \(10 \%\), C
\end{tabular}

Test Pit No. 20
ESHWT: 43"
Termination @ 65"
Refusal: None
Obs. Water: None
\begin{tabular}{rccccl} 
Depth & Color & Texture & Structure & Consistence & Redox \%, Layer \\
\(0-17 "\) & 10YR 3/2 & LS & GR & FR & NONE, Ap \\
\(17-43 "\) & \(10 Y R ~ 5 / 6\) & LS & GR & FR & NONE, Bw \\
\(43-65 "\) & \(2.5 Y 5 / 4\) & LS & PL & FR & \(20 \%\), C
\end{tabular}

Test Pit No. 21
ESHWT: 46"
Termination @ 72"
Refusal: None
Obs. Water: None
\begin{tabular}{rccccl} 
Depth & Color & Texture & Structure & Consistence & Redox \%, Layer \\
\(0-7 "\) & 10YR 3/2 & FLS & GR & FR & NONE, Ap \\
\(7-46^{\prime \prime}\) & 10 YR 5/6 & FSL & GR & FR & NONE, Bw \\
\(46-72 "\) & \(2.5 Y 5 / 4\) & FSL & OM & FR & \(20 \%\), C
\end{tabular}


\title{
Gove Environmental Services, Inc. TEST PIT DATA
}


Hydrologic Soil Group of this Hinckley soil test pit is A.

\title{
STORMWATER MANAGEMENT OPERATION AND MAINTENANCE MANUAL
}

\author{
White Rock Place 109A\&C Main Street \\ Raymond, NH 03077 \\ Tax Map 23, Lots 24, 25, \& 29
}

\author{
Prepared for: \\ Tuck Realty Corporation \\ PO Box 190
}

Exeter, NH 03833
ATTN: Michael Garrepy
mgarrepy@gmail.com
(603) 944-7530

Prepared by: Jones \& Beach Engineers, Inc.

85 Portsmouth Avenue
P.O. Box 219

Stratham, NH 03885
(603) 772-4746

November 22, 2022
REVISED December 12, 2022
REVISED March 20, 2023
JBE Project No. 20564

JONES\&BEACH

\title{
Inspection and Maintenance of Facilities and Property
}

\section*{A. Maintenance of Common Facilities or Property}
1. Tuck Realty Corporation., future owners and assigns are responsible to perform the maintenance obligations or hire a Professional Engineer to review the site on an annual basis for maintenance and certification of the stormwater system. Tuck Realty Corporation, future owners and assigns shall keep receipts and records of all maintenance companies hired throughout the year to submit along with the following form. All record keeping required by this manual shall be maintained by the responsible party(ies) and be made available to NHDES upon request.

\section*{B. General Inspection and Maintenance Requirements}
1. Permanent stormwater and sediment and erosion control facilities to be maintained on the site include, but are not limited to, the following:
a. Pavement
b. Sediment Forebay
c. Wet Pond
d. Bioretention System
e. ADS Stormtech System
f. ACF Focal Point
g. Permeable Pavers
h. Catch Basins \& Dry Well
i. Drain Manholes
j. Culverts
k. Rip Rap Outlet Protection
1. Contech StormFilter
m . Vegetation and landscaping
2. Maintenance of permanent measures shall follow the following schedule:
a. Normal winter roadway maintenance including plowing and snow removal. Road and parking lot sweeping at the end of every winter, preferably at the start of the spring rain season. Snow removal shall be performed by Sno-Pro certified personnel to keep road salt from contaminating the river or groundwater.
b. Cleaning Criteria for all Sedimentation Forebays: Sediment should be removed from the sedimentation chamber (forebay) when it accumulates to a depth of more than 12 inches \((30 \mathrm{~cm})\) or 10 percent of the pretreatment volume. The sedimentation forebay should be cleaned of vegetation if persistent standing water and wetland vegetation becomes dominant. The cleaning interval is once every year. A dry sedimentation forebay is the optimal condition while in practice this condition is rarely achieved. The sedimentation chamber, forebay, and treatment cell outlet devices should be cleaned when drawdown
times exceed 60 to 72 hours. Materials can be removed with heavy construction equipment; however this equipment should not track on the wetland surface. Revegetate disturbed areas as necessary. Removed sediments should be dewatered (if necessary) and disposed of in an acceptable manner.
c. Wet Ponds should require little maintenance, but should be inspected frequently during the first year of operation, and annually thereafter. Every five years, the services of a professional engineer should be retained to perform a thorough inspection of all the aspects of the pond and its infrastructure. Any debris and sediment accumulations should be removed from the outlet structure(s) and emergency spillway(s) and disposed of properly. Inspect outlet structure for deterioration and or clogging. Wet Pond berms should be mowed at least once annually so as to prevent the establishment of woody vegetation - trees should never be allowed to grow on a Wet Pond berm, as they may destabilize the structure and increase the potential for failure. Areas showing signs of erosion or thin or dying vegetation should be repaired immediately by whatever means necessary, with the exception of fertilizer. Rodent burrows are to be repaired immediately and the suspect animals apprehended with non-lethal traps if the problem persists.

The wet pond should remain full to the elevation of the lowest outlet in the pond.
d. Bioretention Systems:
- Visually inspect monthly and repair erosion. Use small stones to stabilize erosion along drainage paths.
- Check the pH once a year if grass is not surviving. Apply an alkaline product, such as limestone, if needed.
- Re-seed any bare areas by hand as needed.
- Immediately after the completion of cell construction, water grass for 14 consecutive days unless there is sufficient natural rainfall.
- Once a month (more frequently in the summer), residents are encouraged to visually inspect vegetation for disease or pest problems and treat as required.
- During times of extended drought, look for physical features of stress. Water in the early morning as needed.
- Weed regularly, if needed.
- After rainstorms, inspect the cell and make sure that drainage paths are clear and that ponding water dissipates over 4-6 hours. (Water may pond for longer times during the winter and early spring.)
- Twice annually, inspect the outlet control structures to ensure that they are not clogged and correct any clogging found as needed.
KEEP IN MIND, THE BIORETENTION CELL IS NOT A POND. IT SHOULD NOT PROVIDE A BREEDING GROUND FOR MOSQUITOES. MOSQUITOES NEED AT LEAST FOUR (4) DAYS OF STANDING WATER TO DEVELOP AS LARVA.
e. ADS Stormtech System:
- Removal of debris from inlet and outlet structures.
- Removal of accumulated sediment.
- Inspection and repair of outlet structures and appurtenances.
- Inspection of infiltration components at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24 hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Inspection of pretreatment measures at least twice annually, and removal of accumulated sediment as warranted by inspection, but no less than once annually.
- If an infiltration system does not drain within 72-hours following a rainfall event, then a qualified professional should assess the condition of the facility to determine measures required to restore infiltration function, including but not limited to removal of accumulated sediments or reconstruction of the infiltration trench.
- Camera inspections of the system should be done on an annual basis.
- See also attachment from ADS.

\section*{f. ACF Focal Point: See attachment from ACF}

\section*{g. Permeable Pavers:}

A short stretch of the emergency access road is constructed from EcoRaster permeable pavers and the remainder is constructed from gravel. The following recommendations will help assure that the pavers are maintained to preserve its hydrologic effectiveness.

\section*{Winter maintenance:}
- Sanding for winter traction is prohibited. Deicing is permitted ( \(\mathrm{NaCl}, \mathrm{MgCl}_{2}\), or equivalent). Reduced salt application is possible and can be a cost savings for winter maintenance. Nontoxic, organic deicers, applied either as blended, magnesium chloride-based liquid products or as pretreated salt, are preferable.
- Plowing is allowed, blade should be set approximately 1 " above the paver surface. Ice and light snow accumulation are generally not as problematic as for standard asphalt. Snow will accumulate during heavier storms and should be plowed. (more than usual, about an inch).

\section*{Routine maintenance:}
- Seal coating is absolutely forbidden. Surface seal coating is not reversible.
- The paver surface should be vacuumed 2 or 3 times per year, and at any additional times sediment is spilled, eroded, or tracked onto the surface.
- Planted areas adjacent to permeable pavers should be well maintained to prevent soil washout onto the pavers. If any bare spots or eroded areas are
observed within the planted areas, they should be replanted and/or stabilized at once.
- Immediately clean any soil deposited on pavers. Superficial dirt does not necessarily clog the paver voids. However, dirt that is ground in repeatedly by tires can lead to clogging. Therefore, trucks or other heavy vehicles should be prevented from tracking or spilling dirt onto the pavers.
- Do not allow construction staging, soil/mulch storage, etc. on unprotected paver surface. Contractor to lay down tarps, plywood or removable item and take care not to track material onto unprotected pavers.
- Repairs: Potholes or other surface blemishes shall be replaced in kind. Any required repair of drainage structures should be done promptly to ensure continued proper functioning of the system.
- Written and verbal communication to the future owner should make clear the pavement's special purpose and special maintenance requirements such as those listed here.
h. Annual inspection of catch basins to determine if they need to be cleaned. Catch basin is to be cleaned if the depth of deposits is greater than one-half the depth from the basin bottom to the invert of the lowest pipe or opening into or out of the basin. If a catch basin significantly exceeds the one-half depth standard during the inspection, then it should be cleaned more frequently. If woody debris or trash accumulates in the catch basin, then it should be cleaned on a weekly basis. The Catch basin can be cleaned either manually or by specially designed equipment including, but not limited to, bucket loaders and vacuum pumps. Before any materials can be disposed, it is necessary to perform a detailed chemical analysis to determine if the materials meet the EPA criteria for hazardous waste. This will help determine how the materials should be stored, treated, and disposed. Grease hoods are to be wiped clean and the rags disposed of properly. Debris obscuring the grate inlet should also be removed.
i. Annual inspection of drain manholes to determine if they need to be cleaned. Manholes should be cleaned of any material upon inspection. Manholes can be cleaned either manually or by specially designed equipment including, but not limited to, bucket loaders and vacuum pumps. Before any materials can be disposed, it is necessary to perform a detailed chemical analysis to determine if the materials meet the EPA criteria for hazardous waste. This will help determine how the materials should be stored, treated, and disposed.
j. Inspection of culvert inlets and outlets at least once per month during the rainy season (March to November). Any debris is to be removed and disposed of properly.
k. Rock riprap should be inspected annually in order to ensure that it has not been displaced, undermined, or otherwise damaged. Displaced rock should be replaced, or additional rock added in order to maintain the structure(s) in their undamaged state. Woody vegetation should not be allowed to become established in riprap areas, and/or any debris removed from the void spaces between the rocks. If the riprap is adjacent to a
stream or other waterbody, the water should be kept clear of obstructions, debris, and sediment deposits.
1. Contech StormFilter: See attachment from Contech.
m . Annual inspection of site's vegetation and landscaping. Any areas that are bare shall be reseeded and mulched with hay or, if the case is extreme, loamed and seeded or sodded to ensure adequate vegetative cover. Landscape specimens shall be replaced in kind, if they are found to be dead or dying. The site shall remain in a stabilized condition at all times. A site is considered stable if one of the following has occurred.
b.a. A minimum of \(85 \%\) vegetative cover has been established;
b.b. A minimum of 3 inches of non-erosive material such as stone or riprap has been installed; or
b.c. Erosion control blankets have been installed in accordance with Env-Wq 1506.03.
n. Annual inspection of the site for erosion, destabilization, settling, and sloughing. Any needed repairs are to be conducted immediately.

See attached sample forms as a guideline.
Any inquiries in regards to the design, function, and/or maintenance of any one of the above mentioned facilities or tasks shall be directed to the project engineer:

Jones \& Beach Engineers, Inc.
85 Portsmouth Avenue
P.O. Box 219

Stratham, NH 03885
T\#: (603) 772-4746
Email: jcoronati@jonesandbeach.com
!

\section*{Commitment to maintenance requirements}

I agree to complete and/or observe all of the required maintenance practices and their respective schedules as outlined above.

Tuck Realty Corporation

By: Print Name

\section*{Signature}

\section*{Title}

\section*{Email Address}

Phone Number

Date

\section*{Commitment to maintenance requirements}

This signature page shall be provided to NHDES upon the change of Ownership, Transfer or Assignment. Contact information is to remain updated and the responsibility of the applicable party responsible for this Operation and Maintenance Manual.

I agree to complete and/or observe all of the required maintenance practices and their respective schedules as outlined above.

\section*{Property Owner or future assigns}

By: Print Name

\section*{Signature}

Title

Email Address

Phone Number

\section*{Date}

\section*{Annual Operations and Maintenance Report}

Tuck Realty Corporation, future owners and assigns, are responsible to perform the maintenance obligations or hire a Professional Engineer to review the site on an annual basis for maintenance and certification of the stormwater system. Tuck Realty Corporation, future owners and assigns shall keep receipts and records of all maintenance companies hired throughout the year to submit along with the following form. All record keeping required by this manual shall be maintained by the responsible party(ies) and be made available to NHDES upon request.

Tuck Realty Corporation, future owners and assigns, are responsible for submitting a report to the Planning Department or their designated agent by September 1 every two years, with the first report due within two years of receipt of an Occupancy Permit. The report shall be signed and stamped by a qualified professional engineer that all stormwater management and erosion control measures are functioning per the approved stormwater management plan. The report shall note if any stormwater infrastructure has needed any repairs other than routine maintenance and the results of those repairs. If the stormwater infrastructure is not functioning per the approved stormwater management plan the landowner shall report on the malfunction in their report and include detail regarding when the infrastructure shall be repaired and functioning as approved.

If no report is filed by September 1 in the year the report is due, the Select Board or their designated agent shall have site access to complete routine inspections to ensure compliance with the approved stormwater management and sediment and erosion control plans. Such inspections shall be performed at a time agreed upon with the landowner.
\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{l} 
Construction \\
Activity
\end{tabular} & \begin{tabular}{c} 
Date of \\
Inspection
\end{tabular} & \begin{tabular}{c} 
Who \\
Inspected
\end{tabular} & Findings of Inspector \\
\hline Pavement & & & \\
\hline Sediment Forebays & & & \\
\hline Wet Pond & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Bioretention System & & & \\
\hline ADS Stormtech & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Culverts & & & \\
\hline \begin{tabular}{l} 
Rip-Rap Outlet \\
Protection
\end{tabular} & & & \\
\hline Contech StormFilter & & & \\
\hline Vegetation and & & & \\
Landscaping & & & \\
\hline Other: & & & \\
\hline
\end{tabular}

Comments:
\begin{tabular}{|c|l|l|}
\hline Deicing Log & Type of Deicing Material & Amount Applied \\
\hline Date Applied & & \\
\hline & & \\
\hline
\end{tabular}

\section*{CONTROL OF INVASIVE PLANTS}

During maintenance activities, check for the presence of invasive plants and remove in a safe manner as described on the following pages. They should be controlled as described on the following pages.

\section*{Background:}

Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm by:
- becoming weedy and overgrown;
- killing established shade trees;
- obstructing pipes and drainage systems;
- forming dense beds in water;
- lowering water levels in lakes, streams, and wetlands;
- destroying natural communities;
- promoting erosion on stream banks and hillsides; and
- resisting control except by hazardous chemical.


\section*{University of New Hampshire Methods for Disposing COOPERATIVE EXTENSION} Non-Native Invasive Plants

Prepared by the Invasives Species Outreach Group, volunteers interested in helping people control invasive plants. Assistance provided by the Piscataquog Land Conservancy and the NH Invasives Species Committee. Edited by Karen Bennett, Extension Forestry Professor and Specialist.


Tatarian honeysuckle Lonicera tatarica
USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 3: 282.

Non-native invasive plants crowd out natives in natural and managed landscapes. They cost taxpayers billions of dollars each year from lost agricultural and forest crops, decreased biodiversity, impacts to natural resources and the environment, and the cost to control and eradicate them.

Invasive plants grow well even in less than desirable conditions such as sandy soils along roadsides, shaded wooded areas, and in wetlands. In ideal conditions, they grow and spread even faster. There are many ways to remove these nonnative invasives, but once removed, care is needed to dispose the removed plant material so the plants don't grow where disposed.

Knowing how a particular plant reproduces indicates its method of spread and helps determine the appropriate disposal method. Most are spread by seed and are dispersed by wind, water, animals, or people. Some reproduce by vegetative means from pieces of stems or roots forming new plants. Others spread through both seed and vegetative means.

Because movement and disposal of viable plant parts is restricted (see NH Regulations), viable invasive parts can't be brought to most transfer stations in the state. Check with your transfer station to see if there is an approved, designated area for invasives disposal. This fact sheet gives recommendations for rendering plant parts nonviable.

Control of invasives is beyond the scope of this fact sheet. For information about control visit www.nhinvasives.org or contact your UNH Cooperative Extension office.

\section*{New Hampshire Regulations}

Prohibited invasive species shall only be disposed of in a manner that renders them nonliving and nonviable. (Agr. 3802.04)

No person shall collect, transport, import, export, move, buy, sell, distribute, propagate or transplant any living and viable portion of any plant species, which includes all of their cultivars and varieties, listed in Table 3800.1 of the New Hampshire prohibited invasive species list. (Agr 3802.01)

\section*{How and When to Dispose of Invasives?}

To prevent seed from spreading remove invasive plants before seeds are set (produced). Some plants continue to grow, flower and set seed even after pulling or cutting. Seeds can remain viable in the ground for many years. If the plant has flowers or seeds, place the flowers and seeds in a heavy plastic bag "head first" at the weeding site and transport to the disposal site. The following are general descriptions of disposal methods. See the chart for recommendations by species.

Burning: Large woody branches and trunks can be used as firewood or burned in piles. For outside burning, a written fire permit from the local forest fire warden is required unless the ground is covered in snow. Brush larger than 5 inches in diameter can't be burned. Invasive plants with easily airborne seeds like black swallow-wort with mature seed pods (indicated by their brown color) shouldn't be burned as the seeds may disperse by the hot air created by the fire.

Bagging (solarization): Use this technique with softertissue plants. Use heavy black or clear plastic bags (contractor grade), making sure that no parts of the plants poke through. Allow the bags to sit in the sun for several weeks and on dark pavement for the best effect.

Tarping and Drying: Pile material on a sheet of plastic


Japanese knotweed Polygonum cuspidatum USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 1: 676. and cover with a tarp, fastening the tarp to the ground and monitoring it for escapes. Let the material dry for several weeks, or until it is clearly nonviable.

Chipping: Use this method for woody plants that don't reproduce vegetatively.
Burying: This is risky, but can be done with watchful diligence. Lay thick plastic in a deep pit before placing the cut up plant material in the hole. Place the material away from the edge of the plastic before covering it with more heavy plastic. Eliminate as much air as possible and toss in soil to weight down the material in the pit. Note that the top of the buried material should be at least three feet underground. Japanese knotweed should be at least 5 feet underground!

Drowning: Fill a large barrel with water and place soft-tissue plants in the water. Check after a few weeks and look for rotted plant material (roots, stems, leaves, flowers). Wellrotted plant material may be composted. A word of caution- seeds may still be viable after using this method. Do this before seeds are set. This method isn't used often. Be prepared for an awful stink!

Composting: Invasive plants can take root in compost. Don't compost any invasives unless you know there is no viable (living) plant material left. Use one of the above techniques (bagging, tarping, drying, chipping, or drowning) to render the plants nonviable before composting. Closely examine the plant before composting and avoid composting seeds.

Be diligent looking for seedlings for years in areas where removal and disposal took place.

\section*{Suggested Disposal Methods for Non-Native Invasive Plants}

This table provides information concerning the disposal of removed invasive plant material. If the infestation is treated with herbicide and left in place, these guidelines don't apply. Don't bring invasives to a local transfer station, unless there is a designated area for their disposal, or they have been rendered non-viable. This listing includes wetland and upland plants from the New Hampshire Prohibited Invasive Species List. The disposal of aquatic plants isn't addressed.
\begin{tabular}{|c|c|c|}
\hline Woody Plants & \begin{tabular}{c} 
Method of \\
Reproducing
\end{tabular} & \multicolumn{1}{c|}{ Methods of Disposal }
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Non-Woody Plants & Method of Reproducing & Methods of Disposal \\
\hline \begin{tabular}{l}
garlic mustard \\
(Alliaria petiolata) spotted knapweed \\
(Centaurea maculosa) \\
- Sap of related knapweed can cause skin irritation and tumors. Wear gloves when handling. \\
black swallow-wort \\
(Cynanchum nigrum) \\
- May cause skin rash. Wear gloves and long sleeves when handling. \\
pale swallow-wort \\
(Cynanchum rossicum) giant hogweed \\
(Heracleum mantegazzianum) \\
- Can cause major skin rash. Wear gloves and long sleeves when handling. \\
dame's rocket \\
(Hesperis matronalis) perennial pepperweed \\
(Lepidium latifolium) purple loosestrife \\
(Lythrum salicaria) \\
Japanese stilt grass \\
(Microstegium vimineum) mile-a-minute weed (Polygonum perfoliatum)
\end{tabular} & Fruits and Seeds & \begin{tabular}{l}
Prior to flowering \\
Depends on scale of infestation \\
Small infestation \\
- Pull or cut plant and leave on site with roots exposed. \\
Large infestation \\
- Pull or cut plant and pile. (You can pile onto or cover with plastic sheeting). \\
- Monitor. Remove any re-sprouting material. \\
During and following flowering \\
Do nothing until the following year or remove flowering heads and bag and let rot. \\
Small infestation \\
- Pull or cut plant and leave on site with roots exposed. \\
Large infestation \\
- Pull or cut plant and pile remaining material. (You can pile onto plastic or cover with plastic sheeting). \\
- Monitor. Remove any re-sprouting material.
\end{tabular} \\
\hline \begin{tabular}{l}
common reed \\
(Phragmites australis) \\
Japanese knotweed \\
(Polygonum cuspidatum) \\
Bohemian knotweed (Polygonum x bohemicum)
\end{tabular} & Fruits, Seeds, Plant Fragments Primary means of spread in these species is by plant parts. Although all care should be given to preventing the dispersal of seed during control activities, the presence of seed doesn't materially influence disposal activities. & \begin{tabular}{l}
Small infestation \\
- Bag all plant material and let rot. \\
- Never pile and use resulting material as compost. \\
- Burn. \\
Large infestation \\
- Remove material to unsuitable habitat (dry, hot and sunny or dry and shaded location) and scatter or pile. \\
- Monitor and remove any sprouting material. \\
- Pile, let dry, and burn.
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
UNH Cooperative Extension programs and policies are consistent with pertinent Federal and State laws and regulations, and prohibits discrimination in its programs, activities and employment on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sex, sexual orientation, or veteran's, marital or family status. College of Life Sciences and Agriculture, County Governments, NH Dept. of Resources and Economic Development, Division of Forests and Lands, NH Fish and Game, and U.S. Dept of Agriculture cooperating.
}

\begin{tabular}{|c|c|c|c|}
\hline 12 & 3/19/23 & ERTAC, TOWN ENGINEER, AND AOT COMMENTS & DIM \\
\hline 11 & 214423 & RENSEO PERTOWN ENGIMEEA COMMENTS & \\
\hline 10 & 12712122 & Dramage nevilins for aot & DJM \\
\hline - & \({ }^{1+1 / 22222}\) &  & DJM \\
\hline \% 8 & \(\frac{81 / 22}{}\) & \(\frac{\text { ADDED Drainage }}{\text { REVISION }}\) & \({ }_{\text {Br }}\) \\
\hline
\end{tabular}





From:
Sent:
To:
Cc:
Subject:
Attachments:

Newton, Kevin <Kevin.M.Newton@wildlife.nh.gov>
Friday, July 28, 2023 11:30 AM
Daniel Meditz; Brenden Walden
FGC: NHFG review; Winters, Melissa; Schlosser, Michael
NHB23-0047, White Rock Place, Raymond NH Alteration of Terrain Permit file \# 230105-001
Draft Conservation Easement Deed (00871494xC637B).pdf; Spotted_Blandings Flyer_ 2022.pdf; racer flyer_2022.pdf

Good afternoon,
New Hampshire Fish and Game has completed review of materials submitted for consultation for NHB23-0047, White Rock Place, prepared by Gove Environmental Services, Inc. and Jones \& Beach Engineers, Inc. The proposed project is for multi-family residential development located at 109 C Main Street, Raymond, NH.

Applications associated with this review:
- NHDES - Alteration of Terrain Permit file \#230105-001

Based on the NHB datacheck results letter and the information provided in the submission, we request the following recommended permit conditions. THESE RECOMMENDED PERMIT CONDITIONS ARE APPLICABLE TO ALL STATE PERMITS LISTED ABOVE.

Please include recommended permit conditions in final plan sheets as written below (updated highlighted text as applicable) and provide to NHDES for final review, with a copy to NHFG. Permit reviewers will adopt/include NHFG permit conditions in the permit if approved.

\section*{New Hampshire Fish and Game - Recommended Permit Conditions}
1. Blanding's Turtle (State Endangered), Spotted Turtle (State threatened) and Northern Black Racer (State Threatened) occur within the vicinity of the project area. All operators and personnel working on or entering the site shall be made aware of the potential presence of these species and shall be provided flyers that help to identify these species, along with NHFG contact information.
2. Rare species information (e.g. identification, observation and reporting of observations, when to contact NHFG immediately and NHFG contact information) shall be communicated during morning tailgate meetings prior to work commencement during the construction phase of the project. See Plan Sheet xxxxxx. Include attached flyers to plan sheet set.
3. Observations of Northern black racers in the months of April-May and September-October may indicate the potential for a den site on or near the project site. Observations of this species during this timeframe shall be reported immediately to the New Hampshire Fish and Game Department Nongame and Endangered Wildlife Environmental Review Program. Please contact Melissa Winters (603-479-1129) or Brendan Clifford (603-9440885). Observations of this species outside of this timeframe can follow general reporting guidance. Please include photograph with text if feasible.
4. Turtles and snakes may be attracted to disturbed ground during nesting season. Turtle nesting season occurs approximately May 15th - June 30th. All turtle species nests and northern black racer nests are protected by NH laws. If a nest is observed or suspected, operators shall contact Melissa Winters (603-479-1129) or Josh Megyesy (978-578-0802) at NHFG immediately for further consultation. The nest or suspected nest shall be marked (surrounding roped off or cone buffer deployed) and avoided; this shall be communicated to all personnel onsite. Site activities shall not occur in the area surrounding the nest or suspected nest until further guidance is provided by NHFG.
5. A 25 foot no-cut, no-disturb buffer shall be maintained around wetlands, with the exception of proposed disturbances depicted on the plan of reference. Placards marking these areas as "Protected habitat- no cutting/ no disturbance" shall be placed every 75 feet along the buffer boundaries. The \(\mathbf{2 5}\) foot no-cut, no-disturb buffer and placards shall be maintained and conserved in perpetuity in accordance with FIS 1003.02 (e).
6. The Conservation Easement Deed document titled, "Draft Conservation Easement Deed (00971494Xc637b), attached, shall be finalized and recorded at the Rockingham County Registry of Deeds. A copy of the recorded document shall be provided to NHFG.
a. A no cut, no disturb buffer shall be maintained in accordance with the boundaries of the "Open Space Area" on the plan titled, "Overview Site Plan, Sheet C13" dated 6/1/2023. Placards marking these areas as "Protected habitat- no cutting / no disturb buffer" shall be placed every 75 feet along the open space boundary. Please identify placard placements on plan sheets. See Plan Sheet xxxxxx.
7. Vernal pools and potential vernal pools shall be flagged prior to work and all impacts to vernal pools and potential vernal pools shall be avoided.
8. No sumps shall be included in the design of catch basins or outlet control structures.
9. Sloped or "Cape Cod" curbing shall be utilized wherever curbing is proposed.
10. All manufactured erosion and sediment control products, with the exception of turf reinforcement mats, utilized for, but not limited to, slope protection, runoff diversion, slope interruption, perimeter control, inlet protection, check dams, and sediment traps shall not contain plastic, or multifilament or monofilament polypropylene netting or mesh with an opening size of greater than \(1 / 8\) inches. See Plan Sheet xxxxxx.
11. All observations of threatened or endangered species on the project site shall be reported to the NHFG nongame and endangered wildlife environmental review program by phone at 603-271-2461 and by email at NHFGreview@wildlife.nh.gov, with the email subject line containing the NHB DataCheck tool results letter assigned number, the project name, and the term Wildlife Species Observation.
12. Photographs of the observed species and nearby elements of habitat or areas of land disturbance shall be provided to NHFG in digital format at the above email address for verification, as feasible.
13. In the event a threatened or endangered species is observed on the project site during the term of the permit, the species shall not be disturbed, handled, or harmed in any way prior to consultation with NHFG and implementation of corrective actions recommended by NHFG.
a. Site operators shall be allowed to relocate wildlife encountered if discovered within the active work zone if in direct harm from project activities. Wildlife shall be relocated in close proximity to the capture location but outside of the work zone and in the direction the individual was heading. NHFG shall be contacted immediately if this action occurs.
14. NHFG, including its employees and authorized agents, shall have access to the property during the term of the permit.

NHFG has completed our review of materials submitted for consultation under FIS 1004. No further coordination with NHFG is requested, and the final recommendations have been transmitted to the applicable permitting agency. Questions or concerns on NHFG recommendations must follow FIS 1004.12. Note that NHFG recommendations may be withdrawn pursuant to FIS 1004.

\section*{Sincerely,}

Kevin Newton
Wildlife Biologist
NH Fish and Game Department
Wildlife Division
11 Hazen Drive, Concord NH 03301
Phone: 603-271-5860

New Hampshire Fish and Game requirements for environmental review consultation can be found at:
https://gencourt.state.nh.us/rules/state agencies/fis \(1000 . \mathrm{html}\). ALL requests for consultation and submittals should be sent via email to NHFGreview@wildlife.nh.gov or can be sent hardcopy by mail. The NHB datacheck results letter number needs to be included in the email subject line to read as "NHBxx-xxxx_Project Name_FIS 1004 Consultation Submittal".

The requirements for consultation (Fis 1004) shall not apply to the following: statutory permit by notification, permit by rule, permit by notification, routine roadway registration, docking structure registration, or conditional authorization by rule. Review requests for these projects or other project types should be submitted to NHFGreview@wildlife.nh.gov or can be sent hardcopy by mail - email or mail subject line for these review requests should read "NHBxx-xxxx_Project Name_ Env. Review Request".

Please provide shapefiles/KMZ/KMLs of the project site (and relevant features if applicable) with your submittal. Review statements provided in the NHB Datacheck Results letter for additional guidance.

EXTERNAL SENDER: Use caution when following links or opening attachments.
\begin{tabular}{ll} 
From: & Brenden Walden <bwalden@gesinc.biz> \\
Sent: & Tuesday, April 25, 2023 3:54 PM \\
To: & Joseph Coronati; Daniel Meditz \\
Cc: & Mike Garrepy \\
Subject: & FW: NHB23-0047, White Rock Place, Raymond
\end{tabular}

Please see below from Kevin.
We can get a response together for him but will need assistance on items 2 through 6 .
Thanks.
-BW

From: Newton, Kevin <Kevin.M.Newton@wildlife.nh.gov>
Sent: Monday, April 24, 2023 3:10 PM
To: Brenden Walden <bwalden@gesinc.biz>
Cc: FGC: NHFG review <NHFGreview@wildlife.nh.gov>; Winters, Melissa <Melissa.J.Winters@wildlife.nh.gov>; Mauck, Ridgely <Addison.R.Mauck@des.nh.gov>; Lewis, Eben <EBEN.M.LEWIS@des.nh.gov>
Subject: NHB23-0047, White Rock Place, Raymond
Good afternoon,
The New Hampshire Fish and Game Department (NHFG), Nongame \& Endangered Wildlife Program is currently reviewing your request for consultation for NHB23-0047, White Rock Place, located in Raymond, NH.

Pursuant to FIS 1004.05 (c), NHFG determined additional information is necessary for us to continue our review.
Additional information required as per FIS 1004.05(c). Your response to this request RFAI shall follow FIS 1004.07. Please send all missing components as a single submission. Submissions must be deemed satisfactory in order to continue our review.
1. Construction sequence \#2 within your written report states, " Wetland boundaries are to be clearly marked and at least a temporary culvert or roadbed to be done prior to the start of construction." Please confirm if there will be wetland impacts associated with this project. The NHB data check letter lists NHDES Alteration of Terrain Permit and NHDES Wetland Standard Dredge and Fill - Minor, and the consultation package submitted to NHFG lists only NHDES Alteration of Terrain. If wetland impacts are indeed proposed, please provide information on the impacts and any installation notes for culverts (sizing etc.).
2. Please confirm the proposed no cut, no disturb buffer widths to wetlands on-site. The section within your report, "Vegetated Buffers (review verbiage)" at the bottom of page 4, makes several statements about the importance of vegetated buffers in removing sediment and pollutants from runoff. NHFG recommends a minimum 100 ft . no cut/ no disturb buffers on vernal pools as they provide significant feeding habitat for Blanding's and Spotted turtles. Vernal pools should be connected by mature forested corridors for turtle travel as turtles are intolerant of early forest regeneration, high stem density and higher temperatures. Blanding's turtle is a highly terrestrial turtle and utilizes uplands, travelling between core wetland habitats, vernal pools and nesting areas which may be located up to a mile away from their core wetlands. Both turtle species will also use vernal pools for winter hibernation. Mature tree canopy cover around vernal pools also protects (cools) water temperature and prolongs hydro period, critical for protecting amphibian eggs, larval development and maturation. Blanding's and spotted turtles both feed heavily upon amphibian eggs and larvae.
3. Does the proposed well pump house have the potential to impact hydrology of the adjacent vernal pools?
4. How is the proposed open space going to be protected? NHFG recommends a Conservation Easement be proposed to provide permanent protection of habitat for T\&E species. NHFG has examples available to assist with drafting of an Easement.
5. Closed drainage systems pose a significant mortality threat to rare turtles and snakes that may be swept into closed systems (sumps, non-day lighted piping) during storm events or become entrapped after falling through catch basin grates. What opportunities are there to mitigate this mortality threat by incorporating open drainage features (i.e conveyance swales) in place of the proposed catch basin system with deep sumps?
6. What is the purpose of the parking expansion exhibit? If these spaces are going to be required by the town as part of the project, NHFG will need to review the proposed plans, specifically the drainage associated with the additional parking. NHFG encourages incorporating open drainage features in these plans.

Pursuant to Fis 1004.06 (b), NHFG is requesting that the above be received within \(\mathbf{3 0}\) days of the date of this request (no later than 5/24/2023).

Per Fis 1004.09(b), the NHFG shall not deliver recommendations if the applicant fails to file a complete response to a request for additional information unless the partial response (1) explains why the missing information is unavailable or cannot be provided with the specified time, and (2) agrees in writing to extend the time to complete NHFG's review, and the decision of the referring agency on the underlying permit application, until a reasonable time after the requested information is in fact provided to the department.

Should additional time be necessary to submit the requested information, an extension of the deadline may be requested. Requests for additional time must be received prior to the deadline and follow the guidelines in Fis 1004.10 in order to be approved.

Thank you and please let me know if you have any questions,

Kevin Newton
Wildlife Biologist
NH Fish and Game Department
Wildlife Division
11 Hazen Drive, Concord NH 03301
Phone: 603-271-5860

EXTERNAL SENDER: Use caution when following links or opening attachments.

Gove Environmental Services, Inc.

May 23, 2023

To: Kevin Newton
Wildlife Biologist
NH Fish and Game Department
Wildlife Division
From Brenden Walden, Gove Environmental Services
Subject: NHB23-0047, White Rock Place, Raymond
Re: April 24, 2023 FIS 1004.05(c) Request for More Information
Kevin,
Please find enclosed a response to your RFMI dated November \(9^{\text {th }}\), 2022. All items are addressed in the order they appear in your letters.

\section*{Response to Request for More Information:}
1. Construction sequence \#2 within your written report states, "Wetland boundaries are to be clearly marked and at least a temporary culvert or roadbed to be done prior to the start of construction." Please confirm if there will be wetland impacts associated with this project. The NHB data check letter lists NHDES Alteration of Terrain Permit and NHDES Wetland Standard Dredge and Fill - Minor, and the consultation package submitted to NHFG lists only NHDES Alteration of Terrain. If wetland impacts are indeed proposed, please provide information on the impacts and any installation notes for culverts (sizing etc.).

There are no proposed wetland impacts. The proposed installation of the culvert is to maintain hydrologic connectivity from sheet flow that exists on the landscape. We typically file NHB's in early stages of planning, with AOT and Wetlands selected so that in the instance those state permit applications are required for a project then we don't have to refile the NHB report.
2. Please confirm the proposed no cut, no disturb buffer widths to wetlands on-site. The section within your report, "Vegetated Buffers (review verbiage)" at the bottom of page 4, makes several statements about the importance of vegetated buffers in removing sediment and pollutants from runoff. NHFG recommends a minimum 100 ft. no cut/ no disturb buffers on vernal pools as they provide significant feeding habitat for Blanding's and Spotted turtles. Vernal pools should be connected by mature forested corridors for turtle travel as turtles are intolerant of early forest regeneration, high stem density and higher temperatures. Blanding's turtle is a highly terrestrial turtle and utilizes uplands,

Gove Environmental Services, Inc.
travelling between core wetland habitats, vernal pools and nesting areas which may be located up to a mile away from their core wetlands. Both turtle species will also use vernal pools for winter hibernation. Mature tree canopy cover around vernal pools also protects (cools) water temperature and prolongs hydro period, critical for protecting amphibian eggs, larval development and maturation. Blanding's and spotted turtles both feed heavily upon amphibian eggs and larvae.

In general, we are maintaining a \(25^{\prime}\) buffer between wetlands and the proposed development. This \(25^{\prime}\) buffer is actually a building setback required by the Town but we are in fact keeping most disturbance altogether out of this, with a few slight encroachments. We are requesting a waiver from the Town's parking requirements and instead have our parking number at 1.8 spaces per unit, based on empirical data. This will keep us out of the 100 ' vernal pool buffer as much as we reasonably can while still providing space for parking and stormwater management associated with the proposed development. A total of \(26,792 \mathrm{SF}\) of the existing vernal pool buffer areas will be covered with impervious surface post-construction, and a total of \(49,653 \mathrm{SF}\) will be impacted out of the total of \(271,303 \mathrm{SF}\) of vernal pools and their associated buffers on the proposed development site (within the proposed boundary of Lot 25). This means that \(221,650 \mathrm{SF}\) of vernal pools and associated buffers will remain undisturbed and a large portion will be in deed restricted open space. There will be no direct impacts to vernal pools or other wetlands.
3. Does the proposed well pump house have the potential to impact hydrology of the adjacent vernal pools?

At this time the well and pump house are no longer proposed. This project is intended to be serviced by town water.
4. How is the proposed open space going to be protected? NHFG recommends a Conservation Easement be proposed to provide permanent protection of habitat for \(T \& E\) species. NHFG has examples available to assist with drafting of an Easement.

The applicant is working on putting draft protection language together for the proposed open space for review by Fish and Game.
5. Closed drainage systems pose a significant mortality threat to rare turtles and snakes that may be swept into closed systems (sumps, non-day lighted piping) during storm events or become entrapped after falling through catch basin grates. What opportunities are there to mitigate this mortality threat by incorporating open drainage features (i.e conveyance swales) in place of the proposed catch basin system with deep sumps?

Please see attached revised plans with no sump catch basins.

6. What is the purpose of the parking expansion exhibit? If these spaces are going to be required by the town as part of the project, NHFG will need to review the proposed plans, specifically the drainage associated with the additional parking. NHFG encourages incorporating open drainage features in these plans.

These additional parking spaces are not proposed at this time, the exhibit is simply to show what the full built out parking lot would look like to meet the Town's requirement of 3 spaces per unit where we are seeking a waiver to allow 1.8 spaces per unit. If additional parking were to be built in the future, no matter the number of additional spaces, it would have to go through the required permitting process and would be subject to whatever permitting requirements exist at the time that it is proposed.

This completes the response to the FIS request for more information related to the White Rock Place development on Main Street, in Raymond. If you have any questions or feel I can be of further assistance please feel free to contact me by email, bwalden@gesinc.biz .

Sincerely,

Brenden Walden
Certified Wetland Scientist \#297
Gove Environmental Services, Inc.

Attachments: Revised Plan Sheets


NOTES















9. Contractor To






















\begin{tabular}{|c|c|c|c|}
\hline 13 & 5/5/23 & Revised per tac, Town Enginerr, and Aot comments & , m \\
\hline 12 & 3/19223 & REVISED PeR Trc, Town Enginer, And Aot comments & DJM \\
\hline & 214423 & Revised Per Town Enciner comments & \\
\hline & 1211212 & DRAINAGE REVISIONS FOR AOT & M \\
\hline 9 & 11/2222 & ISSUED FOR REVEW & \\
\hline REV. & рате & Revision & BY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Plan Name: & \multicolumn{2}{|l|}{PLAN AND PROFILE} \\
\hline Project: & \multicolumn{2}{|l|}{} \\
\hline Owner of fecora: & LOT 24: TUCK REALTY CORP
PO BOX 190, EXETER, NH 03833 & LOT 25: JOSEPH, JOHN, ARDELL \& INEX WELCH
49 RAYMOND RD., NOTTINGHAM, NH 03290 \\
\hline
\end{tabular}


\begin{tabular}{ll} 
From: & Newton, Kevin <Kevin.M.Newton@wildlife.nh.gov> \\
Sent: & Friday, June 30, 2023 2:12 PM \\
To: & Daniel Meditz; Stefanie Michaud \\
Cc: & Joseph Coronati; 'Mike Garrepy'; 'Brenden Walden'; Kevin Baum; Schlosser, Michael; \\
& FGC: NHFG review; Winters, Melissa \\
Subject: & RE: JBE 20564 - White Rock Place, Raymond, AoT Application 230105-001 - \\
& NHB23-0047
\end{tabular}

Hi Dan,
Thank you for your patience with our review process. We appreciate your team addressing our comments. I was able to sit down with Melissa yesterday to review the latest materials. We are very close to wrapping up but need clarification on a couple of items.
1. Is the Warranty Deed document provided in the response letter the complete draft document or are there other sections (purposes, definitions) available to review?
2. When reviewing the site plans, Melissa pointed out the proposed property line separating the conservation area from the newly proposed lot to the south. Are there any development plans for the new lot to the south expected in the future? If so, it may be worth considering them and how they may impact the functionality of the conservation area as it relates to threatened and endangered species habitat.

Thank you and enjoy the \(4^{\text {th }}\) of July,
Kevin Newton
Kevin Newton
Wildlife Biologist
NH Fish and Game Department
Wildlife Division
11 Hazen Drive, Concord NH 03301
Phone: 603-271-5860

\section*{From: Newton, Kevin}

Sent: Monday, June 19, 2023 10:25 AM
To: Daniel Meditz <DMeditz@jonesandbeach.com>; Stefanie Michaud <smichaud@jonesandbeach.com>; Schlosser, Michael <Michael.J.Schlosser@des.nh.gov>
Cc: Joseph Coronati <jcoronati@Jonesandbeach.com>; 'Mike Garrepy' <mgarrepy@gmail.com>; 'Brenden Walden' <bwalden@gesinc.biz>; Kevin Baum <kbaum@hpgrlaw.com>
Subject: RE: JBE 20564 - White Rock Place, Raymond, AoT Application 230105-001 - NHB23-0047
Thank you, Dan. We will review and provide a response.
Kevin Newton
Wildlife Biologist
NH Fish and Game Department
Wildlife Division
11 Hazen Drive, Concord NH 03301

From: Daniel Meditz <DMeditz@jonesandbeach.com>
Sent: Monday, June 19, 2023 10:11 AM
To: Stefanie Michaud <smichaud@jonesandbeach.com>; Schlosser, Michael <Michael.J.Schlosser@des.nh.gov>
Cc: Joseph Coronati <jcoronati@Jonesandbeach.com>; 'Mike Garrepy' <mgarrepy@gmail.com>; 'Brenden Walden' <bwalden@gesinc.biz>; Newton, Kevin <Kevin.M.Newton@wildlife.nh.gov>; Kevin Baum <kbaum@hpgrlaw.com> Subject: RE: JBE 20564 - White Rock Place, Raymond, AoT Application 230105-001 - NHB23-0047

EXTERNAL: Do not open attachments or click on links unless you recognize and trust the sender.

Kevin N., The resubmission package also contains our responses to your most recent comments.
Dan Meditz, E.I.T
Project Engineer

\section*{Jones\&Beach Engineers, Inc.}

85 Portsmouth Avenue
PO Box 219
Stratham, NH 03885
(603) 772-4746 (ext. \#128)
http://www.jonesandbeach.com

\section*{LEGAL NOTICE}

Unless expressly stated otherwise, this message is confidential and contains privileged information intended for the addressee(s) only. Access to this E-mail by anyone else is unauthorized. If you are not an addressee, any disclosure or copying of the contents of this E-mail or any action taken (or not taken) is unauthorized and may be unlawful. If you are not an addressee, please inform the sender immediately.

From: Stefanie Michaud <smichaud@jonesandbeach.com>
Sent: Thursday, June 15, 2023 9:44 AM
To: 'Schlosser, Michael' <Michael.J.Schlosser@des.nh.gov>
Cc: Joseph Coronati <jcoronati@Jonesandbeach.com>; Daniel Meditz <DMeditz@jonesandbeach.com>; 'Mike Garrepy' <mgarrepy@gmail.com>; 'Brenden Walden' <bwalden@gesinc.biz>; 'Kevin.M.Newton@wildlife.nh.gov'
<Kevin.M.Newton@wildlife.nh.gov>; Kevin Baum <kbaum@hpgrlaw.com>
Subject: JBE 20564 - White Rock Place, Raymond, AoT Application 230105-001

Good Morning Michael,

Please follow the link below to download the revised documents for the above-mentioned project. We have mailed you a hard copy as well. Thank you.
\({ }^{\square}\) 2023-06-15 NHDES AoT Resubmission
Stefanie Michaud
Office Manager
Jones\&Beach Engineers, Inc.
85 Portsmouth Avenue
PO Box 219
Stratham, NH 03885

SAVE A TREE. PLEASE CONSIDER THE ENVIRONMENT BEFORE PRINTING.
Think Green and view the Screen
Thank You
LEGAL NOTICE
Unless expressly stated otherwise, this message is confidential and contains privileged information intended for the addressee(s) only. Access to this E-mail by anyone else is unauthorized. If you are not an addressee, any disclosure or copying of the contents of this E-mail or any action taken (or not taken) is unauthorized and may be unlawful. If you are not an addressee, please inform the sender immediately.

EXTERNAL SENDER: Use caution when following links or opening attachments.
\begin{tabular}{ll} 
From: & Daniel Meditz \\
Sent: & Thursday, July 27, 2023 12:21 PM \\
To: & Newton, Kevin \\
Cc: & Joseph Coronati; 'Mike Garrepy'; 'Brenden Walden'; Kevin Baum; Schlosser, Michael; \\
& FGC: NHFG review; Winters, Melissa \\
Subject: & RE: JBE 20564 - White Rock Place, Raymond, AoT Application 230105-001- \\
& NHB23-0047 \\
Attachments: & Draft Conservation Easement Deed (00871494xC637B).pdf
\end{tabular}

Kevin,
Please see attached draft easement deed. We have no plans for the other subdivided lot at this time. Any development on that lot in the future would have to go through the typical permitting process.

Thanks,
Dan Meditz, E.I.T
Lead Design Engineer
Jones\&Beach Engineers, Inc.
85 Portsmouth Avenue
PO Box 219
Stratham, NH 03885
(603) 772-4746 (ext. \#128)
http://www.jonesandbeach.com
LEGAL NOTICE
Unless expressly stated otherwise, this message is confidential and contains privileged information intended for the addressee(s) only. Access to this E-mail by anyone else is unauthorized. If you are not an addressee, any disclosure or copying of the contents of this E-mail or any action taken (or not taken) is unauthorized and may be unlawful. If you are not an addressee, please inform the sender immediately.

From: Newton, Kevin <Kevin.M.Newton@wildlife.nh.gov>
Sent: Friday, June 30, 2023 2:12 PM
To: Daniel Meditz <DMeditz@jonesandbeach.com>; Stefanie Michaud <smichaud@jonesandbeach.com>
Cc: Joseph Coronati <jcoronati@Jonesandbeach.com>; 'Mike Garrepy' <mgarrepy@gmail.com>; 'Brenden Walden' <bwalden@gesinc.biz>; Kevin Baum <kbaum@hpgrlaw.com>; Schlosser, Michael <Michael.J.Schlosser@des.nh.gov>; FGC: NHFG review <NHFGreview@wildlife.nh.gov>; Winters, Melissa <Melissa.J.Winters@wildlife.nh.gov> Subject: RE: JBE 20564 - White Rock Place, Raymond, AoT Application 230105-001 - NHB23-0047

Hi Dan,
Thank you for your patience with our review process. We appreciate your team addressing our comments. I was able to sit down with Melissa yesterday to review the latest materials. We are very close to wrapping up but need clarification on a couple of items.
1. Is the Warranty Deed document provided in the response letter the complete draft document or are there other sections (purposes, definitions) available to review?
2. When reviewing the site plans, Melissa pointed out the proposed property line separating the conservation area from the newly proposed lot to the south. Are there any development plans for the new lot to the south expected in the future? If so, it may be worth considering them and how they may impact the functionality of the conservation area as it relates to threatened and endangered species habitat.

Thank you and enjoy the \(4^{\text {th }}\) of July,

Kevin Newton

Kevin Newton
Wildlife Biologist
NH Fish and Game Department
Wildlife Division
11 Hazen Drive, Concord NH 03301
Phone: 603-271-5860

From: Newton, Kevin
Sent: Monday, June 19, 2023 10:25 AM
To: Daniel Meditz <DMeditz@jonesandbeach.com>; Stefanie Michaud <smichaud@jonesandbeach.com>; Schlosser, Michael <Michael.J.Schlosser@des.nh.gov>
Cc: Joseph Coronati <jcoronati@Jonesandbeach.com>; 'Mike Garrepy' <mgarrepy@gmail.com>; 'Brenden Walden' <bwalden@gesinc.biz>; Kevin Baum <kbaum@hpgrlaw.com>
Subject: RE: JBE 20564 - White Rock Place, Raymond, AoT Application 230105-001 - NHB23-0047

Thank you, Dan. We will review and provide a response.

Kevin Newton
Wildlife Biologist
NH Fish and Game Department
Wildlife Division
11 Hazen Drive, Concord NH 03301
Phone: 603-271-5860

From: Daniel Meditz <DMeditz@jonesandbeach.com>
Sent: Monday, June 19, 2023 10:11 AM
To: Stefanie Michaud <smichaud@jonesandbeach.com>; Schlosser, Michael <Michael.J.Schlosser@des.nh.gov>
Cc: Joseph Coronati <icoronati@Jonesandbeach.com>; 'Mike Garrepy' <mgarrepy@gmail.com>; 'Brenden Walden' <bwalden@gesinc.biz>; Newton, Kevin <Kevin.M.Newton@wildlife.nh.gov>; Kevin Baum <kbaum@hpgrlaw.com> Subject: RE: JBE 20564 - White Rock Place, Raymond, AoT Application 230105-001 - NHB23-0047

\section*{EXTERNAL: Do not open attachments or click on links unless you recognize and trust the sender.}

Kevin N., The resubmission package also contains our responses to your most recent comments.
Dan Meditz, E.I.T
Project Engineer

\section*{Jones\&Beach Engineers, Inc.}

85 Portsmouth Avenue
PO Box 219
Stratham, NH 03885

\section*{LEGAL NOTICE}

Unless expressly stated otherwise, this message is confidential and contains privileged information intended for the addressee(s) only. Access to this E-mail by anyone else is unauthorized. If you are not an addressee, any disclosure or copying of the contents of this E-mail or any action taken (or not taken) is unauthorized and may be unlawful. If you are not an addressee, please inform the sender immediately.

From: Stefanie Michaud <smichaud@ionesandbeach.com>
Sent: Thursday, June 15, 2023 9:44 AM
To: 'Schlosser, Michael' <Michael.J.Schlosser@des.nh.gov>
Cc: Joseph Coronati <icoronati@Jonesandbeach.com>; Daniel Meditz <DMeditz@ionesandbeach.com>; 'Mike Garrepy' <mgarrepy@gmail.com>; 'Brenden Walden' <bwalden@gesinc.biz>; 'Kevin.M.Newton@wildlife.nh.gov'
<Kevin.M.Newton@wildlife.nh.gov>; Kevin Baum <kbaum@hpgrlaw.com>
Subject: JBE 20564 - White Rock Place, Raymond, AoT Application 230105-001
Good Morning Michael,
Please follow the link below to download the revised documents for the above-mentioned project. We have mailed you a hard copy as well. Thank you.

\section*{\(\square\) 2023-06-15 NHDES AoT Resubmission}

\section*{Stefanie Michaud}

\section*{Office Manager}

Jones\&Beach Engineers, Inc.
85 Portsmouth Avenue
PO Box 219
Stratham, NH 03885
(603) 772-4746 (ext. \#119)
smichaud@jonesandbeach.com

\footnotetext{
SAVE A TREE. PLEASE CONSIDER THE ENVIRONMENT BEFORE PRINTING.
Think Green and view the Screen
Thank You

\section*{LEGAL NOTICE}

Unless expressly stated otherwise, this message is confidential and contains privileged information intended for the addressee(s) only. Access to this E-mail by anyone else is unauthorized. If you are not an addressee, any disclosure or copying of the contents of this E-mail or any action taken (or not taken) is unauthorized and may be unlawful. If you are not an addressee, please inform the sender immediately.
}

EXTERNAL SENDER: Use caution when following links or opening attachments.


\title{
100 feet Abutters List Report
}

Raymond, NH
August 25, 2023

Subject Property:
Parcel Number: 023-000-024-000
CAMA Number: \(\quad 023-000-024-000-000\)
Property Address: ROUTE 101
```

Mailing Address: TUCK REALTY CORPORATION P.O. BOX 190
EXETER, NH 03833

```
\begin{tabular}{|c|c|c|c|}
\hline Subject Property & & & \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 023-000-025-000 \\
& 023-000-025-000-000 \\
& \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & \begin{tabular}{l}
WELCH,JOSEPH \& JOHN \& ARDELL \& INEZ BETSY PATTERSON \& ROBIN PROULX \\
49 RAYMOND ROAD, ROUTE 156 NOTTINGHAM, NH 03290
\end{tabular} \\
\hline \begin{tabular}{l}
Abutters: \\
Parcel Number: CAMA Number Property Address:
\end{tabular} & \[
\begin{aligned}
& 023-000-026-000 \\
& 023-000-026-000-000 \\
& 111 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & LURIE, AUDREY J. 111 MAIN STREET RAYMOND, NH 03077 \\
\hline \begin{tabular}{l}
Abutters: \\
Parcel Number: CAMA Number: Property Address:
\end{tabular} & \[
\begin{aligned}
& 023-000-027-000 \\
& 023-000-027-000-000 \\
& 109 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & \begin{tabular}{l}
BUCKUS, JILLIAN \\
109 MAIN STREET \\
RAYMOND, NH 03077
\end{tabular} \\
\hline Subject Property Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 023-000-028-000 \\
& 023-000-028-000-000
\end{aligned}
\]
\[
109 \text { B MAIN STREET }
\] & Mailing Address: & WELCH, PAUL W \& TERI L 109 MAIN STREET RAYMOND, NH 03077 \\
\hline Subject Property Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 023-000-029-000 \\
& 023-000-029-000-000 \\
& \text { 109A MAIN STREET }
\end{aligned}
\] & Mailing Address: & WELCH, WAYNE F CATHLEEN M WELCH 109 A MAIN STREET RAYMOND, NH 03077 \\
\hline Abutters: Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 023-000-030-000 \\
& 023-000-030-000-000 \\
& 105 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & MERKEL EMPIRE , LLC 17 PINEWOOD DRIVE STRATHAM, NH 03885 \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 023-000-035-000 \\
& 023-000-035-000-000 \\
& 110 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & BREWITT, JOHN J.,JR. \& ERIN Y. 110 MAIN STREET RAYMOND, NH 03077 \\
\hline Parcel Number CAMA Number: Property Address: & \[
\begin{aligned}
& 023-000-036-000 \\
& 023-000-036-000-000
\end{aligned}
\]
\[
112 \text { MAIN STREET }
\] & Mailing Address: & MCCARTHY, TONA \& CYNTHIA P CINDY A. TOWNSEND 112 MAIN STREET RAYMOND, NH 03077 \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 023-000-037-000 \\
& 023-000-037-000-000 \\
& 114 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & RUELAS, JEREMY S \& SUSANNA L 114 MAIN STREET RAYMOND, NH 03077 \\
\hline Parcel Number CAMA Number: Property Address: & \[
\begin{aligned}
& 023-000-038-000 \\
& 023-000-038-000-000 \\
& 116 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & PERREAULT, JOHN W 116 MAIN STREET RAYMOND, NH 03077 \\
\hline
\end{tabular}
www.cai-tech.com


\section*{100 feet Abutters List Report}

Raymond, NH
August 25, 2023
\begin{tabular}{ll} 
Parcel Number: & \(028-003-001-000\) \\
CAMA Number: & \(028-003-001-000-000\) \\
Property Address: & 103 MAIN STREET
\end{tabular}

\author{
Mailing Address: LACASSE, ALISON F. W. \& RANDALL A INEZ WELCH \\ 103 MAIN STREET \\ RAYMOND, NH 03077 \\ \(\begin{array}{ll}\text { Mailing Address: } & \text { KING, WILLIAMC JANICE L KING } \\ & 101 \text { MAIN STREET } \\ & \text { RAYMOND, NH } 03077\end{array}\)
}
\begin{tabular}{ll} 
Parcel Number: & \(028-003-002-000\) \\
CAMA Number: & \(028-003-002-000-000\) \\
Property Address: & 101 MAIN STREET
\end{tabular}
\(\begin{array}{ll}\text { Mailing Address: } & \text { PRATT, KEVIN M. KERRY J. PRATT } \\ & 11 \text { SMITH POND ROAD } \\ & \text { RAYMOND, NH } 03077\end{array}\)
\begin{tabular}{ll} 
Parcel Number: & \(028-003-005-000\) \\
CAMA Number: & \(028-003-005-000-000\) \\
Property Address: & 97 MAIN STREET
\end{tabular}

Mailing Address: RICE, CHARLES F.JR. REVOCABLE
TRUST CHARLES F. RICE, JR. /
TRUSTEE
97 MAIN STREET
RAYMOND, NH 03077
\begin{tabular}{lll} 
Parcel Number: & \(028-003-006-000\) & Mailing Address: \\
CAMA Number: & G28-003-006-000-000 & \\
Property Address: & 95 MAIN STREET & RAYMAM, DENNIS JANET BUTLER \\
& & RAREET \\
& &
\end{tabular}
\begin{tabular}{llll} 
& \(028-003-007-000\) & Mailing Address: & JOHNSON, CARLYLE R. MARICELA \\
Parcel Number: & \(028-003-007-000-000\) & & \\
CAMA Number: & 0 MOUSON \\
Property Address: & 9 MOULTON STREET & & \\
& & RAYMOND, NH O3077
\end{tabular}
\begin{tabular}{lll} 
Parcel Number: & \(028-003-007-001\) & Mailing Address: ARTHUR, LINDA \& JOHN \\
CAMA Number: & \(028-003-007-001-000\) & 91 MAIN STREET \\
Property Address: 91 MAIN STREET & & RAYMOND, NH 03077
\end{tabular}
\begin{tabular}{lll} 
& & \\
Parcel Number: & \(028-003-011-000\) & Mailing Address: \\
CAMA Number: & FROST, WAYNE G. \& IRENE \\
Property Address: & 7 MOULTON STREET & \\
& & RAYMLTON STREET
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Parcel Number: & 028-003-012-000 & Mailing Address: & POWER, JOHN W \\
\hline CAMA Number: & 028-003-012-000-000 & & 5 MOULTON STREET \\
\hline Property Address: & 5 MOULTON STREET & & RAYMOND, NH 03077 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
Parcel Number: & \(028-003-013-000\) & Mailing Address: \\
CAMA Number: & CONNOLLY, SEAN M. \\
Property Address: & 3 MOULTON STREET & \\
3 MOULTON STREET \\
& & RAYMOND, NH 03077
\end{tabular}
\begin{tabular}{llll} 
Parcel Number: & \(028-003-014-000\) & Mailing Address: & GILES, ERIN B. \& BRIAN D. \\
CAMA Number: & \(028-003-014-000-000\) & & \\
Property Address: & 1 MOULTON STREET & & \\
& & RAYMOND, NH 03077
\end{tabular}
www.cai-tech.com


\section*{100 feet Abutters List Report}

Raymond, NH
August 25, 2023
\begin{tabular}{|c|c|c|c|}
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 028-003-016-000 \\
& \text { 028-003-016-000-000 } \\
& \text { ORCHARD STREET }
\end{aligned}
\] & Mailing Address: & RAYMOND, TOWN OF 4 EPPING STREET RAYMOND, NH 03077 \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 028-003-017-000 \\
& \text { 028-003-017-000-000 } \\
& \text { 11 ORCHARD STREET }
\end{aligned}
\] & Mailing Address: & \begin{tabular}{l}
MICHAELS, KEITH J. \\
11 ORCHARD STREET RAYMOND, NH 03077
\end{tabular} \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 028-003-115-000 \\
& 028-003-115-000-000 \\
& 100 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & \begin{tabular}{l}
BERGERON MICHAEL B MAUREENR BERGERON \\
100 MAIN STREET \\
RAYMOND, NH 03077
\end{tabular} \\
\hline Parcel Number: CAMA Number: Property Address: & \begin{tabular}{l}
028-003-116-000 \\
028-003-116-000-000 \\
102 MAIN STREET
\end{tabular} & Mailing Address: & WATT, DANIEL E 102 MAIN STREET RAYMOND, NH 03077 \\
\hline Parcel Number CAMA Number: Property Address: & \[
\begin{aligned}
& 028-003-117-000 \\
& 028-003-117-000-000 \\
& 106 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & MOULTON, EDWARD W JEAN MOULTON 2 OLD FREMONT ROAD RAYMOND, NH 03077 \\
\hline Parcel Number: CAMA Number Property Address: & \[
\begin{aligned}
& \text { 028-003-120-001 } \\
& \text { I28-003-120-001-000 } \\
& \text { INDUSTRIAL DRIVE }
\end{aligned}
\] & Mailing Address: & ONYX RAYMOND LLC. 200 RESERVOIR STREET SUITE 306 NEEDHAM, MA 02494 \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 028-004-007-000 \\
& 028-004-007-000-000
\end{aligned}
\]
\[
108 \text { MAIN STREET }
\] & Mailing Address: & MOULTON, EDWARD W 2 OLD FREMONT ROAD RAYMOND, NH 03077 \\
\hline Parcel Number: CAMA Number: Property Address: & 028-004-007-000
\[
108 \text { MAIN STREET }
\] & Mailing Address: & \begin{tabular}{l}
VERIZON \\
P.O. BOX 2549 \\
ADDISON, TX 75001
\end{tabular} \\
\hline Parcel Number: CAMA Number Property Address: & \[
\begin{aligned}
& 028-004-007-000 \\
& \text { 028-004-007-003-000 } \\
& 108 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & \begin{tabular}{l}
A \(T\) \& COMPANY \\
754 PEACHTREE STREET \\
ATLANTA, GA 30308
\end{tabular} \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& \text { 028-004-007-000 } \\
& 028-004-07-004-000
\end{aligned}
\]
\[
108 \text { MAIN STREET }
\] & Mailing Address: & \begin{tabular}{l}
METRO PCS \\
12920 SE 38TH Street \\
Bellevue, WA 98006
\end{tabular} \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 028-004-007-000 \\
& \text { 028-004-007-005-000 } \\
& 108 \text { MAIN STREET }
\end{aligned}
\] & Mailing Address: & \begin{tabular}{l}
SPRINT COMMUNICATIONS C/O PROPERTY TAX DEPARTMENT P.O. BOX 85022 \\
BELLEVUE, WA 98015-8522
\end{tabular} \\
\hline Parcel Number: CAMA Number: Property Address: & \[
\begin{aligned}
& 028-004-007-000 \\
& \text { O28-004-07S-000-000 } \\
& \text { TOWN WIDE }
\end{aligned}
\] & Mailing Address: & \begin{tabular}{l}
SPRINT COMMUNICATIONS CO. L.P. ATTN: PROPERTY TAX DEPARTMENT PO BOX 85022 \\
BELLEVUE, WA 98015-8522
\end{tabular} \\
\hline
\end{tabular}


\title{
100 feet Abutters List Report
}

Raymond, NH
August 25, 2023
\begin{tabular}{llll} 
Parcel Number: & \begin{tabular}{l} 
028-004-007-000 \\
CAMA Number: \\
028-004-07T-000-000
\end{tabular} & Mailing Address: & \begin{tabular}{l} 
SPRINT SPECTRUM LP C/O PROPERTY \\
TAX DEPARTMENT
\end{tabular} \\
Property Address: & 108 MAIN STREET & & P O BOX 85022
\end{tabular}

JONES \& BEACH ENGINEERS, INC., ATTN. JOSEPH CORONATI, DAVID COLLIER \& MICHAEL KERIVAN, PO BOX 219, STRATHAM, NH 03885

GOVE ENVIRONMENTAL SERVICES, 8 CONTINENTIAL DRIVE, UNIT H, EXETER, NH 03833

AT\&TCOMPANY
1010 PINE, 9E4-01
ST. LOUIS, MO 63101

A T \&T COMPANY
754 PEACHTREE STREET
ATLANTA, GA 30308

ARTHIUR, LINDA \& JOHN 91 MAIN STREET RAYMOND, NH 03077

BERGERON, MICHAEL B MAUREEN R BERGERON 100 MAIN STREEET RAYMOND, NH 03077

BREWITT, JOHN J.,JR. \& ER 110 MAIN STREET RAYMOND, NH 03077

LBRUHMULLER, DANIEL 123 MAIN STREE"I" RAYMOND, NH 03077

BUCKUS, JILLIAN
109 MAIN STREET RAYMOND, NH 03077

COLE-CALNAN, NANCY 6 ORCHARD STREET RAYMOND, NIM 03077

CONNOLLYY, SEAN M, 3 MOULTON STREET RAYMOND, NH 03077

GARNHAM, DENNIS
JANET BUTLER 95 MAIN STREET RAYMOND, NH 03077

GILES, ERIN B. \& BRIAN D. 1 MOULTON STREETT RAYMOND, NH 03077

JOHNSON, CARLYLE R. MARICELA JOHNSON 9 MOULTON STREET RAYMOND, NH \(030 \% 7\)

KING, WILLIAM C JANICE L KING 101 MAIN STREET RAYMOND, NH 0307\%
- KITTREDGE, OCEANNE SARAH ADAM KITTREDGE 126 MAIN STREEET
RAYMOND, NH 03077

LACASSE, ALISON F. W. \& R INEZ WEELCH
103 MAIN STREET
RAYMOND, NH 03077

LURIE, AUDREY J.
111 MAIN STREET
RAYMOND, NH 03077

MCCARTHY, TONA \& CYNTHIA CINDY A. TOWNSEND
112 MAIN STREET
RAYMOND, NH 03077

MERKEL EMPIRE, LLC 17 PINEWOOD DRIVE
STRATHAM, NH 03885

METRO PCS 12920 SE 38TH Street Bellevue, WA 98006

MICHAELS, KEITH J. 11 ORCHARD STREET RAYMOND, NH 03077

MOULTON, EDWARD W 2 OLD FREMONT ROAD RAYMOND, NH 03077

MOULTON, EDWARD W JEAN MOULTON 2 OLD FREMONT ROAD RAYMOND, NH 03077

ONYX RAYMOND LLLC. 200 PESERVOIR STREET SUITE 306
NEEDHAM, MA 02494

PERREAULT, JOHN W 116 MAIN STREET RAYMOND, NH 03077

POWER, JOHN W 5 MOULTON STREET RAYMOND, NH \(0307 \%\)

PRATT, KEVIN M. KERRY J. PRATT 11 SMITH POND ROAD RAYMOND, NHI 03077


RICE, CHARLES F.JR. REVOC CHARLES F. RICE, JF. / TR 97 MAIN STREET RAYMOND, NH 03077

RUELAS, JEREMY S \& SUSANN 114 MAIN STREET
RAYMOND, NH 03077

SPOFFORD, LISA REVOCABLE LISA M. DESISTO / TRUSTEE 38 W. BROADWAY DERRY, NH 03038

SPRINT COMMUNICATIONS C/O PROPERTY TAX DEPARTME POO. BOX 85022
BELLEVUE, WA 98015-8522

SPRINT COMMUNICATIONS CO. ATTN: PROPERTY TAX DEPART PO BOX 85 S 2
BELLEVUE/ WK 98015-8522

SPRINT SP\&CTRUM LP CFO PRORERTY TAX DEPARTME PO BOX 8 SQ 22
BELLEVUF, WA 98015-8522

STATE OF NEW HAMPSHIRE JOHN O. MORTON BLDG.
P.O. BOX 483

CONCORD, NH 03301

TUCK REALTY CORPORATION
POO. BOX 190
EXETER, NH 03833

\section*{VERIZON}

POO. BOX 2549
ADDISON, TX 75001

WATT, DANIEL E
102 MAIN STREET
RAYMOND, NH 03077

WELSH, PAUL W \& TERI
109 MAIN STREET
RAYMOND, NH 03077

WELCH,JOSEPH \& JOHN \& ARD BETSY PATTERSON \& ROBIN P 49 RAYMOND ROAD, ROUTE 156 NOTTINGHAM, NH 03290

\author{
\$ ZABEK, THEODORE. SARAH J. ZABEK \& THOMAS Z 30 KESSLER FARM ROAD APT. 543 \\ NASHUA, NH 03063
}

Sones \& Pooch Cove Environmental
\begin{tabular}{ll} 
From: & Thomas Quarles <tquarles@devinemillimet.com> \\
Sent: & Friday, February 3, 2023 11:31 AM \\
To: & Madeleine Dilonno; Christina McCarthy \\
Subject: & RE: Project Question
\end{tabular}

I agree that the application is timely, since the applicant filed their application one day before the one year deadline from the date of the conceptual review. The RSA citation is slightly off It is RSA 676:12, VI, not IV. So the applicant is not limited to building in the sewer overlay district and their application should proceed.

On a different matter, are either of you keeping track of the 95 day clock for PB approval or denial of the Jewett and Onyx warehouse applications ? Those applications were formally accepted by the PB at their December 15, 2022 meeting. Of course these deadlines can be extended if the applicant agrees to do so. Thanks.

Thomas Quarles, Jr. Esq.
Shareholder
p. 603-695-8641 | Biography |

\section*{DEVINE MILLIMET MANCHESTER|CONCORD PORTSMOUTH attonmers at Law 603-669-1000 DEVINEMILLIMET.COM}


> Proudly serving our clients, colleagues and communities throughout New England since 1947.

This e-mail and any files transmitted with it are confidential and are intended solely for the use of the individual or entity to whom they are addressed. This communication may contain material protected by attorney-client privilege. If you are not the intended recipient or the person responsible for delivering the e-mail for the intended recipient, be advised that you have received this e-mail in error and that any use, dissemination, forwarding, printing, or copying of this e-mail is strictly prohibited. If you believe you have received this e-mail in error, please immediately notify Devine, Millimet \& Branch by telephone at 603-669-1000.

The incidence of fraud involving wired funds is on the rise. Never rely solely on emailed wiring instructions from anyone. Devine Millimet will not ask you to wire funds to us or to a third party without separately confirming the relevant wiring instructions with you by telephone. Once that telephonic confirmation has occurred, we will not change the wiring instructions. If you receive an email which appears to be from our Firm and which requests that you wire funds but have not received final telephonic confirmation from us, or which otherwise seems suspicious, then please contact us by telephone at 603-669-1000 before transferring any funds.

From: Madeleine Dilonno <mdiionno@therpc.org>
Sent: Friday, February 3, 2023 9:38 AM
To: Christina McCarthy <cmccarthy@raymondnh.gov>; Thomas Quarles <tquarles@devinemillimet.com>
Subject: RE: Project Question

Chris, Tom, I've weighed in on this previously and will share my take:
RSA 676:12, IV states applications that have been submitted and noticed for Design Review are protected from subsequent changes in the Zoning Ordinance provided that a formal application is filed within 12 months of the end of the design review process. As Chris stated below, the application in question went before the Planning Board for Design Review on November 5, 2020, and a formal application was submitted November 4, 2021. Based on that information, I believe the application is protected from any zoning changes that occurred after that.
-Maddie

From: Christina McCarthy <cmccarthy@raymondnh.gov>
Sent: Friday, February 3, 2023 9:25 AM
To: Thomas Quarles <tquarles@devinemillimet.com>
Cc: Madeleine Dilonno <mdiionno@therpc.org>
Subject: Project Question
Importance: High
Tom,
We have an application for a multi-family to be built in a Zone B \& D, this was only allowable under the sewer overlay district which was removed by Town vote in March 2021. Now it is no longer allowed in either of these zones. The question is does this project given the timeline below still get the protection of the conceptual design review to include the sewer overlay district?

Nov \(5^{\text {th }}, 2020\) - conceptual design review meeting
March 2021 - Sewer Overlay removed
Nov 4th , 2021-Application submitted
Feb 2023 - project ready to move forward to TRC and PB

\section*{Christina McCarthy}

\section*{Tax Collector}

\section*{Town of Raymond}

4 Epping Street
Raymond NH 03077
603-895-7016
cmccarthy@raymondnh.gov

TEAMWORK-coming together is a beginning, keeping together is progress, working together is success- Henry Ford

Memo To: Town of Raymond Community Development Department
From: Madeleine Dilonno, Regional Planner, Rockingham Planning Commission
Date: February 14, 2023
Subject: Review of Site Plan Application 2021-018; 109 A \& C Main Street, "White Rock Place" (Tax Map 23 Lots 24, 25 \& 29)

Rockingham Planning Commission has reviewed a site plan and lot line adjustment application submitted by Jones \& Beach Engineers on behalf of Tuck Realty Corp for the construction of a 156-unit apartment complex with associated utilities, parking areas, stormwater management two points of access; one main driveway and an emergency access road. The subject property is identified as Tax Map 23 Lot 25 located in Zone D (Industrial).

Tax Map 23 Lot 25 was originally included in Raymond's Sewer Overlay District, in which, multi-family residential development was a permitted use (Article 14: Allowed Uses Table, Raymond Zoning Ordinance 2020). The Sewer Overlay District was removed from the Zoning Ordinance by town vote in March 2021; however, the provisions of the Sewer Overlay District are still applicable to this application.

RSA 676:12, VI states applications that have been submitted and noticed for Design Review are protected from subsequent regulatory changes provided that a formal application is filed within 12 months of the end of the design review process. Application 2021-018 came before the Planning Board for Design Review on November 5, 2020, and a formal application was filed November 4, 2021. Therefore, the application is legally vested.

My specific comments are as follows:

\section*{General Comments:}

It appears the following Permits are required for this application: 1) NHDES Alteration of Terrain Permit and 2) Town of Raymond Driveway Permit. It's recommended each required permit be received prior to or as a condition of approval; and receipt of each permit be acknowledged in a note on the Cover Sheet of the final plans.

The following waivers have been requested from the Raymond Site Plan and Subdivision Regulations:
1. Site Plan regulation 6.06 - Parking Standards
2. Site Plan regulation 3.03 .03 - Licensed Landscape Architect (*Note 5b on Sheet C3 should be revised to reflect the accurate section).
3. Subdivision Regulation 5.6.D.1 (Road Design Standards) - Maximum Road Grade (for emergency access road only)
4. Subdivision Regulation ROW Design Matrix - Minimum Pavement Width (for emergency access road only.

It is recommended that a petition for the above waivers be submitted in writing using the town's Waiver Request Form in accordance with Section 7.08 of the Raymond Site Plan Regulations and Section 1.4.d of the Raymond Subdivision Regulations. In the event the Planning Board grants one or more of the waivers, it is recommended that notes acknowledging such relief be provided on the cover sheet of the final plans.

\section*{Zoning Matters:}
1. It is recommended that the applicant provide a written Unified Development Plan in accordance with the provisions of the Sewer Overlay District (Section 5.3.2 of the 2020 Raymond Zoning Ordinance). See full text on page 4.
2. Sheets \(C 2\) and \(C 3\) show front and side building setbacks of 30 feet. Article 15.2 .7 states "any residential structure proposed for location within a Commercial (C.1 and C.2) or Industrial zone (D) requires a minimum setback of one hundred feet ( \(100^{\prime}\) ) from property lines, or, in the alternative, fifty feet ( \(50^{\prime}\) ) inclusive of a minimum of twenty feet ( \(20^{\prime}\) ) of dense vegetative buffer and a fence of a type..." It is recommended the plans be revised accordingly.
3. A special permit is required for impacts to Zone \(G\) land (in this case, 128,000 square feet of steep slope disturbance). It is recommended the applicant seek input from the Raymond Conservation Commission on such impacts in accordance with Article 4.9.6.2.2 of the Zoning Ordinance.

\section*{Site Plan Submission Requirements:}
1. It is recommended that a Community Impact Analysis be prepared in accordance with SPR 4.02.03. The Community Impact Analysis shall describe the proposed use and include a description of how the proposed activity, both during and following construction, will impact traffic, parking and circulation, storm drainage, utilities, schools, noise, the Town's fiscal condition and other Community services.
2. It is recommended that a traffic impact analysis be prepared in accordance with SPR 5.03.13.
3. It is recommended that architectural concept drawings be submitted for proposed buildings in accordance SPR 5.03.14.f. Said plans shall consist of plan and exterior elevation views or proposed improvements, with external mechanical components of the building (i.e., heating, ventilation, and air conditioning). Plans shall be conceptual only, but of sufficient detail to determine compliance with Town Regulations.

\section*{Road Design, Access, and Parking:}
1. The width of the proposed access road is 22 feet where a width of 25 feet is required (SPR 6.02.01.a). The plans should be revised accordingly. It is understood that a waiver has been requested from this requirement for the emergency access road only.
2. According to the Right of Way Design Matrix in the Raymond Subdivision Regulations, sidewalks are required on private streets serving 20 units or more. The plans should be revised accordingly.
3. The grade of the proposed emergency access road is \(9 \%\). It is understood that a waiver has been requested from section 5.6.D. 1 of the Raymond Subdivision Regulations, which states grades of streets shall not exceed 8\%. It is recommended that the applicant consult with the Raymond Fire and Police Departments as to the adequacy of both roadways for emergency access.
4. Note 3 on Sheet P1 states "as built plans will be submitted to the town prior to acceptance of the roadway." Are one or both proposed access roads intended to be dedicated as public streets? If so, it is recommended that Note 3 on sheet P1 be revised to clarify this intent. Additionally, it is
recommended that a note be added to the final plans acknowledging that all maintenance of the future streets is the responsibility of the applicant until such time as it may be accepted as a Class V public way by the Town of Raymond in accordance with RSA 674:40.
5. The minimum parking requirements for a residential / multi-family development is 3 spaces per unit (SPR 6.06), which would require 468 spaces for the proposed development. A total of 281 spaces are currently proposed. It is understood that the applicant is requesting a waiver from this requirement. SPR 6.06 .03 states that the Planning Board has the prerogative to adjust these (parking) requirements and such decision will be based on the expected number of trips generated by the activity at its peak hour. It is recommended that the applicant provide such information and any other supporting documentation to justify the reduced parking count.

SPR 6.06.04.i states when a waiver is requested for relief from the number of parking spaces required by the Raymond Site Plan Review Regulations, the applicant must present a plan showing the ability to install the full number of spaces in the future if the need arises. It is recommended the applicant provide such information.

\section*{Water / Stormwater:}
1. SPR 6.05.02 states that connection to the municipal water system requires a letter from the Raymond Water Department indicating acceptance of the proposed design and agreement to furnish the requested service(s).

It is my understanding that the proposed development has been submitted to the town's consulting engineer, Underwood Engineers, for evaluation of impacts to the town's water distribution system.
2. Inspection and maintenance responsibilities for the stormwater management and erosion control measures should be noted on the final plans in accordance with 6.11.07 of the Raymond Site Plan Regulations.

\section*{Fire Protection}
1. It is recommended that the applicant meet with the Fire Department to review the proposed protection activities, such as fire alarms, sprinkler systems, fire hydrants, dry hydrants, emergency access and cisterns in accordance with Section 6.09 of the Raymond Site Plan Regulations.

\section*{Landscaping and Screening}
1. It is understood that the applicant is seeking a waiver from section Site Plan regulation 3.03.03 which requires landscape plans be developed by a licensed landscape architect.
2. It is recommended that a note be added to the landscape plan stating the owner and tenant of the property shall be jointly responsible for the maintenance of all required plant material and continued compliance with the Raymond Site Plan Regulations (SPR 6.10.07).
5.3.2. UNIFIED DEVELOPMENT: All development within this SOD must take place in accordance with a Unified Development Plan approved by the Planning Board. For purposes of this Ordinance, a Unified Development Plan shall be defined as an overall plan that identifies in a conceptual nature how the lot or lots contained in the plan will be developed in a manner consistent with the intent of this Ordinance and how the plan will allow and encourage the development of other lots within the SOD zoning district, in a manner consistent with the intent of the Ordinance.
5.3.2.1. The Unified Development Plan must describe and illustrate, in written and graphic format, and shall specify the intended locations and types of proposed uses, the layout of proposed vehicle and pedestrian access and circulation systems, provision of transit facilities and water and sewer facilities, and areas designated to meet requirements for open space, parking, on site amenities, utilities and landscaping. It shall include statements or conceptual plans describing how signage and lighting will be designed in a unified and integrated manner within the district. In addition, the Unified Development Plan shall indicate how the proposed uses will relate to the surrounding properties both within and outside of the district.
5.3.2.2. The submittal of written concept statement(s) in lieu of a Unified Development Plan shall not be accepted. In determining whether to approve a Unified Development Plan, the Planning Board will consider the following criteria:
5.3.2.2.1. Compatibility of the plan with the goals and objectives set forth in the Town's Master Plan;
5.3.2.2.2. Compatibility of the plan with the permitted uses in the Sewer Overlay District.
5.3.2.2.3. Approval of the Unified Development Plan must occur prior to the consideration of individual site development plans for one or several contiguous lots within the SOD. All site development plans must be reviewed and approved in accordance with this Ordinance and the Planning Board's Site Plan, Subdivision and Earth Excavation Regulations prior to the issuance of any building permits within the district.
5.3.3. AMENDMENT TO UNIFIED DEVELOPMENT PLAN: Any Unified Development Plan may be changed or amended by an applicant and such changes may occur concurrently with, or prior to the submittal of individual site development plans. To the extent that the approved Unified Development Plan addresses lots within the SOD which are not owned by the applicant, then such approved plan shall be binding only on the applicant and the owners of such other lots may seek changes to the Unified Development Plan consistent with their own development project.
5.3.4. SPECIAL PROVISIONS: All new development, change of use, subdivision, site review or development requiring a building permit must be connected to both town water and town sewer services. Notwithstanding the above, application for new development may be made prior to the availability of town water and sewer, provided that the proposed use is permitted as a matter of right in the underlying districts or provided that relief is obtained from the Zoning Board of Adjustment, and provided that the applicant proposes development subject to a condition of approval that the property shall be connected to town water and sewer when it becomes available within one hundred (100) feet of the property line.

\title{
Developments with Regional Impact \\ Project Name: \\ Application No.: \\ Tax Map \& Lot:
}

The Rockingham Planning Commission has developed this guidance document to aid our communities in evaluating whether or not a development should be determined to have regional impact. The document summarizes the statutory process that must be followed under New Hampshire state law and suggest a number of triggering factors that should be considered for making this determination. Bear in mind that the criteria suggested here are our recommendations: they have no regulatory force.

Statutory Authority: refer to RSA 36:54-58 - The purpose of this statute is to establish the framework to be followed by a community that is reviewing a development proposal with potential impacts beyond its municipal boundaries.

Findings of YES on one or more of the items below indicates the possible need for a local land use board to make a determination that the development proposal results in regional impacts.

\section*{NOTE: THIS IS ON A REGIONAL BASIS NOT A LOCAL BASIS}
1. School Impacts: Does the development create significant new student population affecting a regional school district? \(\qquad\) Yes \(\qquad\) No
2. Traffic Generation: Will the project generate traffic that will create an impact on surrounding municipalities? \(\qquad\) Yes \(\qquad\) No
3. Road Networks: Does the development provide the opportunity to create a more efficient road network for the regional area or potentially affect regional travel patterns? \(\qquad\) Yes \(\qquad\) No
4. Building Size: Is the proposed building greater than 50,000 square feet and located within 2,500 feet of a municipal line? \(\qquad\) Yes \(\qquad\) No
5. Visual Impacts: Will the development create visual impacts to neighboring municipalities such as light pollution, glare, or structures visible from neighboring municipalities? \(\qquad\) Yes \(\qquad\) No
6. Pollution: Does the development propose the operation of a facility or business which would generate excessive amount of air pollution, wastewater discharge, noise, or hazardous waste transport?
\(\qquad\) Yes \(\qquad\) No
7. Water Supply Impacts: Will the development require a major impact wetland permit from NH DES?
\(\qquad\) Yes \(\qquad\) No

Will impacts to known aquifers occur? \(\qquad\) Yes \(\qquad\) No

Does the project involve permitting for a large groundwater withdrawal? \(\qquad\) Yes \(\qquad\) No

Will the development cause negative impacts to another community's municipal water supply?
\(\qquad\) Yes \(\qquad\) No
8. Conservation Lands: Does the development abut existing conservation lands, greenway or existing farmland such that coordination between municipalities could lead to the creation or preservation of greenways or wildlife habitat areas or prevent fragmentation of forests, farms or other conservation lands?
\(\qquad\) Yes \(\qquad\) No
9. Economic Impacts: Does the development propose the creation of business or industry that would significantly impact regional economic development? \(\qquad\) Yes \(\qquad\) No
10. Emergency Response: Does the proposal create a significant increased demand for emergency services response (including mutual aid) from abutting communities? \(\qquad\) Yes \(\qquad\) No
11. Historic or Cultural Resources: Does the proposed development have negative impacts on historic or cultural resources that may have significance regionally? \(\qquad\) Yes \(\qquad\) No
12. Other: Does the development create other regional impacts not listed in items \(1-11\) above?
\(\qquad\) Yes \(\qquad\) No

Describe: \(\qquad\)
\(\qquad\)
2895.00

March 2, 2023
Ms. Christina McCarthy
Planning Technician
Town of Raymond
4 Epping Street
Raymond, New Hampshire 03077

\section*{Re: Analysis for Water Request White Rock Place \\ 109A\&C Main Street, Raymond, NH \\ Tax Map 23, Lots 25 \& 29}

Dear Ms. McCarthy,
In accordance with Engineering Service Request (ESR) \#2, Underwood Engineers (UE) has reviewed the proposal for the White Rock Place Development submitted by Jones \& Beach Engineers, Inc. We have completed an analysis of the Raymond water distribution system to evaluate conditions at the location of the proposed connection at 41 Chester Rd.

\section*{Proposed Development}

The proposed development includes three (3) four-story residential buildings at 41 Rte 102 (Chester Rd)
The following documents were submitted for review:
- Drainage and Grading Plans C5-C6, Utility Plans C7-C8, Detail Sheets D1-D3 (3 sheets labeled D3) prepared by Jones \& Beach Engineers, Inc. dated June 6, 2020 (last revised August 2, 2022).
- Water availability request letter dated September 15, 2022 from Jones \& Beach Engineering.

An excerpt of these Drawings and letter is included as Attachment \(\boldsymbol{A}\). The proposed development includes 156 units with (24) two-bedroom and (28) one-bedroom units.

\section*{Estimated Water Demands}

The estimated water demands provided by Jones \& Beach are included in Attachment A. Domestic demands were based on the NHDES septic rules for a total water request of approximately of 40,500 GPD or 26,520 GPD using the "Metcalf \& Eddy/Aecom book" (We assume this reference is to the Wastewater Engineering, Treatment and Resource Recovery text by Metcalf \& Eddy/AECOM). We concur that \(26,520 \mathrm{GPD}\) is reasonable for average day demand (ADD). Applying a peaking factor of 1.7 would yield a maximum day demand (MDD) of 45,084 GPD. The peaking factor of 1.7 was based on historic system ADD and MDD usage, calculated in a recent Weston and Sampson (W\&S) Storage Tank Evaluation Report dated January 21, 2020.

Page 2 of 3
Ms. McCarthy
March 2, 2023

We were recently informed by Scott Keddy, Water Superintendent, that the requested fire flow for the site is \(1,600 \mathrm{gpm}\).

A summary of the proposed demands are as follows:
\[
\begin{aligned}
& \text { ADD }=26,520 \mathrm{gpd} \\
& \text { MDD }=45,084 \mathrm{gpd} \\
& \text { Fire flow }=1,600 \mathrm{gpm}
\end{aligned}
\]

\section*{Impact on Supply}

Current system demands and source capacity were reviewed based on existing information provided by the water department and historic reports. Refer to a letter to the Town from UE dated \(2 / 23 / 23\), titled Available Municipal Water Supply and Demands, Initial Findings, in Attachment B, for evaluation of the available source capacity.

In accordance with NHDES criteria, sources must meet the following goals:
- The maximum day demand must be met with all sources in service
- The average day demand must be met with the largest source out of service.

The Town of Raymond does not have the source capacity to meet existing nor future demands when the largest source is out of service.

The Town's existing water distribution system computer model (using WaterGEMS modeling software) was run using the following assumptions/conditions:
- Tank level 6 ft below overflow (elev 344 ft )
- All well pumps off
- Average-day demand in the system
- Steady state analysis

Based on modeling these conditions, the static pressure and available fire flow at the proposed development location are estimated to be:
- Static Pressure at 41 Chester Rd: 60 psi
- Static Pressure at the Proposed Building's ground floor: 28.1 psi
- Available Fire Flow at the building grounds: 550 gpm @ 20 psi residual pressure
- Residual Pressure on Chester Rd \(=56 \mathrm{psi}\)
- Approximate Maximum Elevation on the development site to provide 35 psi to services: 263 ft
- Fire Flow available at elev \(263 \mathrm{ft}: \quad 773 \mathrm{gpm} @ 20 \mathrm{psi}\)

The elevation of the site is too high to be supplied by the municipal water supply and maintain an operating pressure of 35 psi under normal operation. The calculated pressures above are at ground elevation and do not account for the 4 story buildings proposed. In order for there to be an operating pressure of 35 psi on the development site, the elevation of the building needs to be approximately 263 ft , as shown above.

\section*{Page 3 of 3}

Ms. McCarthy
March 2, 2023

\section*{Conclusions}

The applicant has requested the following water supply:
\[
\begin{aligned}
& \text { ADD }=\mathbf{2 6 , 5 2 0} \mathrm{gpd} \\
& \text { YD }=\mathbf{4 5 , 0 8 4} \mathrm{gpd} \\
& \text { Fire Flow }=\mathbf{1 , 6 0 0} \mathrm{gpm}
\end{aligned}
\]

The water system currently has limited source capacity and cannot meet the above-noted NHDES requirements to supply current average day flow with the largest source out of service without source improvements or the development of a new source. Additional water demands will exacerbate this condition, and a demand of this size would also limit the system's ability to meet MDD with all sources in service.

The elevation of the site is too high to be serviced by the municipal water system. The existing hydraulic grade line cannot maintain pressures of 35 psi under normal operation above sites at elevation 236 ft . The proposed finished floor of the buildings are 270-279 ft. Additionally, fire flows cannot be provided.

This proposed development has been reviewed only for the Water Availability Request. Detailed construction plans for the connection have not been submitted or reviewed at this time and should be reviewed if this development proceeds. NHDES approval of the connection and design details would also be required.

Please call if you have any questions.
Very truly yours,
UNDERWOOD ENGINEERS, INC.
d hent to
Stephanie Kosmin, E.I.T.
Project Engineer


Lynnette Carney, P.E Project Manager
snk/lec
Encl.
cc: \(\quad\) Scott Keddy, Ernie Cartier-Creveling - Raymond (w/ encl).
Keith Pratt, UE (w/ encl.)

\section*{Attachment A}

\title{
JONES\&BEACH ENGINEERS INC.
}

\author{
85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885 \\ 603.772.4746 - JonesandBeach.com
}

September 15, 2022
Raymond Department of Public Works
Attn. David Frederickson
4 Epping Street
Raymond, NH 03077

\author{
RE: Water Availability Request White Rock Place \\ 109A\&C Main Street, Raymond, NH \\ Tax Map 23, Lots 25 \& 29 \\ JBE Project No. 20564
}

Dear Mr. Frederickson,
Jones \& Beach Engineers, Inc. on behalf of our client, Tuck Realty Corp., request water availability on the above-mentioned property. The Welch apartment project on Main Street is 156 units, total of 3 buildings, each building is \(13,500 \mathrm{GPD}\) based on the state septic rules. That is a total of 40,500 GPD for water. Each building is proposed to have \(24-2\) bedroom units at 300 GPD/unit and \(28-1\) bedroom units at 225 GPD/unit. This is a highly conservative septic design number and actual flows will be lower.

For instance the Metcalf \& Eddy/Aecom book that is required to be used in the design of pump stations uses 68 GPD per person in multifamily developments. If you use that flow rate and assume 2.5 people per unit (which is high given the number of 1 bedroom units), that would be 8,840 GPD per building or a total of 26,520 gpd. Either way, we would like to request a letter stating whether the Town can service this development for water. We have also emailed the current design plans for your review and Underwood's review.

If you have any questions or need any additional information, please feel free to contact our office. Thank you very much for your time.



\footnotetext{


}
\begin{tabular}{|c|c|c|c|}
\hline 8 & 8/2/22 & adoed draliage & DJM \\
\hline & \({ }^{11 / 0421}\) & UPDATED Desion & AJB \\
\hline & 09/21/21 & Graded divewar & \\
\hline 5 & 06/08/21 & REVISED Concepr & DJM \\
\hline 4 & 03/01/21 & REVISED DRIVEWAY: LAND TrANSEER EXHIBITS & DJM \\
\hline mev. & DATE & Revision & BY \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Plan Name: & GRADING AND DRAINAGE PLAN \\
\hline Project: & \begin{tabular}{l}
WHITE ROCK PLACE \\
109 A \& C MAIN STREET, RAYMOND, NH 03077
\end{tabular} \\
\hline Owner of Recorc &  \\
\hline
\end{tabular}






\begin{tabular}{|c|c|c|c|}
\hline 8 & 82/22 & adoed dralnage & DJM \\
\hline & 11/04/21 & UPDATED DESIGN & A, \({ }^{\text {a }}\) \\
\hline & 091/1/21 & Graded divewar & DJM \\
\hline 5 & 06688/21 & REVISED Concepp & DJM \\
\hline 4 & 0301/21 & REVISED DRIVEWAY: LAND TrANSFER EXHHBTS & DJM \\
\hline Rev. & date & Revision & BY \\
\hline
\end{tabular}

\begin{tabular}{|l|}
\hline Plan Name: \\
\hline Project: \\
\hline
\end{tabular} 109 A \& C MAIN STREET RAYMOND NH 03077

REVIION
Applicant/ Owner:




\begin{tabular}{|c|c|}
\hline & C-3500 STORMTECH CHAMBER
SPECIFICATIONS \\
\hline 1. &  \\
\hline 2 & CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE
MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED \\
\hline 3. &  \\
\hline \({ }^{4}\) & CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED
INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD NTERNAL SPACE WITH NO INTERNAL SUPPORTS \\
\hline 5. &  \\
\hline \({ }^{6}\) &  \\
\hline
\end{tabular}



 STo®м


NOTES FOR CONSTRUCTION EQUIPMENT








1.


INSPECTION \& MAINTENANCE


As.





notes

2. Convoct Jetring an vactorna amw

MC-3500 ISOLATOR ROW PLUS DETALL
NOT TO SCALE
\begin{tabular}{|c|c|}
\hline \[
\begin{array}{|l|}
\hline \text { Design: JAC } \\
\hline \text { Checked: JAC } \\
\hline \text { Drawing Name: } \\
\hline
\end{array}
\] & \begin{tabular}{|l|l}
\hline Draft: DJM & Date: 07/06/20 \\
\hline Scale: AS NOTED & Project No.: 20564 \\
\hline
\end{tabular} 20564-PAN dwg \\
\hline THISPLANSAALL & NOT BE MODFIEP \\
\hline Massoorfin &  \\
\hline & THORIED OR orterwise shal be \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 8 & 8/2/22 & adoed dranage & DJM \\
\hline & \({ }^{1110421}\) & UPDATED Desige & \({ }^{\text {AJB }}\) \\
\hline 6 & 09/21/21 & Graded divewar & DJM \\
\hline 5 & 06/08/21 & REVISED Conctept & DJM \\
\hline 4 & 03/01/21 & REVISED DRivewar: LAND Transfer exhlits & DJM \\
\hline REV. & DATE & Revision & BY \\
\hline
\end{tabular}

NOTES:
Citicle



STORMTECH MC-3500 CROSS SECTION DETAIL
NOTTO SCALE

利


Applicant / Owner:
\begin{tabular}{|c|c|c|}
\hline Plan Name: & \multicolumn{2}{|l|}{DETAIL SHEET} \\
\hline Project: & \multicolumn{2}{|l|}{\begin{tabular}{l}
WHITE ROCK PLACE \\
109 A \& C MAIN STREET, RAYMOND, NH 03077
\end{tabular}} \\
\hline Applicant / Owner: &  &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & MATERALLOCATION & DESCRIPTITN & SHTO MATEA & COMPACTION / DENSITY REQUIREMENT \\
\hline &  &  & & per stit desine namerrs lans paved \\
\hline &  & &  & DENSITY FOR WELL \\
\hline & & &  & \\
\hline &  & & , & \\
\hline \multicolumn{5}{|l|}{} \\
\hline
\end{tabular}





\section*{}


\(\xlongequal{\text { Tonezens. }}\)
\(\frac{1 / 4^{n} \text { THCK STEL ORFICE PLAE }}{\text { NOT To SCAIE }}\)


STORMTECH OUTLET CONTROL STRUCTURE NOT TO SCALE

drain manhole with diversion weir

notes:






8. Shano

DRAIN MANHOLE (4' DIAM.)
DRAIN MANHOLE (4' DIAM.)


as, wix mixi ixiz
ENSH RROOE

notes:



anong

6. Jont Sellant bewen preast sectow shall ee but ruber.

 CATCH BASIN
NOT TO SCALE
\begin{tabular}{|c|c|c|c|}
\hline 8 & 82/22 & adoed dranage & DJM \\
\hline 7 & \({ }^{11 / 0421}\) & UPDATED DESIGN & \({ }^{\text {AJB }}\) \\
\hline 6 & 09921/21 & Graded divewar & \\
\hline 5 & 06/08/21 & RELISED Concerpr & \({ }_{\text {DJM }}\) \\
\hline 4 & 0301/21 & REVISED DRVVEWAY: LAND TrANSFER EXHHBTIS & DJM \\
\hline Rev. & DATE & REVISION & BY \\
\hline
\end{tabular}

Project:
109 A \& C MAIN STREET, RAYMOND, NH 03077
\begin{tabular}{|l|l|}
\hline REV. & 0 \\
\hline DATE \\
\hline
\end{tabular}
Applicant/ Owner:


\section*{Attachment B}
2896.00

February 23, 2023
Ms. Christina McCarthy, Planning Technician
Town of Raymond
4 Epping Street
Raymond, NH 03077

\section*{Re: Available Municipal Water Supply and Demands \\ Initial Findings \\ Raymond, NH}

Dear Ms. McCarthy,
In accordance with our contracts (ESR \#1 through \#4), Underwood Engineers is currently reviewing the available water supply and hydraulic capacity as it relates to three pending developments that are under consideration with the Planning Board.

Although UE is only evaluating three developments (bold), the 8 projects shown below are being considered as added demands to the system:
- Exit 4 Project Area Expansion (Approved and under construction)
- Ridgewood Commons (Approved and under construction)
- Main Street Commons (Approved and online approximately 6 months ago)
- Essex Commons (Approved and under construction
- White Rock Place (in the planning process)
- 65 Batchelder Road (in the planning process)
- Industrial Dr. Warehouse (Onyx) (in the planning process)
- Campbell Mills Warehouse (Jewett) (pending ESR)

The information presented below is based on previous work completed by UE and others over the last 1015 years as well as our understanding of the current system operational status. According to Weston and Sampson's Water Storage Tank Evaluation Report (2020), the existing demands (production) are as follows:
- Average Day Demand \(=291,000\) gpd
- Maximum Day Demand \(=484,000\) gpd

The 8 development projects are estimated to increase demands in the municipal water system by \(\sim 43 \%\) when fully occupied as proposed. This increases the total demands to:
- Average Day Demand \(=415,000\) gpd
- Maximum Day Demand \(=694,000\) gpd

Page 2 of 3
Ms. McCarthy
February 23, 2023

The Town's supply consists of four (4) wells; 3 operating wells and one well (\#2) that is currently offline due to structural issues. Wells \#1R, \#2 (offline), and \#3 are treated by the water treatment plant and conveyed to the distribution system. Well \#4 is the only well that does not have treatment.

Based on current water quality, the operational capacity of the water treatment plant is \(378,000 \mathrm{gpd}\) which is limiting even though the three wells served by it have a greater yield. Also limited by water quality, well \#4 currently produces 216,000 ged. Therefore, the total system supply capacity is \(594,000 \mathrm{gpd}\), as illustrated in Table 1 attached.

Consistent with NHDES criteria, a municipal groundwater system shall be able to provide adequate supply as follows:
- Meet maximum day demand with all sources in service (WTP and Well \#4).
- Current demands can be met
- Future demands with all 8 developments cannot be met
- Meet average day demand with the largest source out of service. For the purposes of this evaluation, the WTP was assumed to be the largest source.
o Current demands cannot be met if the WTP is out of service
- Future demands with all 8 developments cannot be met

It should be noted that the above summary does not consider other potential growth in the Town. Further, our work is based on existing information and further evaluation is appropriate. We are providing the information for planning purposes.

As you know, separately we are finalizing a scope of work that will look towards solutions to the supply issue. Also note, these findings do not impact the need or change the approach for the water storage tank project currently on the Town Warrant.

Please call if you have any questions.
Very truly yours, UNDERWOOD ENGINEERS, INC.


Keith A. Pratt, P.E. President

\section*{KAP/lec}

Encl. Table 1
Cc: Scott Keddy
Ernie Cartier Creveling
Jon Mates, NHDES
Rick Skarinka, NHDES

Page 3 of 3
Ms. McCarthy
February 23, 2023
Table 1 Demand vs Supply Capacity Summary
Most Recent Demand Analysis:
\begin{tabular}{|c|c|}
\hline Average Day Demand, gpd (2018-2020) & 291,000 \\
\hline Maximum Day Demand, gpd (2018-2020) & 484,000 \\
\hline Reference & W\&S Storage Tank Evaluation Report, 2020 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Source & \begin{tabular}{l}
Rated Source \\
Capacity/PPV \\
(gpm) - not \\
used in calcs
\end{tabular} & Reference & Operational Source Capacity (gpm) & \% of permitted capacity & Hours of Operation & Operational Capacity (gpd) & Capacity with WTP out of service \\
\hline WTP (Wells 1R-3) & 417 & Stantec 2016 rpt & 350 & 84\% & 18 & 378,000 & 0 \\
\hline Wc! IR & 350 & Wedi 1R Permm & 150 & & 18 & 1620007 & 162000 \\
\hline Well 7 & 385 & rontec 2016 [0t & Offine & & & & \\
\hline ivell 3 & 330 & stanter 2016 mpt & 180 & & 18 & 1984039 & 10.1100 \\
\hline Whelis 2.3 wellfed & 498 & Weli 1 R Pemmit & 330 & & & & \\
\hline Well 4 & 250 & \[
\begin{gathered}
\text { CIP } 2016 / \mathrm{EGGI} \\
\text { Pump Test }
\end{gathered}
\] & 150 & 60\% & 24 & 216,000 & 216,000 \\
\hline Permitted Capacity & 748 & & & & & & \\
\hline Total Source Capacity (WTP + Well \#4) & & & 500 & & & 594,000 & 216,000 \\
\hline Excess available capacity at Average Demand & & & & & & 303,000 & \(-75,000\) \\
\hline Excess available capacity at Maximum Demand & & & & & & 110,000 & -268,000 \\
\hline Developments & & & & & Requested, gpd & Max Day, gpd & Avg Day, gpd \\
\hline \multicolumn{3}{|l|}{Exit 4 Project Area Expansion (Mega X gas station)} & & & & 2,285 & 1,345 \\
\hline \multicolumn{4}{|l|}{Ridgewood Commons/The Meadows ( approved \& under construction)} & & & 59,500 & 35,000 \\
\hline \multicolumn{3}{|l|}{Main Street Commons - medical facility (on-line)} & & & & 2,250 & 1,325 \\
\hline \multicolumn{4}{|l|}{Essex Commons/Silver Fox Ln - 6 properties -Startbucks, Dominoes} & & & 6,460 & 3,800 \\
\hline \multicolumn{3}{|l|}{Developments - current requests from developers} & Avg Day
Requested, gpd & \begin{tabular}{|c|}
\hline Fire Flow \\
requested
\end{tabular} & Notes & Max Day, gpd & Avg Day, gpd \\
\hline \multicolumn{2}{|l|}{White Rock Place (156 1 \& 2 Br units)*} & & 26,520-40,500 & 1,600 & & 45,084 & 26,520 \\
\hline \multicolumn{2}{|l|}{65 Batchelder Road (254 two BR units)*} & & 50,000-88,000 & & & 85,000 & 50,000 \\
\hline \multicolumn{2}{|l|}{Industrial Dr. Warehouse/Onyx} & & 4,890 & \[
\begin{array}{|c|}
\hline 2,850 \mathrm{gpm} \\
024 \mathrm{psi} \\
\hline
\end{array}
\] & Fire pump \& tank & 8,313 & 4,890 \\
\hline \multicolumn{3}{|l|}{Campbell Mills Warehouse/lewett Construction} & 788 & \[
\begin{aligned}
& 2,100 \mathrm{gpm} \\
& @ 97 \mathrm{psi} \\
& \text { for } 90 \mathrm{~min}
\end{aligned}
\] & \begin{tabular}{l}
Sprinkler \\
design; pump?
\end{tabular} & 1,340 & 788 \\
\hline Net Excess available capacity at Average Demand & & & & & & 179,332 & \[
-198,668
\] \\
\hline Net Excess available capacity at Maximum Demand & & & & & & -100,232 & .478,232 \\
\hline
\end{tabular}

\author{
Robert R. Scott, Commissioner
}

August 2, 2023

\author{
Mr. Michael Garrepy
}

Tuck Realty Corporation
P.O. Box 190

Exeter, NH 03833
(sent via email to: mgarrepy@gmail.com)

Re: White Rock Place
Permit: AoT-2436
109A, B \& C Main Street - Raymond
Tax Map 23 Lot 24, 25, 28 \& 29
Dear Applicant:
Based upon the plans and application, approved on August 2, 2023, we are hereby issuing RSA 485A:17 Alteration of Terrain Permit AoT-2436. The permit is subject to the following conditions:

\section*{PROJECT SPECIFIC CONDITIONS:}
1. The plans titled White Rock Place, by Jones \& Beach Engineers, Inc., last revision date August 2, 2023, are a part of this approval. The project must be constructed as shown on the approved plans.
2. This permit expires on August 2, 2028. No earth moving activities shall occur on the project after this expiration date unless the permit has been extended by the Department. If requesting an extension, the request must be received by the department before the permit expires. The Amendment Request form is available at: https://www.des.nh.gov/land/land-development.
3. In accordance with Env-Wq 1503.21 (c)(1), a written notice signed by the permit holder and a qualified engineer shall be submitted to DES stating that the project was completed in accordance with the approved plans and specifications. If deviations were made, the permit holder shall review the requirements in Env-Wq 1503.21(c)(2).
4. Pursuant to Env-Wq 1504.18, the Permittee shall comply with wildlife protection notes that are incorporated into the project plans, and, if applicable, all recommendations by the New Hampshire Fish and Game Department related to state or federally listed threatened or endangered species that are incorporated into the project plans.
5. Groundwater Monitoring of private wells must be performed prior to, throughout the duration of, and following completion of blasting pursuant to the Groundwater Monitoring Plan prepared by Jones \& Beach Engineers, Inc., dated May 2, 2023, latest revision dated June 9, 2023.
6. This project includes underground detention, and infiltration and filtering systems. A letter signed by a qualified engineer must be provided to DES stating that the individual observed any underground detention, infiltration, or filtering systems prior to backfilling, and whether, in his or her professional opinion, the system(s) conform to the approved plans and specifications.

Representative photographs of the system prior to being backfilled must be submitted with the letter.
7. The project is to be phased as shown on the plans. Each phase shall be stabilized pursuant to EnvWq 1505.04 before disturbance of subsequent phases.
8. The permittee shall employ the services of an Environmental Monitor (EM) for the purposes of providing independent professional environmental inspections of the project. The permittee shall receive prior approval of the EM by the Department. The EM shall inspect the project at a minimum frequency of once per week and following rainfall events of 0.5 -inch or greater in a 24 -hour period. The inspections shall be for the purposes of determining compliance with the permit. The Monitor shall submit a written report, stamped by a qualified engineer or a Certified Professional in Erosion and Sediment Control to the Department within 24 hours of the inspections. The reports shall describe, at a minimum, whether the project is being constructed in accordance with the approved sequence, shall identify any deviation from the conditions of this permit and the approved plans, and identify any other noted deficiencies. Reports shall be submitted to michael.j.schlosser@des.nh.gov.

\section*{GENERAL CONDITIONS:}
1. Activities shall not cause or contribute to any violations of the surface water quality standards established in Administrative Rule Env-Wq 1700.
2. You must submit revised plans for permit amendment prior to any changes in construction details or sequences. You must notify the Department in writing within ten days of a change in ownership.
3. You must notify the Department in writing prior to the start of construction and upon completion of construction. Forms can be submitted electronically at: https://www.des.nh.gov/land/landdevelopment. Paper forms are available at that same web page.
4. All stormwater practices shall be inspected and maintained in accordance with Env-Wq 1507.07 and the project Inspection and Maintenance (I\&M) Manual. All record keeping required by the I\&M Manual shall be maintained by the identified responsible party and be made available to the department upon request. Photographs of the site and BMPs must accompany the I\&M submittals.
5. This permit does not relieve the applicant from the obligation to obtain other local, state or federal permits that may be required (e.g., from US EPA, US Army Corps of Engineers, etc.). Projects disturbing over 1 acre may require a federal stormwater permit from EPA. Information regarding this permitting process can be obtained at: https://www.epa.gov/npdes/2022-construction-general-permit-cgp.
6. If applicable, no activity shall occur in wetland areas until a Wetlands Permit is obtained from the Department. Issuance of this permit does not obligate the Department to approve a Wetlands Permit for this project.
7. This project has been screened for potential impact to known occurrences of protected species and exemplary natural communities in the immediate area. Since many areas have never been
surveyed, or have not been surveyed in detail, unidentified sensitive species or communities may be present. This permit does not absolve the permittee from due diligence in regard to state, local or federal laws regarding such communities or species. This permit does not authorize in any way the take of threatened or endangered species, as defined by RSA 212-A:2, or of any protected species or exemplary natural communities, as defined in RSA 217-A:3.

Sincerely,


Michael Schlosser, PE
Alteration of Terrain Bureau
ec: Raymond Planning Board (cmccarthy@raymondnh.gov)
Joe Coronati, Jones \& Beach Engineers, Inc.
Kevin Newton, NHFG

\section*{FLORAL AVE. LLA 2023-006}
\(\qquad\) Lot \# \(\qquad\)

\title{
Application for Lot Line Adjustment \\ Town of Raymond, NH
}

Project Name: FAHEY LOT LINE ADJUSTMENT
Location: 14A, 14B \& 14 Floral Ave Tax Map 28-1 Lots 57,58 \& 59 ADJUST THE LOT LINES BETWEEN LOT'S 57, 58 \& 69 FOR THE PURPOSE OF REPLACING THE SEPTIC SYSTEM
Project Description: FORLOTS 57 \& 58
Zone: A
Total Number of Lots: 3
Applicanc/Agent Information:
Name: JASON FRANKLIN
Phone: 603-483-3096 Fax: \(\qquad\)
Company: FRANKLIN ASSOCIATES, LLLC
Address: 143 RAYMOND RD, UNIT, CANDIA, NH 03034
By signing this application, you are agreeing to all rules and regulations of the Town of Raymond, and are agreeing to allow agents of the "Town of Raymond to conduce inspections of your property during normal business hours to ensure compliance with all Raymond Zoning and Subdivision Regulations while your application is under consideration and during any construction and operational phases after approval is granted.

Signed*:


Date:

"Requires notarized letter of permission

\section*{Owner K K formation:}

Name: Michael Fahey
Phone: 603-793-2201 Fax: \(\qquad\)
Company: INTERPRO INVESTMENTS, LLC
Address: 105 CENTRAL ST, STONEHAM, MA, 02180
Signed:
 Date:


\section*{Designers of Record: (Provide Namer ie License Number for each)}

\section*{Engineer:}
\(\qquad\)
Surveyor: JAMESE FRANKLIN, LLS \#733
Soil Scientist: \(\qquad\)
Landscape Architect: \(\qquad\)
Fire Protection Engineer: \(\qquad\)
Other (s): \(\qquad\)
FEES: \$75.00 Application Fee

\section*{For Office Use Only:}

Date Application Received: \(\qquad\) Total Fees Collected w/ Application:
Abutters List Received: \(\qquad\) Plans \& Checklist Received: \(\qquad\)

\title{
Lot Line Adjustment Checklist
} Town of Raymond, NH

The items on this page are considered to be the minimum requirements for a lot line adjustment or technical subdivision, where no new lots are being created. The Plaming Board reserves the right, however, to request additional information if, in its judgment, the data are necessary in order to make an informed decision.

\section*{SUBMITTED WAIVED}

1. Name of subdivision; name and address of subdivider
2. Name, license number and seal of surveyor or other persons preparing the plan
3. Names and addresses of all abutters and all holders of conservation, preservation, or agricultural preservation easements (on the plat or on separate sheet)
4. North arrow, scale, and date of plan
5. Signature block for Planning Board endorsement
6. Locus plan, showing zoning designations
7. Boundary survey and location of permanent markers
8. Location of property lines, lot areas in square feet and acres; lots numbered according to Town tax map system
9. Location and amount of frontage on public right-of-way; names, classification of abutting streets
10. Location of building setback lines
11. Location of existing buildings and other structures
12. Location of existing driveways
13. Location and description of any existing or proposed easements or public dedication

BROWN, RICHARD 11 FLORAL AVENUE RAYMOND, NH 03077

DENNETT, DAVID C. JOANN D. DENNETT 12 FLORAL AVENUE RAYMOND, NH 03077

FAHEY REVOCABLE TRUST
LINDA J. FAHEY / TRUSTEE
10 FLORAL AVENUE
RAYMOND, NH 03077

GRAY ROCKS, LLC
P.O. BOX 924

RAYMOND, NH 03077


INTERPRO INVESTMENTS,LIC
105 CENTRAL STREET
STONEHAM, MA 02180

MCKINLEY, HEATHER L.
7 FLORAL AVENUE
RAYMOND, NH 03077

\section*{RAYMOND TOWN OF 4 EPPING STREET \\ RAYMONR, NH 03077}

SONIA, ROBERT G
16 FLORAL AVENUE
RAYMOND, NH 03077

SPANKS, KRISTOPHER JAMES
CHRISTIAN EICHER
9 FLORAL AVENUE
RAYMOND, NH \(0307 \%\)

WATERHOUSE, JONATHAN
21 GLEN RIDGE ROAD
RAYMOND, NH 03077

Jason Franklin of Franklin Asscoiates



\section*{SUBDIVISION APPLICATION \\ Town of Raymond NH}

Map \# 41 Lot \# 47 Application Date_ 8-15-23 Application \# \(\qquad\)
Project Name: 3 lot subdivision

Location:
Meindl Road
Project Description:
Zone: B New Industrial / Commercial Square Footage: \(\qquad\) or Number of Residential Units: 3

Applicant/Agent Information:
Name: Joseph Falzone
Company: \(\qquad\) Phone: 603-772-9400

Fax: \(\qquad\)
Address: 7B Emery Lane, Stratham, NH 03885
Signed*: \(\qquad\) Date: \(\qquad\)

\section*{*Requires notarized letter of permission.}

By signing this application, you are agreeing to all rules and regulations of the Town of Raymond, and are agreeing to allow agents of the Town of Raymond to conduct inspections, during normal business hours to ensure compliance with all Raymond Zoning and Site Review regulations while your application is under consideration and during any construction and operational phases after approval is granted.
Owner Information:
Name: Frances \& Raymond Scanlon
Company: \(\qquad\) 11 John McQuinn Circle, Framingham, MA 01701
Address:


Designers of Record:
Engineer: Deals Associates PLLc
Surveyor: Doucet Survey Inc.
Soil Scientist: Cove Environmental Services
Landscape Architect:
n/a

\section*{Fees: See Attached Fee Schedule}

FOR OFFICE USE ONLY
Date Application Received: \(\qquad\) Total Fees Collected with Application: \$ \(\qquad\) Abutters
List Received: \(\qquad\) Check List Received: \(\qquad\)
PB Hearing Date: \(\qquad\) Notice Date: \(\qquad\)
PB Application Acceptance Date: \(\qquad\)

\section*{Letter of Authorization}

We, Raymond and Frances Scanlon, owners of Tax Map 41 Lot 47 on Miendl Road in Raymond, NH, do hereby authorize the following parties to act as agents on my behalf for the above-described property in order to apply for any necessary state and local applications or permits relative to the development of said lot:

Joseph Falzone and their agents to include but not limited to:
The Gave Group Real Estate, LLC, 70 Portsmouth Ave Stratham, NH 03885
Beals Associates, 70 Portsmouth Ave Stratham, NH 03885
Douce Survey Kent Place Newmarket, NH
Gove Environmental Continental Drive Exeter, NH
GZA Environmental Bedford, NH
as agents to act on my behalf in matters to be discussed with the Town of Raymond, State Departments and other Land Use Boards concerning the property previously mentioned.

I hereby appoint the above referenced parties as my agent to act on my behalf in the review process, to include any required signatures.


Frances Stanton by her attorney in fact Raymond Scanlon
11 John McQuinn Circle
MAILING ADDRESS MAILING ADDRESS


Date:
\(6 / 12 / 2023\)


Commission ExpNes: February \(24^{\text {th }}, 2028\)

\title{
Subdivision Checklist \\ TOWN OF RAYMOND, NH
}

PROJECT NAME
3-Lot Subdivision MAP\# \(4 /\) LOT\# 47 APPLICATION DATE 8-15-25 APPLICATION \# \(\qquad\)
This checklist can be used for either a major or minor subdivision. For a minor subdivision, several of the items would likely be waived by the Planning Board due to lack of relevancy (e.g., topographic or soils data) The Board, however, reserves the right to require that all items be met if, in its judgment, the data are necessary to make an informed decision.

A copy of all plans and technical reports must be sent to the Town engineer. Proof of submittal must be provided to the Community Development Department at the time of application. If proof of transmittal is not provided, the application may be delayed until the following month's Planning Board meeting. Address is: Dubois \& King, 18 Constitution Dr., Bedford NH 03110, ATTN: Jeff Adler.


\section*{Subdivision Checklist}

TOWN OF RAYMOND, NH

14. Existing and proposed streets, with names, classification, width of travel surface and rights-of-way.
15. Final road profiles, centerline stationing, cross sections.
16. Location and width of existing and proposed driveways.
17. Location of all surface water, wetlands, rock ledges, stone walls, open space to be preserved, and any other man-made or natural features.
18. Existing and proposed topographic contours.
19. Soil and wetland delineation. (see: requirements for soils and wetlands data).
20. Location of perc tests, test results, outline of 4,000 area, applicable septic square-foot septic setback lines.
21. Location of existing and proposed wells, with required radius on property.
22. Base flood elevations.
rone

OTHER:

\section*{___}
23. Plans for stormwater management and erosion control.
24. Copy of state subdivision approval for septic system.
25. Alteration of Terrain Permit.
26. Town or DOT Driveway Permit
27. Copies of any proposed or existing easements, deed restrictions, covenants, and street deeds.
28. Such additional studies as may be required.
29. Six (6) full-size copies of all plans and ten (10) copies of all plans in \(11 \times 17\) format, and digital copy of plans. *
30. Three (3) copies of all studies*
1. Application Fees
2. Abutters Notice Fees (to include three (3) labels per abutter)
3. Engineering and Legal Review Escrow TBiD

\section*{ABUTTERS LIST \\ FOR \\ NH-1491 - Harbor Street Limited Partnership - Raymond \\ Tax Map \# 41 Lot 47 \\ 08/14/23}

SUBJECT PARCEL TAX MAP/LOT

TAX MAP 41 LOT 47

\section*{OWNER OF RECORD}

FRANCES S. SCANLON
RAYMOND SCANLON
11 JOHN MCQUINN CIRCLE
FRAMINGHAM, MA 01701-3677

\section*{OWNER OF RECORD}

BARRY \& PAMELA BRADBURY
39 MOUNTAIN RD
RAYMOND, NH 03077

DANIEL J. ST' ONGE
33 BEACH HEAD RD
NOTTINGHAM, NH 03290
PLANTE FAMILY TRUST
TRACY \& GEORGE PLANTE TRSTEES
37 MOUNTAIN RD
RAYMOND, NH 03077
FREDERICK \& SHIRLEY PLANTE
PO BOX 737
RAYMOND, NH 03077
TUCKAWAY SHORE DEVELOPMENT, LLC.
8 TUCKAWAY SHORES RD
NOTTINGHAM, NH 03290
GLIDDEN FAMILY TRUST
FLORENCE H GLIDDEN TRSTEE
92 NOTTINGHAM RD
RAYMOND, NH 03077
\begin{tabular}{|c|c|}
\hline \multirow{4}{*}{041-000-067} & GLIDDEN FAMILY TRUST \\
\hline & DAVID GLIDDEN TRUSTEE \\
\hline & 29 MOUNTAIN RD \\
\hline & RAYMOND, NH 03077 \\
\hline \multirow{4}{*}{047-000-003} & SUMINSBY 2018 TRUST \\
\hline & J. DAVID SUMINSBY TRSTEE \\
\hline & 67 ARBOR ST \\
\hline & WENHAM, MA 01984 \\
\hline \multirow{4}{*}{047-000-001} & LITTLEFIELD REVOCABLE TRUST \\
\hline & JOHN F OR SYLVIA A TRSTEES \\
\hline & PO BOX 1 \\
\hline & RAYMOND, NH 03077 \\
\hline \multirow{3}{*}{046-000-023} & DANIEL \& SUSAN SHIELDS \\
\hline & 71 MOUNTAIN RD \\
\hline & RAYMOND, NH 03077 \\
\hline
\end{tabular}

\section*{DESIGN PROFESSIONALS}

ENGINEERING FIRM

APPLICANT
BEALS ASSOCIATES, PLLC CHRISTIAN O. SMITH, PE 70 PORTSMOUTH AVENUE \(3{ }^{\text {RD }}\) FLOOR STRATHAM, NH 03885

OFFICE ACCOUNT, LLC
7B EMERY LANE
STRATHAM, NH 03885

WETLAND SCIENTIST
GOVE ENVIRONMENTAL 8 CONTINENTAL DR. UNIT H EXETER, NH 03833

DOUCET SURVEY
102 KENT PLACE
NEWMARKET, NH 03857

Memo To: Town of Raymond Planning Board
From: Madeleine Dilonno, Regional Planner, Rockingham Planning Commission
Date: August 29, 2023
Subject: Review of Subdivision Application \#2023-007, (Tax Map 41 Lot 47)

Rockingham Planning Commission has reviewed a subdivision application submitted by Joseph Falzone for property located on Meindl Road, Raymond NH (Tax Map 41 Lot 47). The proposal is to subdivide the existing 10.42-acre parcel into three lots with frontage on Meindl Road. The subject property is in Zone B (Residential).

Based upon review of the application materials submitted, I find that the application is complete and recommend the Board invoke jurisdiction before taking further action.

It is understood that Meindl Road is considered a private road in the Town of Raymond, but the Raymond portion of the road is maintained by the Town of Nottingham (see Page 2 for correspondence from Nottingham Town Administrator).

Per Article 13.1.31 of the Raymond Zoning Ordinance, frontage is defined as "The length of a lot at its front lot line which borders on a public street, or a street paved in a subdivision approved by the Planning Board." In short, to create a new lot through a subdivision in Raymond the new lot must have frontage on a public street. As such, it appears that a variance may be needed for the proposed subdivision as the existing lot and proposed lots only have frontage on a private road.

It is also recommended that a note be added to the subdivision plan stating the following:
"Prior to the issuance of any building permit on the proposed lots that a written release must recorded at the registry of deeds containing the limits of municipal responsibility and liability for Meindl Road. Such release shall be presented to the Raymond Select Board for proof of recordation. If Meindl Road becomes a public road, no release of liability shall be required."

If any members of the Board have questions, please feel free to contact me.

From: Ellen White <TA@nottingham-nh.gov>
Sent: Thursday, June 29, 2023 4:11:11 PM
To: Christina McCarthy <cmccarthy@raymondnh.gov>
Cc: Plan.Zone <plan.zone@nottingham-nh.gov>
Subject: RE: Miendl Road
Hi Christina,

I searched our files, checked with our past Public Works Director, and found that there is no agreement in place for Miendl Road between the towns of Nottingham and Raymond. It's probably a result of an old handshake agreement. Please let me know if you have any other questions.

Thank you,
EElem OMiilo
Town Administrator

Town of Nottingham
P.O. Box 114

Nottingham, NH 03290
Phone (603) 679-5022
From: Christina McCarthy <cmccarthy@raymondnh.gov>
Sent: Wednesday, June 28, 2023 10:40 AM
To: Public Works Director <smclean@nottingham-nh.gov>; Plan.Zone <plan.zone@nottingham-nh.gov>
Subject: Miendl Road
Hello,
I am the Planning/Zoning admin for the Town of Raymond, I was wondering if there was a written agreement between the Town of Nottingham and the Town of Raymond for the maintenance of Miendl Road. If so, could I get a copy please?

\section*{Christina McCarthy}

Tax Collector
Town of Raymond
4 Epping Street
Raymond NH 03077
603-895-7016
cmccarthy@raymondnh.gov

\section*{3-LOT SUBDIVISION TAX MAP 41 LOT 47 MEINDL ROAD}

RECORD OWNERS:
FRANCES \& RAYMOND SCANLON 11 JOHN MCOUINN CIRCLE
FRAMINGHAM, MA 01701
APPLICANT:
JOSEPH FALZONE
STRATHAM, N.H. 03885


WETLAND/SOIL CONSULTANT:
GOVE ENVIRONMENTAL SERVICES INC. 8 CONTINENTAL DRIVE,
BLDG 2 UNIT H
EXETER, NH 03833
1-603-778-0644


INDEX
TITLE SHEET
SUBDIVISION PLAN
EXISTING CONDITIONS PLAN
SUBDIVISION SITE PLAN

CIVIL ENGINEERS:
LAND SURVEYORS:
BA
70 PORTSMOUTH AVE,
THIRD FLOOR, SUITE 2
STRD STRATHAM, N.H. O3885 PHONE: 603-583-486
FAX. \(603-583-4863\)
 \(\overline{\text { Assocints. . PLic }}\)

DOUCET:
SURVEY:





Planning Board Minutes
August 24, 2023 @ 6:00 PM
Media Center Raymond High School
45 Harriman Hill Road, Raymond, NH 03077
Planning Board Members Present:
Patricia Bridgeo - Ex Officio
Jim McLeod - Vice Chairman
Bob McDonald
Gretchen Gott
Tom Daigle (Alternate)(Seated)
Planning Board Members Absent:
Dee Luszcz - Chairman (Excused)
Staff Present:
None

Pledge of Allegiance: Recited by all in attendance.

\section*{Meeting called to order:}

The meeting started at approximately 6:00 pm.

\section*{Roll Call:}

Gretchen Gott, Planning Board, Jim McLeod, Planning Board, Tom Daigle, Planning Board Alternate, Bob McDonald, Planning Board, Trisha Bridgeo, Board of Selectmen.

Mr. McLeod said Dee Luszcz has an excused absence and Tom Daigle would be seated for the meeting.

\section*{Work Session:}

Ms. Bridgeo said that she thinks TRC needs to be extricated as a whole because she does not think that in the Planning Board Site Plan Regulations the TRC should be holding authority.

Mr. McLeod said he was going to assign Ms. Bridgeo the duty of marking off every reference to TRC. Mr. McDonald said he would do that on his computer.

Ms. Bridgeo asked if multifamily units are enough of a dialogue for conservation subdivisions.
Mr. McLeod said it is part of the authority not like an actual regulation on its own, he thinks it is supposed to be general.

Ms. Gott said she would like to go back to page 8 and the TRC membership and who is Chair. She does not know if that ever got resolved.

Ms. Bridgeo said they did not define that.

Kathy McDonald, 1 Park Place, asked that before they go to 3.01 under 29 Under Wetlands if you could remove the date and put most recent.

Mr. McDonald said on page 9 he had a question under Article 3.0107 "why is this waiver the only one mentioned in this section."

Ms. Gott said the applicant should always submit a waiver form.
Regarding section 3.03.02 Mr. McDonald said the applicant should go to the Planning Board before they go to TRC.

Ms. Gott said she fully believes that the Board should not be sending anyone to TRC until the Board has accepted the plan as complete for the purposes of review.

Mr. McDonald suggested removing Technical Review from the informal process. Until they come to the Planning Board with a complete plan which the Board can review and accept as complete and they begin the review process.

Mr. McLeod said they are going to strike where is says and or Technical Review Committee.
Mr. McDonald said the second part of that is the next sentence striking or the TRC.
Poll: Is the Board in agreement with striking these sections?
Ms. Bridgeo - Yes
Mr. McDonald - Yes
Mr. Daigle - Yes
Ms. Gott - Yes
In the next section Mr. McLeod suggested removing the words technical aspects of the plan.
Mr. McDonald suggested Upon successful zoning determination then the planning staff will review the application for completeness at that point the planning staff will schedule a hearing before the Planning Board.

Ms. Bridgeo disagreed and suggested upon submission of an application to the planning, development department, whatever we call ourselves, upon submission of an application to the planning department. Once all required fees have been paid, a zoning determination is conducted to ensure conformity period.

Mr. McLeod said It isn't because this is saying that once this step has been completed, this is the next step. Right, you have to leave it in here upon receipt of the successful zoning determination is exactly how that should be written because that is what leads us to the next part of this.

Mr. McLeod said the wording would be prior to a public hearing. So I think what I was thinking that is missing here, because we've changed this paragraph above it is saying that the planning board can send the applicant back to TRC. And I know that we have that listed elsewhere. But because we've taken it out of this general rule, I think we need to put it back in
here in some fashion. Even if it's just to say the planning board may require the applicant to go to schedule a meeting with TRC. Just because we've taken TRC out of the discussion in this first paragraph. If we want to be able to send somebody to TRC, we need to show that so that it's in here, I want to say that the planning board may send an applicant to TRC at any time.

Mr. McDonald said my question on the next paragraph where it says the planning board may authorize the TRC to review and approve projects of minor nature. Consensus of the Board members said that should be removed form the document.

Mr. McLeod suggested instead of slamming the door, would it be more appropriate to say that the planning board may authorize the TRC to review and approve projects of a minor nature? After a vote of the planning board?

Ms. Gott said that was fine with her.
Ms. Bridgeo said I think again, you're setting yourself up for the unintended consequences you would happen, you don't see those problems of what TRC would and you've already been granted the authority, and I'm sorry, to delegate that kind of without seeing the information to me is running blind. So, I would say no.

Mr. Daigle said he would strike the whole thing because I agree with Trish, I think I think that allows us to be run a little bit blind in that area. You wouldn't the board wouldn't be able to see it.

Mr. McLeod said they are in section 3.03 E .
Ms. Bridgeo said 3.03 E . It says certified. They're not licensed again is that assumed?
Mr. McDonald was looking up the information and found on the New Hampshire Office of Professional Licensure and Certification under their board is called Board of Natural Scientists. And they have who we regulate, they regulate certified soil scientist and a certified wetland scientist.

Mr. McLeod said so we leave this the way that it's written. And we add after New Hampshire certified, so soil scientists comma ... It has to be performed by them it can't be performed by somebody else. The actual work must be performed by New Hampshire certified soil scientist, right, who will then sign and seal the plan on which the soils are mapped.

Kathy McDonald said we've run into a case where the field delineation the delineation was done by x , what certified wetland scientist x . And then the actual field delineation was done by an associate.

Mr. McLeod said that would not be appropriate, based on the way that we have this written.
Mr. McLeod asked that every look at 3.0306 Abandonment and Resubmission. The second to the last sentence, it says the applicant may be granted an extension of not more than 60 days by the board upon written application and for reasons determined to be adequate by the board. I'm asking that we strike that we have not been following that. And this is a there is there's no

RSA that limits us to 60 days. Just recently, an application which shall not be named, was given a 12-month extension by the sport. And we've been that's not the first time that we've granted extensions. They thought that this meant it wouldn't it says to me is that we're limited by 60 days, and we haven't been following it. And we shouldn't follow it. Because this is the only instance of us being limited by that.

Ms. Gott said so you're not saying that we shouldn't consider extensions, you're just taking the six months or 60 days?

Mr. McLeod said they should strike the line.
Ms. Bridgeo said I think it's six and seven. The again, we're creating a problem unbeknownst. Because the problem, I think, is that that's why I stopped on seven. The problem with this is that this has passed the pipeline. And that's my note, it says it's both sixth and seventh pass the pipeline of the planning board. These are their agreements and everything are heading onto the other side of the applications in their approval states and all of that that's where I think there's no gap closure for the board versus it's supposed to go to the building inspector. And that's where afterwards passed us for change of design improvement and abandonment are in a tight timeframe of once have gone through in Board spent all the time to get them ready to be doing their performative actions. I think 60 days is saying that, if we put performance agreements in, and the board probably still doesn't have the mylars at that point, it gave that last little bit of time to look at something.

Mr. McLeod said the way that this is written is that it doesn't limit it to just the six-month requirement of the performance agreement.

Ms. Bridgeo said I think six and seven are problems because things that should be being done not being done. That's what would trigger the reviews to make sure that they've met the conditions of approval, which they may be said that they'd have done in 60 days, and it just goes two years down the road. And then all of a sudden, it's picked up on the next one where there's applications right now being changed.

Ms. Gott said that is different than 06.
Mr. McDonald said I agree with Jim. 06 basically says Planning Board two years ago approves a plan. And they don't meet the conditions of doing anything for over 2 years. So, then they have to come before the Planning Board before that date is up to ask for an extension. And that's what Jim's bringing up about a 60-day extension, a two-year extension and that since we're struggling these days, and if they don't come before us within two years, is I read both our rules in our and the RSA instead to have to resubmit.

Ms. Bridgeo said 07 has inherent issues with the fact that the planning board may authorize changes. The problem is right now changes that are happening. We're not even being notified of so I just don't know how we make that so that we are. We should not have plans that a board approved that are different floating around. I don't think after a board has approved plans should be modified. They should be reviewed, and at least a meeting by the Planning Board to see them.

Ms. Gott said the applicant should present request for amended site plan. And then the planning board does their thing.

Mr. McDonald said I think it's already there level is already there, if you continue to read down. And I think the word should change from as you said, Jim, from May to shall, the Board. And I'm just reading on page 11. Halfway down the Board may authorize a change only after an amended site plan or as good plans have been submitted for review the board right at a properly notice public hearing. So, change the word may to Shall.

Mr. Daigle suggested striking the sentence that said the minimum standards of regulations or design intent of the applicant's agent may be approved by the town engineer and code enforcement officer.

Ms. Bridgeo suggested that the Board table the discussion about section 3.04 Fees.
Mr. McLeod said that that would be tabled until the next work session.

\begin{abstract}
Motion:
Mr. McLeod made a motion to allow member Bridgeo to speak with the finance director of the Town to get the information that she needs to bring this back to the Board also to have the date of the last update of fees.
Mr. McDonald seconded the motion.
\end{abstract}

A vote was taken and the motion passed unanimously.
Section 3.08 - Mr. McLeod said he had some significant changes to this section. This blasting is outside of our excavation, our Earth excavation regulations, this this is for when a blasting is occurring, but it is not occurring within the purview of the excavation it is part of the site development. Mr. McLeod said the reason why I want to make these changes is because the responsibility for making sure that the blasting is performed properly is on the planning board. But it's the fire department that issues the actual permit. So, they don't have access to the information to be able to determine if the applicant has met all the conditions to allow them to start blasting. And so those conditions need to be set by the board. And then once everything is set, then it can go to the fire department for them to issue the permit.

Ms. Gott noted that they must inform the planning board of intent for blasting even on adjunct work on the site as adjunct work on site.

Mr. McLeod said this is 3.08 Blasting 01. Local blasting permit required under A. I want to insert after review by the planning board for compliance with applicable regulations and conditions comma blasting permits are issued and administered. It would read After review by the planning board for compliance and applicable regulations and conditions blasting permits are issued and administered by the Raymond fire chief or designee blaster shall be responsible to pay local blasting permit fees, as may be revised from time to time by the Board of Selectmen. Insert number two, this is about halfway down. It says the planning board may increase this distance talking about the 200 feet of the blast site, the planning board may increase this distance in accordance with the recommendations it receives from a qualified professional. And then I want to insert at the applicant's expense. The next insert would be
after where it says received from a qualified professional. And it should be "contracted by the Planning Board at the applicant's expense". Then the third one is in the next line down it says the applicant shall provide a detailed record of each survey to the fire chief. And what we want to do is say "the applicant shall provide a detailed record of each survey to the Planning Board for review and to the fire chief."

The Board members all agreed to make Mr. McLeod's recommended changes.

\section*{Article 4 General requirements:}

Poll: Can we just stipulate that if it isn't already in the checklist, that we add a requirement that they provide the location of aquifer boundaries and wellhead protection areas?
\[
\begin{aligned}
& \text { Ms. Gott - Yes } \\
& \text { Ms. Bridgeo - Yes } \\
& \text { Mr. Daigle - Yes } \\
& \text { Mr. McDonald - Yes }
\end{aligned}
\]

Mr. McDonald said I think we all should really look at the general requirements. And then our next work session, we come back on the general requirement issues and make sure that any of those things are part of the checklist. You know, such as you know, I just quickly looked at this checklist. traffic study is not the answer to that. That's why I had that general comment before at the beginning of this section. Under general requirements, because there were some important things once you drill down, and we've had applicants before is saying, well, it's not in your checklist, but it's certainly in our regulations. And that's why you, Jim, you indicated some towns have multiple pages to the checklist. Because that has happened to that particular community. There's a lot of good stuff in the general requirements. And so, I think we should all revisit it, and come back and make sure that that makes sense. That way we can move off the general requirements unless someone sees this something clearly missing in the general requirements that we need.

Mr. Daigle agreed with Mr. McDonald.
Ms. Bridgeo asked about 5.0204 the boundary lines of the area included in the site, including distance and bearings of the lines, dimensions and the lot area for prepared and stamped by a licensed New Hampshire land surveyor. So, all of the boundaries of the site are surveyed and stamped before we accept it? That would mean then that a lot line adjustment would have to be done and recorded?

Ms. Gott said it would have to be surveyed.
Mr. McDonald said from the standpoint, if an applicant needs a lot line adjustment, then that needs to happen first before the application comes before the board. Right. That's all I think, I think the what's missing in here, and I haven't looked check for lot line adjustment in the site, plan regs. But if someone needs a lot line adjustment, to get to the point that the planning board could then look at the site plan application? Well, that's a cart before the horse, as opposed to what we spent all my time looking at a hypothetical white line adjustment, and we approve it, but yet, they don't get approved for a lot of money adjustment at the end. I so it's
the So to go back to this 04 where it says boundary lines. Its boundary lines that don't require any white line adjustments. I think it's a procedural question. That in application all the lot line adjustments are done prior to the application being accepted. A lot line adjustment should not be part of an application. It hasn't been done yet.

Ms. Gott in section 4.0203 under Community Impact Analysis, I wanted to it outline some of the things that it requires. And I would like to specify add water supply and wastewater impact are things that need to be reviewed. It has a list of things that need to be reviewed.

Mr. McLeod said it storm drainage, wastewater impact, and water supply comma utilities.
Everyone agreed to add the changes Ms. Gott suggested.
Ms. Gott said 4.0501 on page 16, No construction shall be made until approval is granted by the Planning Board.

Mr. McLeod said I think we're trying to define what the improvements are here. And that isn't clearing for me. For you. It's land clearing, but it's one for a while, but what is the definition of approvers? In here, before we can make any changes here, we all we have to have a consensus on that. And there isn't a consensus on what improvements are. So, if there's a definition of it somewhere that we can refer back to, then we can change the definition. So that encompasses what you think it should encompass. But the but I don't want to redefine everything that's written in here. If the way that this is written, the intent is okay, that we should move on to something else that needs to be changed.

Ms. Gott said in section 5.01001 under that the applicant or his agent make submitted a sketch.

Ms. Bridgeo suggested removing that verbiage because they could come before as conceptual but they can't be bringing sketches.

Ms. Gott suggested removing it all together.
Mr. McLeod suggested adding to the end of this sentence, as requested by the Planning Board, that way, they're not making the decision. We're making the decision saying now you can just bring us a sketch of what you're doing so that we can visualize it better?

Mr. McDonald said what he thinks is missing in that sentence is an applicant has every right to come before the Planning Board with a conceptual and they should get rid of sketch and put conceptual plan.

Mr. McLeod said under 5.0102 letter H they would add completed site plan review checklist.
Mr. Daigle said he would agree to that.
The Board discussed having the plans in the planning department 10 days prior to the Planning Board meeting. Mr. McLeod suggested on the initial submission, but then subsequent trips back to the board which information we still need these 10 days before that meeting. Mr .

McLeod said the way that this is written, it's clear to me. And the only problem that we have with this is that it hasn't been followed.

Ms. Bridgeo suggested making a note and look, because I there's a lot of dates times right out that how that works. Accepting the time, the clock, because that's the other part of this, right? It's the accepting clock. And that's what we really are trying to pay attention to. And what's the, in that longest amount of time, you can have an applicant have to have material enter.

Mr. McLeod said actually should be under 5.0103 . A. subsequent submissions to the Planning Board.

Mr. Daigle said everything on a 5.0102 should be, we should make a determination to all that should be 10 days before your meeting, everything should be completed.

Mr. McLeod said this is saying that this has to happen before that these are the formal submission requirements. The 10 days is an exception to that all this other stuff has to be done. The 10 days is an exception to that. Saying that you don't have to have these plans when you submit it. But they have to be in 10 days before the meeting, is what the steps, this is a caveat for them. If we give that caveat to all of it, then they could submit it without anything, and then just provide it all 10 days before the meeting.

\section*{The Board decided to table the discussion and discuss at the next work session.}

\section*{Section 5.03:}

Ms. Gott said under E. Landscaping Plan she would like to specify that the landscaping plan includes native species is listed by NHDES.

Ms. Bridgeo said that is in the zoning and has to go before a warrant.

\section*{Section 5.05:}

Ms. Bridgeo said 5.0502 should be that the size of the system depends on whether or not it's a licensed septic designer? Or if it's an engineer, that's very different requirements.

Mr. McLeod suggested to Ms. Bridgeo to figure out how to word it and then bring it to the next one. I think that everybody's in agreement that that needs to happen.

Mr. McDonald said talking about under 5.05 Under items required, there's a list. It says permits and things? Well, instead of permit. We have application. The list is there he needs to just double check it. Mr. McDonald said he would look it over and bring it back next work session.

Mr. McLeod said they are leaving off at \(\mathbf{5 . 0 6}\) Groundwater Protection.

\title{
Motion: \\ Mr. McLeod made a motion to move all of the affirmatively polled items to the future public hearing date to be determined. \\ Mr. McDonald seconded the motion.
}

\section*{A vote was taken and the motion passed unanimously with a vote of 5 in favor, 0 opposed and 0 abstentions.}

\section*{Board Member Updates:}

Mr. McLeod said the Water Planning Committee met with the Board of Selectmen and LRAC and Therese Thompson at a meeting yesterday that brought up a couple points of concern, and to Cons Comm regarding the spraying of herbicides around our bridges. The Conservation Commission is going to be sending a letter of with some conditions that they'd like to see imposed. The other thing was bacterial counts over at Carroll Lake Beach, which is the beach by the Lamprey River Elementary School. And those numbers spiked last month. There are several theories as to why that it spiked so high, but it has not been determined. What is causing these high levels, the level for unregulated waters and in New Hampshire is just under 160 units per 100 milliliters. And we have been under that all year, until last month, and it spiked up over 2,600 or so for coliforms and over 2,500 for \(E\) coli. So, we don't know where the level is now. They are continuing to test it. This is through UNH, they get a grant from LRAC, these are not the same testing that the NHDES does at like tuckaway swimming beaches. This does not fall all under that this beach it falls under the town. And so, the Water Planning Committee is going to, well, we're waiting for some more information from the professor from UNH that did the tests, and he replied back to Therese on, on some questions that we, once we have that information, then we're gonna go to DPW, and to the health officer, bringing that information so that we can get it out to the public. That being said, if you are utilizing the Lamprey River, then I would just I would suggest caution, because we don't really know where the levels are right now. But they were shockingly high last month.

Mr. McLeod said the September 7, meeting is one we need to take a look, we need to add some dates for work sessions. November 16, and December 7, are work sessions. Those are the ones that are required by the state in order to meet the zoning obligation. One of them is like the last day to submit for the public. And the other one is the last date that we have to take them up in public or I'm not sure exactly how it works out, there is a sheet that Dee should have sent everybody that has the timeline for that. So, these two dates are going to be reserved for that. In addition to that, I have a list of dates that we want to set for work sessions to do our own zoning. And additionally, we have a lot of work to do, obviously, still. So, the first date, though, and these would all be from 6 pm to 9 pm . is to add a meeting for September 28.

Ms. Gott said she was unavailable because that is Deerfield Fair night.
Mr. McDonald said he was good.
Mr. Daigle said he should be available.
Ms. Bridgeo said she is not usually available on that date.
Page 9 of 13

Mr. McLeod said he was available for all of the dates and Ms. Luszcz would be available for all of the dates.

There is a quorum for September 28, 2023 for a work session.
The next date on the list is Thursday, October 12, 2023. Note* all of the dates are Thursdays.
Ms. Gott and Mr. McDonald said they were available and that was enough for quorum.
The next date is October 26, 2023.
Ms. Gott and Mr. McDonald said they were available and that was enough for quorum.
November 9, 2023.
Ms. Gott and Mr. McDonald said they were available and that was enough for quorum.
November 30, 2023.
Ms. Gott said she could make it but might be late due to an appointment previously made.
Mr. McLeod said there is a voluntary meeting tentatively on September 31, 2023 at 6 pm with both the Selectmen and the Planning Board it could change to have a non-meeting. Actually, I'm not sure if it's a non-meeting or a meeting with legal but it is an opportunity to actually meet a planner that is being that has submitted an application and is being brought to the Board of Selectmen and the Planning Board to be introduced and asked questions.

The Conservation Commission last night went through some things that they want us to look at for the zoning. They're going to put that in a letter and submit it to us and then we'll schedule a joint meeting with them to go over it on one of these work sessions.

Ms. Bridgeo asked if the Board could you reach out to the zoning board and ask if they've had any applications that have the same reoccurring issues for variances.

Mr. McLeod said he would have the Chairwoman look into that and one final announcement, there is a site walk/work session for the Raymond Conservation Commission Sunday, August 2, 2023 at 10 am . Meeting at the end of Briar Road. And this is a Conservation Commission will conduct a site walk and perform property maintenance at the Cassier Memorial Forest. The public is welcome to attend. If you have any questions, comments, or would like to participate in the site work, please contact conscomchair@raymondnh.gov.

Mr. McLeod requested that the Water Planning Committee add two alternates at their discretion.

\section*{Motion: \\ Mr. McLeod made a motion to that the water planning committee can appoint two alternates to the committee at their discretion. \\ Ms. Bridgeo seconded the motion.}

Discussion:
Mr. McLeod said they have the authority for 7 regular members and I should have asked for two alternates at the time because now with seven we have to have four people for a quorum. And where we have people that are wearing a lot of hats.

A roll call vote was taken.
Ms. Bridgeo - Aye
Mr. McDonald - Aye
Mr. Daigle - Aye
Ms. Gott - Aye
Mr. McLeod - Aye
The motion passed with a vote of 5 in favor, 0 opposed and 0 abstentions.
Ms. Bridgeo said there is a work session on Monday night five o'clock with the Board of Selectman with the Water Planning Committee from 5 to 7.

Motion:
Ms. Gott made a motion to move Mr. Daigle from alternate to full member.
Ms. Bridgeo seconded the motion.

\section*{Discussion:}

Mr. McLeod said in consideration that the chairwoman isn't here to do the honors,
I'm not in agreement with taking the vote right now, though, I am absolutely in agreement with appointing you as a full member.

A roll call vote was taken.
Ms. Bridgeo - Aye
Mr. McDonald - Aye
Ms. Gott - Aye
Mr. McLeod - Aye
The motion passed with a vote of 4 in favor, 0 opposed and 0 abstentions.
Motion:
Mr. McDonald made a motion to adjourn.
Ms. Gott seconded the motion.
A roll call vote was taken.
Ms. Bridgeo - Aye
Mr. McDonald - Aye
Mr. Daigle - Aye
Ms. Gott - Aye
Mr. McLeod - Aye
The motion passed with a vote of 5 in favor, 0 opposed and 0 abstentions.

The video of this meeting is to be preserved as part of the permanent and official record.
Respectfully submitted,
Jill A. Vadeboncoeur```


[^0]:    * Note: If you require personal assistance for audio, visual or other special aid, please contact the Selectmen's Office at least 72 hours prior to the meeting. If this meeting is postponed for any reason, it will be held at a time TBD.

[^1]:    * Note: If you require personal assistance for audio, visual or other special aid, please contact the Selectmen's Office at least 72 hours prior to the meeting. If this meeting is postponed for any reason, it will be held at a time TBD.

[^2]:    1498164.1554264
    hundred said forty (140) the bound begun at, estimated to contain about one астев.

    Being a portion of the same premises conveyed to me by Roger: B. Maloon, et als by deed dated February 7." 1949; to be reoorded! in Hookingham Racorde.

[^3]:    VASHU PATEL
    NOTARY PUBLIC, STATE OF NEW YORK
    Registration No. 01PA6334587
    Qualified in Kings County
    Commission Expires 12/21/2023

[^4]:    ${ }^{1}$ Manual on Uniform Traffic Control Devices (MUTCD); Federal Highway Administration; Washington, D.C.; 2009.
    $\mathcal{O}$ www.rdva.com
    (978) 474-8800

    田 (978) 688-6508

[^5]:    ${ }^{1}$ Trip Generation, $11{ }^{\text {th }}$ Edition; Institute of Transportation Engineers; Washington, DC; 2021.

[^6]:    ${ }^{a}$ Average weekday traffic in vehicles per day.
    ${ }^{b}$ Vehicles per hour.
    ${ }^{\text {c Percent }}$ of daily traffic occurring during the peak hour.
    ${ }^{\text {dPercent traveling in peak direction. }}$
    $\mathrm{SB}=$ southbound.

[^7]:    ${ }^{2} \mathrm{~A}$ minimum combined travel lane and paved shoulder width of 14 feet is required to support bicycle travel in a shared traveled-way condition.

[^8]:    ${ }^{3}$ Response to Planning Board Comments; Proposed Warehouse/Distribution Facility, Raymond, New Hampshire; VAI; March 24, 2023.
    ${ }^{4}$ Institute of Transportation Engineers, op. cit. 1.

[^9]:    ${ }^{5}$ Traffic Impact and Access Study; Proposed MEGA-X Convenience Store (With Gas); Old Manchester Road; Raymond, New Hampshire; Tetra Tech; August 28, 2019.
    ${ }^{6}$ Traffic Impact and Access Study; Proposed Commercial Subdivision, Essex Commons, Raymond, New Hampshire; Stephen G. Pernaw \& Company, Inc.; November 11, 2021.

[^10]:    ${ }^{7}$ Institute of Transportation Engineers, op. cit. 1

[^11]:    ${ }^{8}$ Highway Capacity Manual; Transportation Research Board; Washington, DC; 2016.

[^12]:    ${ }^{9}$ A Policy on Geometric Design of Highway and Streets, $7^{\text {th }}$ Edition; American Association of State Highway and Transportation Officials (AASHTO); Washington D.C.; 2018.

[^13]:    ${ }^{10}$ Institute of Transportation Engineers, op. cit. 1.

[^14]:    ${ }^{11}$ Manual on Uniform Traffic Control Devices (MUTCD); Federal Highway Administration; Washington, D.C.; 2009. ${ }^{12}$ Ibid.

